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Abstract: One of the deadliest diseases, heart disease, claims millions of lives every year worldwide.
The biomedical data collected by health service providers (HSPs) contain private information about
the patient and are subject to general privacy concerns, and the sharing of the data is restricted under
global privacy laws. Furthermore, the sharing and collection of biomedical data have a significant
network communication cost and lead to delayed heart disease prediction. To address the training
latency, communication cost, and single point of failure, we propose a hybrid framework at the client
end of HSP consisting of modified artificial bee colony optimization with support vector machine
(MABC-SVM) for optimal feature selection and classification of heart disease. For the HSP server,
we proposed federated matched averaging to overcome privacy issues in this paper. We tested and
evaluated our proposed technique and compared it with the standard federated learning techniques
on the combined cardiovascular disease dataset. Our experimental results show that the proposed
hybrid technique improves the prediction accuracy by 1.5%, achieves 1.6% lesser classification error,
and utilizes 17.7% lesser rounds to reach the maximum accuracy.

Keywords: heart disease prediction; hybrid technique; ABC-SVM; privacy-aware machine learning;
intelligence-based healthcare

1. Introduction

The Internet of Things (IoT) enables the connectivity of physical objects and compu-
tational power so they may connect to the Internet. The IoT has the potential to assist in
the development of applications that are both adaptable and efficient across a variety of
industries, including healthcare, environmental monitoring, and industrial control sys-
tems. The IoT in the healthcare environment has led to the establishment of the Internet of
Medical Things (IoMT), a cutting-edge area of a cyber physical system for wellness and
wellbeing. Integrating these solutions into the HSP system has the potential to improve
care services, quality of life, and open the door to cost-effective solutions [1]. For further
analysis, the biomedical information pertaining to people is obtained. This information
includes medical records, photographs, physiological signals, and many more forms. Given
that the IoMT’s cyber physical system collects data from several users, the volumetric scale
of this biomedical data is enormous [2]. Smartwatches, wristbands, and other wearable
sensing devices, among others, help in early illness diagnosis and warning. These wearable
devices include strong and application-specific computational architecture that is housed
in a distant HSP cloud data center, enhancing their capabilities (for real-time and early
detection of health concerns). In IoMT-based healthcare solutions, wearable devices are
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often collected at the HSP’s data center with the goal of preventing, diagnosing, and treat-
ing a variety of human health-related issues including cardiovascular illnesses (CVD). The
construction of an effective electronic healthcare infrastructure is difficult due to the vast
number of data that are gathered from multiple sources, including end users and other
stakeholders in the delivery of health services.

According to World Health Organization (WHO) projections, CVD-related mortality
accounts for close to 18 million fatalities annually globally [3]. Numerous risk factors, such
as a history of heart attack, obesity, stress, high blood pressure, smoking, excessive use
of alcohol, and high cholesterol, can all contribute to CVD. CVD impairs heart function
and results in issues including strokes and impaired blood vessel function. The ability to
treat CVD effectively and quickly is crucial for patient survival. The academic and industry
communities are paying close attention to machine learning (ML)-based approaches for
the accurate detection and prognosis of cardiac disorders. In [4], for example, a hybrid
strategy based on a random forest and linear model was proposed to increase heart disease
prediction accuracy. Authors in [5] proposed a feature selection and classification technique
for identifying cardiac illness in an e-healthcare system.

To create an effective prediction model for tracking a patient’s health state, traditional
ML models are trained on vast amounts of user data. Although it is organized by several
autonomous HSPs, these healthcare data are available in scattered, isolated silos. Even if
there are a lot of aggregate data in different businesses, sharing the data is limited because
of worries about security and privacy. Similarly, collected user data from the crowd are too
restricted. These restrictions are enforced through regulatory laws such as the European
Union’s GDPR [6], China Cyber Security Law [7], and the United States’ CCPA of 2018 [8].
Hence, it is not trivial to accumulate large amounts of user data in real-time healthcare
applications to train powerful predictive models with high-quality training data. On the
other hand, if the collection of user data is allowed, it is still not trivial to process these
crowd-generated data, since the volume and velocity of the incoming data at the central
server of HSP put a lot of burden on the network backhaul, delimited by the processing
and storage capabilities of the central server. Indeed, with these restrictions in place, the
number of training samples would not be large enough to generalize the model, affecting
the performance of the trained model. To overcome these challenges, Google in [9,10]
proposed federated learning (FL): a combination of distributed and incremental machine
learning. FL is a distributed privacy-preserving machine learning technique that enables
the collaborative training of a shared global predictive model without the need of uploading
private local data to a central server to overcome the privacy concerns caused by centralized
machine learning.

