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Abstract: In the last decades, marine macroalgae have drawn attention mainly because of their
bioactive constituents. Most brown algae are distributed over coastal areas of the Atlantic Ocean,
Mediterranean Sea, Aegean Sea and Black Sea, and their composition varies with endogenous and
exogenous factors. Phlorotannins, fatty acids, sterols and carbohydrates are some of the compounds
responsible for biological activities related to cytotoxic, antiviral, antifungal, antibacterial, antidia-
betic, antioxidant and anti-inflammatory potential. In this review we seek to highlight some of the
compounds responsible for these last two biological activities, which have enormous importance
for the management of neurodegenerative diseases, such as Alzheimer and Parkinson’s, with neu-
roinflammation and oxidative stress as hallmarks. However, one of the major problems associated
with treating these diseases is the highly selective blood-brain-barrier, which can be overcome with
nanocarriers used as delivery systems. Weighing the risks, benefits and toxicity of the used nanopar-
ticles is nevertheless important. We also discuss zebrafish as an upcoming adequate biological
model for in vivo screening of risks and benefits of such treatment strategies. This review aims to
enable researchers working in the exploitation of these macroalgae and in the use of nanocarriers to
potentiate the controlled delivery of bioactive compounds.

Keywords: brown algae; antioxidant activity; anti-inflammatory activity; neurodegenerative diseases;
nanoparticles; zebrafish model

1. Introduction

In the last decades, marine macroalgae have drawn attention mainly due to their
bioactive components, which have a wide range of biological activities [1]. As marine or-
ganisms are exposed to extreme environmental conditions, they produce unique secondary
metabolites, which have been recognized as important compounds for the development
of innovative medicines. Part of the diversity of the oceans comes from algae, which
constitute one of the most important groups of organisms, both in number and in diversity
of species [2]. Macroalgae, that comprise a varied group of organisms, are eukaryotic,
macroscopic and photosynthetic organisms and are among the largest oxygen producers on
Earth [2]. Currently, the use of macroalgae is relevant for different areas such as agriculture,
aquaculture, food, cosmetics, pharmaceutical industry, and is also widely used as a source
of gelling agents, phycocolloids, such as agar, which are usually used as thickeners, and
stabilizers for suspensions and emulsions [3].

They can be classified as red (phylum Rhodophyta), green (phylum Chlorophyta) or
brown macroalgae (phylum Ochrophyta), depending on their pigment composition, which
will be responsible for the different colors that characterize them [4] (Figure 1).
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Brown macroalgae are grouped in the Phaeophyceae class and present fucoxanthin 
as the main carotenoid which gives them a typical brown color. They include macroalgae 
with a wide range of sizes and shapes, from a few centimeters to tens of meters. The 
formation of seaweed forests are common, allowing efficient capture of sunlight and 
serving as habitat for many marine animals [2]. Of the approximately 2000 known species 
in this class, less than 1% live in fresh water [5]. From the marine macroalgae, the brown 
algae of the Sargassaceae family have been intensely studied. Chemically, they are 
essentially composed of water (80–90%) and polysaccharides, namely cellulose, alginic 
acid, laminarin and fucoidan, the latter being present only in brown algae. Other 
compounds include polyunsaturated fatty acids, vitamins, proteins, peptides, terpenoids, 
pigments, and sterols. Furthermore, and among marine algae, brown algae contain the 
highest levels of phenolic compounds [6]. One of the known genera of this family is the 
former Cystoseira genus (Figures 1 and 2), which currently comprises 123 species in 
Algaebase, considering accepted taxonomically species and homotypic or heterotypic 
synonym (due to the rearrangement of classification systems) [7,8]. Cystoseira spp. is 
distributed over the Atlantic Ocean, Mediterranean Sea, Aegean Sea and Black Sea [9,10] 
and their composition varies according to several exogenous factors, such as geographical 
location, season and environmental factors, or endogenous factors, such as age and 
species [11,12]. Over the years it has also been discovered that the solvents used in the 
extraction of these metabolites significantly influence the constitution of the extracts and, 
consequently, their biological activity [1,9,13–16]. 
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brown algae.