The FL algorithm’s efficacy can be further improved by introducing feature selection at
the distributed nodes. Feature selection will improve the identification of common features
set in the sensory health data and distributed over the healthcare registries. Furthermore,
feature selection will also help in dimensionality reduction to lower the computational cost
and the model size. In this regard, recently, a feature-optimized federated learning-based
technique was proposed in [11]; they addressed the issue of dimensionality reduction and
communication efficiency for heart disease by improving the distributed nodes’ learning
technique. For the security and privacy issues in the cloud computing environment, fed-
erated learning incentive-based mechanisms were introduced in [12–14]. Recently, some
meta-heuristic techniques have been proposed to further expand the solution search space
for cloud-based healthcare systems [15,16]. These techniques also aim to minimize the
fitness (objective) function though preserve the size of the population, increase weight
adaptation rates, improve local search techniques, offer fitness function-improved com-
putation, provide solutions to avoid local minima, and enhance the convergence rate of
the algorithm.

Deep learning (DL) and SVM are both effective methods, although they are made to
address distinct challenges. While DL is better suited for big datasets with many features,
SVM works well for small to medium-sized datasets with few features. In comparison to
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DL, SVM is less prone to overfitting and is known to be successful in high-dimensional
space. SVM can be trained using various kernel functions, such as linear, polynomial, and
radial basis functions (RBF), which can help to handle non-linear data. In tabular datasets,
SVM can be used in conjunction with feature scaling, normalization, and dimensionality
reduction techniques to improve the performance. Motivated by these highlighted issues
of data privacy, improved feature selection, and classification for heart disease, in this
manuscript, we proposed a privacy-aware FL-based framework that utilizes federated
matched averaging at the HSPs’ cloud end with a hybrid technique of modified artificial
bee colony with support vector machine (MABC-SVM) for optimization for effective CVD
prediction, respectively, at the client nodes. The M-ABC at the HSP client for optimal
solution search works in four phases, i.e., the initialization phase, employed bee phase,
onlooker bee phase, and the scout bee phase. These steps are described in detail in
Section 4.1. The primary contributions of the proposal are enumerated as follows:

• An FL-based framework is proposed in this paper to overcome the problem of data
privacy for HSP systems.

• We utilize the modified version of a federated matched averaging (FedMA) algorithm
to preserve the privacy of heart disease data and to address the issues of the HSP’s
central model updation and communication efficiency.

• A hybrid technique comprised of a modified artificial bee colony and support vec-
tor machine (MABC-SVM) is proposed for the prediction of CVD with improved
prediction accuracy. This hybrid algorithm is introduced at the client end of HSP.

• Our hybrid method’s performance in terms of communication efficiency, classification
error, and prediction accuracy is assessed and compared to current FL approaches.

The rest of the paper is organized as follows. Section 2 provides context for federated
learning, the MABC method for optimum feature selection, and the SVM classification
algorithm. Section 3 is an overview of relevant work. The proposed hybrid FL-based
method is explained in Section 4. Section 5 is concerned with performance and the outcomes’
evaluation. The conclusion and future work are presented in Section 6.

2. Background

In this section, we provide a brief overview of the methodologies that were used
to build the FedMA with MABC-RB-SVM framework for privacy-aware heart disease
prediction.

2.1. Basics of Federated Learning

To train a model, one needs access to data, which is the core of the area of artificial
intelligence, and it frequently occurs in isolated data islands. The problem of isolated data
silos is easily resolved by centralizing data processing. As international privacy protection
laws for users strengthen, data collection for training models becomes more challenging.
The issue of how to legally address data islands has sparked considerable discussion and
research in the field of artificial intelligence. Traditional data analytics approaches are
already at capacity due to the many rules that must be adhered to while attempting to
address the data silo problem.

By jointly training algorithms without transferring the data, federated learning is a
learning paradigm that aims to overcome the issues of data governance and privacy. While
data are stored locally, federated learning trains statistical models across data silos. By
retaining the data on the device, FL aims to provide a collaborative learning process that
is privacy conscious and uses a shared model. As a result, users of FL will benefit from
individualized machine learning that also addresses privacy concerns.

2.2. M-ABC-Based Optimization Algorithm

The modified artificial bee colony (M-ABC), a swarm intelligence-based technique, was
proposed in [17]. The M-ABC is the upgraded version of artificial bee colony optimization,
which is a method that mimics the intelligent foraging behavior of honeybee colonies to
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find the best solution to a problem. It simulates the bees’ actions while they search for
nectar, and keeps a group of potential answers, referred to as “bees”, that explore the
possible solutions and adjust their positions based on the quality of their findings. This
method is particularly effective for solving complex optimization issues that are hard to
resolve with traditional optimization methods. This M-ABC algorithm has three types
of artificial bees such as onlooker, employed, and scout bee. While onlooker bees pick a
source constructed on the employed bee’s dance, scout bees oversee discovering new food
sources. As a result of being connected to their food supply, the employed bees are shielded
against exploitation. The observer bees and the scout bees are not connected to any food
source. The primary goals of the fitness function are the best possible classification error
and communication effectiveness of the models that are obtained from HSP sites. In order
to increase accuracy, the fitness function seeks to reduce classification errors and round
consumption.