Brown macroalgae are grouped in the Phaeophyceae class and present fucoxanthin
as the main carotenoid which gives them a typical brown color. They include macroalgae
with a wide range of sizes and shapes, from a few centimeters to tens of meters. The for-
mation of seaweed forests are common, allowing efficient capture of sunlight and serving
as habitat for many marine animals [2]. Of the approximately 2000 known species in this
class, less than 1% live in fresh water [5]. From the marine macroalgae, the brown algae
of the Sargassaceae family have been intensely studied. Chemically, they are essentially
composed of water (80–90%) and polysaccharides, namely cellulose, alginic acid, laminarin
and fucoidan, the latter being present only in brown algae. Other compounds include
polyunsaturated fatty acids, vitamins, proteins, peptides, terpenoids, pigments, and sterols.
Furthermore, and among marine algae, brown algae contain the highest levels of phenolic
compounds [6]. One of the known genera of this family is the former Cystoseira genus
(Figures 1 and 2), which currently comprises 123 species in Algaebase, considering accepted
taxonomically species and homotypic or heterotypic synonym (due to the rearrangement of
classification systems) [7,8]. Cystoseira spp. is distributed over the Atlantic Ocean, Mediter-
ranean Sea, Aegean Sea and Black Sea [9,10] and their composition varies according to
several exogenous factors, such as geographical location, season and environmental factors,
or endogenous factors, such as age and species [11,12]. Over the years it has also been dis-
covered that the solvents used in the extraction of these metabolites significantly influence
the constitution of the extracts and, consequently, their biological activity [1,9,13–16].

This genus represents one of the most important elements of the marine coast ecosys-
tem [17], being essential for the rocky structure of marine forests and ensuring food to
numerous species of organisms that live in the rocky reefs. In addition, it has economic
value [18]. It has been widely studied from a chemical and biological point of view, with
most studies focusing on species from the coastlines of the Atlantic Ocean and Mediter-
ranean Sea, such as C. tamariscifolia, C. nodicaulis, C. usneoides, C. abies-marina, C. crinite
(currently designated as Ericaria selaginoides, Gongolaria nodicaulis, Gongolaria usneoides,
Gongolaria abies-marina, Ericaria crinite, respectively), C. sedoides and C. compressa [13,19,20].

Although a huge diversity of compounds has been identified in these algae, making it
possible to relate them to the biological activities selected for this review (Figure 1, Table 1),
lipid and phenolic compounds are the metabolites that have aroused the most interest
due to the various biological properties with which they have been associated [2,21–23].
This review focuses on a limited set of biological activities, namely anti-inflammatory and
antioxidant potential, and some of the compounds conferring such activities.
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Figure 2. Example of specimen Ericaria selaginoides, previously designated as Cystoseira tamariscifolia, 
(left) collected from the north coast of Portugal (right). 
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Table 1. Compounds identified in species of the genus Cystoseira and their respective biological
activity.

Compound Class and Name Species Biological Activity

Phlorotannins and Phenolic Compounds

7-Phloroethol
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Table 1. Cont.
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These two biological activities are of great importance for the prevention and treatment
of several diseases, some in the field of neurology. Among the increasingly prevalent
neurodegenerative diseases in the world, Alzheimer’s and Parkinson’s diseases stand out
as two of the most debilitating ones [40], presenting neuroinflammation and oxidative stress
as hallmarks [41], and for which there is still no treatment, which means that prevention
is a key point. Alzheimer’s diseases is the most common neurodegenerative disorder,
occurring mostly in people over 65 years old, mainly in women [42]. It is estimated that
in the United States there are about 13.8 million people who suffer from dementia, with
Alzheimer’s being the most frequent disease of dementia [42]. These types of illnesses
make patients very weak, where caregivers are usually needed both at the hospital level
and at home, and such care incurs high costs. This disease is characterized by neuron loss,
glia cell proliferation and neurofibrillary tangles (NFT) accumulation. Alzheimer’s has as
hallmarks the accumulation of the beta-amyloid protein outside the neurons and twisted
strands of the tau protein inside the neurons, that consequently provokes a progressive
memory loss [42]. Parkinson’s disease, on the other hand, is a chronic and progressive
neurodegenerative disorder caused by various risk factors and genetic mutations. This
disease is normally characterized by the loss of dopaminergic cells in the substantia nigra
pars compacta with consequent decreased motor function, which leads to resting tremor,
bradykinesia and muscular rigidity, also due to the presence of Lewy bodies (cytoplasmic
aggregates) that play a role in the neurodegeneration [43].