In the M-ABC, the scout bee is combined with the firefly algorithm, and the modified
technique is a combination of two different metaheuristic optimization techniques, namely,
the artificial bee colony (ABC) and the firefly algorithm. The ABC algorithm generates
a population of potential solutions, and the firefly algorithm improves the solutions by
simulating the flashing behavior of fireflies. This hybrid algorithm is known for its global
optimization abilities and has been applied to various optimization problems, showing
better results than the original ABC or firefly algorithm alone. It is useful for solving
complex optimization problems that are difficult to solve with traditional techniques.

2.3. SVM Classification Technique

The support vector machine (SVM) is widely used in intelligence-based systems for
classification problems. The fundamental principle of the SVM classification algorithm is
to discover the negative samples and the optimal selection for dividing positive samples.
To attain the best generalization ability while remaining resistant to overfitting, the SVM
attempts to determine the trade-off between lowering the training set error and maximizing
the margin [18]. In addition, one of the best things about the SVM is that it uses convex
quadratic programming, which gives only global minima and keeps the program from
getting stuck in local minima.

The data are converted using a method called kernel trick using the SVM. The SVM
kernel is a function that converts non-separable problems into separable problems by
taking low-dimensional input space and transforming it into higher-dimensional space.
Data conversion is used to determine the best splitting line among the expected outcomes.
The border can range from a straightforward narrow margin for binary classes to a more
challenging splitting including multiple classes [19].

3. Related Work

The contemporary machine learning research field is faced with two major challenges:
data isolation and privacy and security issues. In methods utilizing standard ML, central-
ized training data are necessary. Around the world, laws are implemented to protect the
privacy of data [6–8]. Therefore, the main difficulty for conventional machine learning
algorithms is data privacy. A federated stochastic gradient descent (FedSGD) and federated
averaging (FedAvg)-based technique first developed by Google in [9] offered some hope
for overcoming these difficulties. In [10], a method based on FL was suggested to address
the problems of data silos and privacy. To address the problems with data security in the
conventional artificial intelligence field, they created an extensive architecture based on
federated learning. Their suggested solution was divided into two categories: horizontal
and vertical FL.

A description of the different machine learning deployment models, including central-
ized, distributed, and federated learning, was given by the authors in [20]. With careful
consideration, they have described how machine learning architectures have developed.
The authors of the research in [21] created a federated learning-based model for individ-
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uals with diseases that are likely to require hospitalization. They made use of data from
electronic health records (EHRs) spread across various sources or agents. To use FL to
solve the issue of large-scale sparse computing, the authors presented the clustering-based
approach for dual splitting. Their suggested method yielded similar classifier prediction
accuracy. The MNIST dataset was utilized by the authors of [22] to test and assess the
three FL-based methods. A Bayesian correlated t-test was also employed. When client
uploads were restricted to 10,000, FedAvg surpassed CO-OP and FSVRG algorithms, in
their assessment. They have employed balanced data distribution, where each customer
receives the same volume of information. The authors of [23] suggested a modified version
of the standard FL with the aim of improving the algorithm’s accuracy and convergence
rate. To implement Bayesian non-parameterized approaches for heterogeneous data, they
introduced the FedMA algorithm, which is a layer-wise version of the FL algorithm. Their
suggested FedMA outperformed in terms of convergence, accuracy, and communication
size reduction. The authors of [24] examined technical issues and other factors regarding
the data privacy in the distributed implementation environment for FL algorithms. In their
study, they outlined the features and results of a few of the optimization strategies for FL
implementation. Additionally, they have discussed certain commercial consequences for
federated learning that will be expected.

The authors of [25] have suggested an algorithm that distributes weights according
to how much each class contributes to the local models. Using patients’ chest x-ray data,
machine learning-based algorithms can contribute to the identification of COVID-19. In
contrast to conventional machine learning techniques, an FL version was suggested in [26]
to discover COVID-19 with improved prediction accuracy. A blockchain-based approach
based on federated learning was suggested by authors in [27] to address the problem of
data privacy for IoMT-based healthcare systems. Their suggested solution was a hybrid
strategy built on federated learning and the maximum approximation of the Gaussian
mixture model, and it used blockchain to address the issue of user data privacy. Their
suggested approach demonstrates that IoMT data training may be carried out utilizing
local privacy to stop data leaking.

In the past, researchers gathered sensed data from HSP devices and then utilized that
data to predict about several diseases. The authors of [28] suggested a version of FL with
a Bayesian inference model to construct a privacy-aware heart rate prediction approach.
Comparing this FedARX approach to conventional machine learning models, it achieves
accurate and reliable heart rate prediction. A meta-heuristic method called artificial bee
colony (ABC) optimization was suggested by the authors in [29] as a way to efficiently
manage and optimize the calculation of offloading for IoT-based applications. Their method
effectively controls the computing workload for IoT applications with limited resources.
The authors in [30] suggested a fast-convergent technique that accomplishes intelligent
selection of each device at every round of training the model in order to maximize the
convergence speed of federated learning. To increase the convergence rate, their approach
employs precise and efficient approximation for the transmission of a nearly optimum
distribution of device selection.

Other approaches, such as a hybrid technique combining a linear discriminant analysis
with modified ant lion optimization for classification [31], a gradient boosting decision
tree with fuzzy logic algorithm [32], a hybrid of modified scalp swarm optimization and
adaptive neuro-fuzzy inference system [33], and a multi-objective function using meta-
heuristics [34], were also presented in the literature as strategies for predicting heart disease.
The use of a hybrid classifier and a modified neural network with a deep learning focus was
presented in [35–38] as a method for monitoring and predicting cardiac problems. Methods
such as the Boltzmann-based model for higher order [39], modified hybrid method using
classifiers and optimizers [40], two-stage-based localization of the classifiers [41], and
hybrid classifier based on nave Bayes and random forest [42] were also anticipated to
improve classification accuracy with less error.
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4. Proposed Hybrid FL-Based Framework

This section suggests a federated learning architecture that addresses privacy concerns
and effectively predicts cardiac disease in a healthcare system that is sensitive to privacy
concerns. Table 1 provides a description of the symbols used in our suggested framework,
where Xio represents the initial vector for client sites using the M-ABC algorithm; Xri is the
randomly chosen local solution; the candidate solutions of employed, onlooker, and scout
bees are represented as Cen, Con, and Csn, respectively; Fit[n] is the fitness function; B is the
size of the local batch at HSP clients; ωo is the initial model disseminated by the HSP global
orchestrator; similarity function is represented as c (wjl, θi); and the decision function based
on RB-SVM for the heart disease dataset d is represented by DF (d).

Table 1. Brief description of the symbols utilized in our proposed framework.

Symbol Brief Description

Xio Initial vector for MABC at client sites

Xri Local solution chosen randomly

Cen Employed bee’s candidate solution

Con Candidate solution from onlooker bee

Csn Candidate solution obtained by scout bee

Fit[n] Fitness function

N Number of HSP clients

B Local minibatch at every HSP client

ωo Initial model by HSP global orchestrator

c (wjl, θi) Similarity function

θi Gaussian mean

wjl Weight of lth neuron on dataset j in MABC

E Local epochs

η Learning rate

ωN Model of Nth HSP client

d Input dataset to RB-SVM

KF Kernel function

DF (d) Decision function on dataset d in RB-SVM

mr Margin function

RBF Radial basis function

In the FL-based HSP environment, we have a small number of HSP client devices
and the data for independent model training on each device are not sufficient; an FedMA
approach is more suitable. Our idea is to train multiple models independently on every
HSP client and then average their predictions to produce a final prediction. This can lead
to a better performance by reducing overfitting and increasing the diversity of the models.
We propose an FL-based framework for privacy-aware prediction of the heart disease.
Our proposed framework is constituted for the HSP client- and server-end. For the HSP
client, the hybrid model of the RB-SVM with M-ABC for optimal classification and feature
selection is proposed. For the HSP server, the FedMA is proposed to overcome the issues
of HSP’s central model updation and communication efficiency.
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4.1. M-ABC-Based Feature Selection

At the HSP client-end, the M-ABC optimizer is used to choose features in the best
way possible. The implementation of the M-ABC is completed in the four phases and each
phase is described as follows:

4.1.1. Phase-I

Every client site of HSP is initialized by Xio vector. This initialization is achieved by
using Equation (1):

Xio = li + rand (0,1) ∗ (ui − li) (1)

where the ui and li represent the upper and lower bounds of the parameters, respectively.

4.1.2. Phase-II (Searching of Candidate Solution by Employed Bee)

Using Equation (2), the bee searches the local HSP clients for new candidate solutions
during this phase. The random integer generated by the function τni falls between [−1 and
1], and the local random solution is represented by Xri.

Cen[i] = Xio + τni ∗ (Xio − Xri) (2)

The fitness function Fit[n] using Equation (3) determines the fitness of a new candidate
solution, and if the fitness value is high, the solution is memorized.

Fit[n] =

{
1

1+Fobj
, if Fobj ≥ 0,

1 + abs(Fobj), if Fobj < 0.
(3)

4.1.3. Phase-III (Onlooker Bee’s Candidate Solution)

Employed bees present their potential solution to the onlooker bee, who then makes a
probabilistic decision Con using Equation (4).

Con[i] =
Fn[i] (Xn)

∑m
i=1 (Fm)(Xn)

(4)

4.1.4. Phase-IV (Scout Bee with Firefly)

By picking a Csn solution using the firefly process as shown in the equation below, the
scout bee ensures that the new solution is evaluated in Equation (5). An employed bee
becomes a scout bee if it fails to improve its solution within a defined time range.

Csn[i] = Csn[i] + e−ri
2
(Csn0[i]− Csn[i]) + (rand (0, 1)− 0.5) (5)

4.2. Classification Based on SVM

For a non-linear classification problem with a multidimensional set of features, the
decision function using Equation (6) in terms of kernel function KF (d, dj) for the input
dataset d, mr as the margin, and weight represented as
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during this phase. The random integer generated by the function τni falls between [−1 and 

1], and the local random solution is represented by Xri. 

Cen[i] = Xio + τni ∗ (Xio − Xri) (2) 

The fitness function Fit[n] using Equation (3) determines the fitness of a new candi-

date solution, and if the fitness value is high, the solution is memorized. 

Fit[n]= {

1

1+Fobj
,  if Fobj≥0,

1+abs(Fobj),  if Fobj<0.

(3) 

4.1.3. Phase-III (Onlooker Bee’s Candidate Solution) 

Employed bees present their potential solution to the onlooker bee, who then makes 

a probabilistic decision Con using Equation (4). 

Con[i] = 
Fn[i] (Xn)

∑ (Fm)(Xn)m
i=1

(4) 

4.1.4. Phase-IV (Scout Bee with Firefly) 

By picking a Csn solution using the firefly process as shown in the equation below, 

the scout bee ensures that the new solution is evaluated in Equation (5). An employed bee 

becomes a scout bee if it fails to improve its solution within a defined time range.  

Csn[i] = Csn[i] + 𝑒−𝑟𝑖
2
(Csn0[i] − Csn[i]) + (rand (0,1) − 0.5) (5) 

4.2. Classification Based on SVM 

For a non-linear classification problem with a multidimensional set of features, the 

decision function using Equation (6) in terms of kernel function KF (d, dj) for the input 

dataset d, mr as the margin, and weight represented as ϐ can be written as: 

DF (d) = ∑ ϐj. KF (d, dj)+mr n
d=1 (6) 

To solve the heart disease (non-linear discrete) classification problem with a feature 

set of a high-dimension, kernel function is modified to be the radial basis function (RBF) 

RBF (d, dj) = e (-γ|[d − dj]|^2). Therefore, the decision function defined in the above Equation (6) 

is modified and is computed using Equation (7). In our proposed framework, the RB-SVM 

classifier is implemented at the HSP client side. 

j. RBF (d, dj)+mr (7)
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4.3. Discussion on Proposed Framework

In this section, we present a full review of our proposed framework comprised of the
hybrid MABC-SVM with FedMA-based technique for the effective prediction of CVD. Our
suggested system model is depicted in Figures 1 and 2. Our suggested system consists of
heart disease data-gathering equipment housed within a healthcare facility. Initially, the
HSP global model orchestrator distributes a global model to HSP clients. The HSP clients,
upon reception of this model, perform classification and optimal feature selection using
our proposed MABC-SVM technique, and then perform the local training. The HSP client
nodes send their updated local model towards the HSP central orchestrator. A new global
model is generated using the FedMA after receiving repeated updates for local models, and
it is distributed among the HSP clients. According to our proposed approach, the privacy
issues are addressed as all of the CVD data never left the HSP client node, prediction
accuracy is raised, and classification mistakes are decreased. Algorithm 1 below shows
how our proposed framework functions.
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The proposed FedMA-based framework obtains the maximum aposteriori estimate
(MAE) using the Bernoulli process described below:

min{πj
li}

∑L
i=1 ∑j,l minθiπ

j
li.c(wjl)s.t. ∑i π

j
li= 1∀j, l; ∑l π

j
li= 1∀ i, j. (8)

where the wjl is lth neuron of the dataset j and an appropriate function of similarity is
c(..). The posterior probability of c (wjl, θi) is computed on the jth client neuron l and mean
Gaussian θi. The total neurons in the federated model can gradually increase in accordance
to the sizes of the HSP client models because our suggested inference approach is not
reliant on parameters. Our proposed framework is designed for the HSP clients and cloud
sites, and it is executed in the following stages:

1. Stage-I (initial): An initial global model ω o is disseminated to every HSP client user
HCN. After obtaining this initial model, the HSP client is initiated for initial feature
selection using Xi0.

2. Stage-II (HSP clients): The client nodes will perform feature selection and classification
of each fragmented local data of size β using a hybrid MABC with the RB-SVM
technique. The updated weights of the local solution are returned to the HSP global
orchestrator from every HSP client.

3. Stage-III (HSP global orchestrator): Upon reception of the weights from every HSP
client, it performs the matched averaging and obtains an updated weight ωN for the
current round of communication.

4. Stage-IV (finalization at HSP global orchestrator): The updated weights ωN are com-
puted until there is no evolution in the HSP client models.
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Algorithm 1: Proposed hybrid FL-based framework for heart disease prediction

Input: CVD Data from HSP clients {HC1, HC2, - - -, HCN}
Output: Privacy aware model for heart disease at HSP client user ωN
// Computation at the HSP global orchestrator:

1: Initialize with global model ωo
2: for each round i = 1, 2, . . . do

i) m← max (N, 1)
ii) S[t]← (m is selected randomly for HSP clients)

3: do in parallel for each client N ε S[t]

(i) Compute inference method using Equation (8) with ({N, Cn, ωm})

(ii) ωN ← 1
N

N
∑

k=1
ωN

m ∏N
m

(iii) ωm+1 ← ∏N
m ωN //next weights permutation

4: Disseminate ωN among the HSP clients
5: Repeat until no evolution found in client models

// Computation at the HSP Client End (N, ω):

1: foreach client in N

(i) β← (fragment the local data to β size each into PN groups)
(ii) Calculate Cn using MABC with Equations (2), (4) and (5)
(iii) Perform the decision classification using RB-SVM classifier with Equation (7)

2: for every local i = 1 . . . E epochs do

(i) for b ε β groups do

(a) Perform gradient descent using (ω; b)

3: send back ω to the HSP global orchestrator

5. Experimental Evaluation and Validation
5.1. Simulation Setup

We use the Python environment (PyTorch) on a system with an Intel ® Core TM i7 @ 4
GHz and 16 GB RAM to run a simulation with 5000 communication rounds to evaluate
the performance of the proposed framework. For standard FL algorithms at the client end,
we implement the SVM classifier. Hence, the standard FL algorithms are versions of the
SVM such as FedAvg-SVM, and FedMA-SVM, and we also develop an upgraded version
of the vanilla FedMA compromising of a genetic algorithm (GA) and SVM as FedMA with
GA-SVM. The effectiveness of our framework for heart disease is assessed and compared
with state-of-the-art FedAvg, FedMA, and FedMA with GA-SVM approaches in terms of
prediction accuracy, time to attain the accuracy, communication efficiency, and influence of
the local epoch on accuracy. We consider the number of HSP client nodes to be five and
one HSP server node. However, this proposed framework can be scaled-up for the HSP
client nodes.

5.2. Dataset Description

Utilizing the combined dataset of five heart illness datasets, this dataset combines over
eleven common features from the datasets of Cleveland, Stalog, Hungary, Long Beach, and
Switzerland [43]. This dataset is used for the prediction of CVD, and it consists of various
parameters for CVD. The dataset has records of CVD patients recorded using eleven heart
disease features. The eleven CVD features of this dataset include resting blood pressure,
cholesterol serum, chest pain, max heart rate, depression level, resting electrocardiogram,
angina-induced by exercise, fasting blood sugar, ST slope, age, and sex. We train and
evaluate our suggested framework on this combined dataset (this dataset is available at
https://www.kaggle.com/fedesoriano/heart-failure-prediction, accessed on 8 December

https://www.kaggle.com/fedesoriano/heart-failure-prediction
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2022). There are 918 entries in the combined dataset collection, along with 76 characteristics
in each dataset. Table 2 provides an illustration of the dataset’s complete description.
The many risks for developing heart disease are included in this table along with their
descriptions and encoded values. Our suggested approach uses the encoded values as its
input. For the experimentation of this dataset using our proposed framework, the control
group refers to the group of patients who do not have heart disease (as determined by the
target column of Table 2). The patients with heart failure are considered the experimental
group. The target column in the dataset is used to distinguish between the two groups,
with 0 indicating no heart failure and 1 indicating heart failure.

Table 2. Thorough description of the combined dataset.

S# Feature Explanation Unit Coded Values

1 Resting blood
pressure (Rt_Bp) In mmHg Integer

Low Level = Below 120 = −1
Normal Level = 120–139 = 0
High Level = Above 139 = 1

2 Cholesterol
serum (Cl_S) In mg/dL Integer

<200 mg/dL = Low = −1
200–239 mg/dL = Normal = 0

>240 mg/dL = High = 1

3 Chest pain (C_P) Type of chest
pain String

Angina Typical (AT) = 2
Asymptomatic (AS) = 1

Angina Atypical (ATA) = 0
Non-Angina (NA) = −1

4 Max heart rate
(MHR)

Maximum
achieved heart

rate in bpm
Integer

<69 bpm = Low = −1
70–90 bpm = Normal = 0

>91 bpm = High = 1

5 Depression level
(Dp_L)

Old peak in ST
(numeric value
measured for

depression level)

Float <0.5 mm = Normal = 0
>0.5 mm = High = 1

6
Resting electro-

cardiogram
(Rt_ECG)

Normal, ST T, or
LVH String

LVH = 2
ST T = 1

Normal = 0

7
Angina induced

by exercise
(AI_bE)

Yes or No String Yes = 1
No = 0

8 Fasting blood
sugar (F_BS) >120 mg/dL Integer True = 1

False = 0

9 ST slope (ST_S) Peak exercise
slope String

Up = 2
Flat = 1

Down = 0

10 Age (A) Age in years Integer >77 = 2, 64–77 = 1, 47–63 = 0,
35–46 = −1, <35 = −2

11 Sex (S) Female and Male String Female = 0, Male = 1

12 Target (heart
disease) Yes or No Integer Yes = 1,

No = 0

5.3. Results and Discussion

In the FL-based HSP environment, the communication rounds refer to the number
of times the HSP client model parameters are exchanged during the training process. If
the large number of rounds are consumed by an FL model, then it will also increase the
communication overhead and computational cost. Therefore, the number of communication
rounds is a key aspect in the FL system’s overall performance and efficiency. The impact of
communication rounds on the algorithm’s accuracy in making predictions on the combined
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dataset is seen in Figure 3. Our proposed framework reaches 93.8% accuracy within the
4500 rounds of communication, which is better than the existing FedAvg-SVM, FedMA-
SVM, and FedMA with GA-SVM algorithms. Since the proposed MABC-RB-SVM method
employs the hybrid of the MABC optimizer and RB-SVM classifier for optimal feature
selection and classification at HSP clients, and for the HSP global orchestrator, we deploy
the FedMA which permits our overall model to accomplish better accuracy in a lesser
number of communication rounds than the existing FL algorithms. In the FedAvg-SVM
and FedMA-SVM, the HSP overall model performs the simple averaging and matched
averaging, respectively, on the simple SVM kernel at their client model algorithm which
results in consuming higher communication rounds. The learning rate is increased in
the GA-SVM with FedMA, but the convergence is consumed more by the classification
and feature selection. Consequently, the proposed hybrid framework accomplishes better
accuracy and reduces the amount of communication rounds used.
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We evaluate and vary the local epochs E from 10 to 160, to examine the impact of
local epochs on the prediction accuracy of the proposed hybrid technique and existing FL
algorithms. The accuracy test on each E of the proposed hybrid framework, FedAvg-SVM,
FedMA-SVM, and hybrid of GA-SVM with FedMA, is reviewed and compared. Figure 4
shows the outcome of this test. The findings show that the suggested framework can train
for a longer period and supports a higher rate of convergence because it produces a better
HSP global model on the local model with a higher model quality. This is because our
suggested technique makes use of the RB-SVM and MABC methods at the client side of HSP.
The accuracy of traditional FL algorithms, such as FedAvg and FedMA, tends to decrease
with time due to the lack of an optimizer. However, in the case of the GA-SVM with FedMA,
the accuracy does not decrease much after 100 local epochs, which is attributable to the
GA algorithm. This result demonstrates that if user sites implement our recommended
structure, they are free to train the local users of their model indefinitely.
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For the influence of prediction accuracy on the utilized communication volume, we
examine and compare the performances of the FedAvg-SVM, Fed-MA-SVM, GA-SVM
with FedMA, and our suggested approach. We vary the volume of communication (in
Gigabytes) for this assessment as {0.6, 1.2, 1.8, 2.4, 3.0, 3.6, 4.2, 4.8, 5.4, 6.0} and record the
prediction accuracy of each approach, as shown in Figure 5. The recorded results show that
our hybrid approach outperforms traditional FL techniques and FedMA with the GA-SVM
in terms of accuracy at both low and large communication volumes. Furthermore, Figure 6
depicts a comparison of the extent of communication necessary to achieve the various
target prediction accuracy of the algorithms (70%, 75%, 80%, 85%, and 90%). The GA-SVM
outperforms our suggested approach for a lower target accuracy of 70% and 75%. However,
when compared to existing FL algorithms, our proposed approach consumes 15–25% less
communication size (in GB) for improved target accuracy.
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Performance metrics such as accuracy, precision, classification error, f-measure, speci-
ficity, sensitivity, and the number of rounds required to achieve the highest accuracy are
assessed for the performance efficiency comparison of the proposed framework with the Fe-
dAvg-SVM, FedMA-SVM, and GA-SVM with FedMA. Accuracy in machine learning refers
to the proportion of all available examples that yield the right predictions. The fraction
of accurate positive instance predictions is what is referred to as precision. Classification
errors are defined as the inaccuracies or proportions of mistakes that are readily available
in the instance. Three performance indicators are used to identify important heart disease
symptoms. This makes it easier to comprehend how different groups behave and enables
better feature selection. The results of these parameters are displayed in Tables 3 and 4. The
created GA-SVM with FedMA for the heart disease dataset and baseline FL approaches
are compared to our proposed framework, which achieves greater target accuracy in less
cycles. The number of rounds in our suggested technique is reduced by 37% when com-
pared to existing methods, as shown in Table 3, since our proposed model’s learning rate
grows quickly after each round, leading to fewer rounds. Table 3 demonstrates that the
proposed framework performs better on the heart disease dataset than FL state-of-the-art
methods in terms of prediction accuracy (93.8%), precision (94.2%), sensitivity (96.6), and
specificity (81.8), because of the proposed model’s improved learning rate that increases
with each communication round with a smaller minibatch size. Our proposed framework
is therefore more equipped to provide increased heart disease prediction accuracy while
maintaining privacy when compared to existing baseline FL techniques. In addition, the
MABC optimization technique for feature selection and the RB-SVM classification in our
proposed framework result in decreased classification errors, resulting in a classification
error of 11.9 for our recommended method.
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Table 3. Consumed algorithm time for the highest accuracy of the model.

Techniques Max. Accuracy Achieved # Of Rounds to Reach 91% Difference

FedAvg-SVM 91.3 3810 –

FedMA-SVM 91.7 3425 10.1%

FedMA with GA-SVM 92.3 3046 20.1%

FedMA with MABC-RB-SVM
(Proposed) 93.8 2408 37.8%

Table 4. Comparison of performance on features of the dataset.

Techniques Accuracy F-Measure Precision Classification Error Sensitivity Specificity

FedAvg-SVM 91.3 87.3 92.3 20.4 85.3 59.5

FedMA-SVM 91.7 88.4 90.1 18.6 89.5 72.5

FedMA with
GA-SVM 92.3 89.6 93.7 13.3 91.9 78.8

FedMA with
MABC-RB-SVM

(Proposed)
93.8 90.1 94.2 11.9 96.6 81.8

6. Conclusions and Future Work

For the objective of early illness detection and treatment, a health service provider
(HSP) system to collect patient data in real time has been created. Intelligent healthcare
systems can move quickly to save many lives, especially when a patient is in a remote place
without access to medical treatment. It is challenging to predict survival in patients with
cardiac disease. Due to privacy and security concerns, it is hard to exchange user data when
it comes to healthcare systems. In this paper, we proposed a hybrid federated learning
framework for improved heart disease prediction and to address privacy issues in the
healthcare system. In order to enhance heart disease prediction, the proposed framework
combines MABC with RB-SVM feature optimization and classification techniques at the
HSP’s client node, while FedMA is used at the HSP global orchestrator to solve communica-
tion efficacy and privacy problems in the healthcare system. The main goal of this research
is to shorten training time and improve communication efficiency while improving the
prediction accuracy of heart disease. We evaluated and compared the performance in terms
of several model prediction-based metrics and communication efficiency with the baseline
FedMA, FedMA, and a developed upgraded version of FedMA using a GA-SVM optimizer
and classifier algorithms in order to ensure the accuracy and validity of our proposed frame-
work. Performance metrics including prediction accuracy, classification error, sensitivity,
precision, and communication efficiency all showed a considerable improvement under
the suggested paradigm. Our findings indicated that the suggested strategies produce
outcomes with 1.5% greater accuracy, 1.6% lower classification error, 4.7% higher sensitivity,
and 17.7% fewer rounds needed to reach the greatest degree of accuracy. In the future,
we will focus on the rehabilitation and treatment of several additional serious illnesses
including Parkinson’s, diabetes, liver cancer, skin cancer, and breast cancer.
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