Although the use of natural compounds of marine origin can be useful in the treatment
and/or prevention of certain neurological diseases, it is often difficult to ensure the adequate
amount of the desired compound reaches the target site. In this way, the biological activity
of macroalgae can be potentiated by nanocarriers that deliver the algal extracts or derived
compounds to the desired cells, tissues or organs. Moreover, the properties of some
nanoparticles (NPs) can have synergetic activities with the algal extracts, namely anti-
inflammatory, antioxidant, antifungal and antibacterial properties. Nanotechnology has
grown to the point where its applications reach several areas such as the food industry and
agriculture, to the processing and packaging of food products, cosmetics, textile industry,
pharmaceutical industry and medicine [44–47]. In this way, applications of NPs in medicine,
diagnosis, imaging and disease therapy will also be addressed. One of the most significant
applications of NPs is in drug delivery [48]. These revolutionary carriers come without
the aid of conventional drug administration, since it constitutes a major problem in the
performance of the drug at target site, especially in the brain.

An important step in the use of NPs is the knowledge of their risks, benefits and
toxicity. For that, zebrafish is considered a good biological model for the in vivo tests of
neurotoxicity and bioactivity of NPs, since it present a neuronal system similar to that of
humans [49], thus allowing to obtain more reliable results. In vivo testing in zebrafish is a
very important step before translating any intervention into humans.
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This review paper may be a valuable tool for researchers working in the exploitation
of brown macroalgae, namely species belonging to the Cystoseira genus, with special focus
on compounds responsible for anti-inflammatory and anti-oxidant activities. Furthermore,
we reviewed the literature concerning the use of nanocarriers to potentiate the controlled
delivery of bioactive compounds for the prevention and treatment of neurodegenerative
diseases. The search methodology on PubMed search engine focused on the keywords
“Cystoseira”, “bioactivity”, “neurodegenerative diseases” and finally “zebrafish”.

2. Bioactive Compounds Present in Cystoseira Extracts for Neurodegenerative
Disease Management

Inflammation is a physiological process in response to invading pathogens or en-
dogenous signals. This process is initiated by the immune cell’s migration from blood
vessels and the production of mediators. At this stage, inflammatory cells are recruited
and the secretion of greater amounts of growth factors, chemokines, cytokines, and sec-
ondary metabolites to eliminate invading pathogens occurs [50–52]. Nitric oxide (NO)
is as an example of such an inflammatory mediator, being a highly permeable molecule
that quickly diffuses through membranes [53,54]. If all these mediators are produced in
appropriate amounts, the inflammatory response is helpful. However, deregulation of
cytokine expression, especially tumor necrosis factor α (TNF-α), has a role in chronic and
autoimmune inflammatory diseases [25,37]. Inflammation is also often associated with
oxidative stress, which is accompanied with the production and release of reactive oxygen
species (ROS), namely hydrogen peroxide, hydroxyl, superoxide and NO radicals. In this
way, ROS overproduction is harmful to body homeostasis, since they can easily react with
proteins, lipids, or DNA, causing oxidative damage. In addition, they can be responsible for
an inflammatory state and associated to neurodegenerative disorders [55], among others
pathogenesis such as coronary heart disease, atherosclerosis, cancer and aging [56].

In this way, compounds that have anti-inflammatory or antioxidant activities can be
used in pharmacology, as potential sources in the food and cosmetics industry. Addition-
ally, and bearing in mind that neuroinflammation and oxidative stress are hallmarks of
neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases [41], these
compounds can also be used as potential sources in medicine, to treat these conditions.

2.1. Phlorotannins

Among marine algae, species of the Phaeophyceae contain the highest levels of pheno-
lic compounds. Of the phenolic compounds present in Cystoseira, the group of tannins re-
veals the strongest bioactivity [57]. They are considered one of the most widely distributed
types of natural plant products and are classified into distinct groups, according to their
structure. Phlorotannins are restricted to brown algae and can also be divided into different
hydrophilic compound groups (fucols, phlorethols, fucophlorethols, fuhalols, isofuhalols
and eckols), with very different molecular weights, ranging from 126 to 650 kDa [11,58].
However, it was found that its percentage in algae is quite variable, depending on factors
such as the size of the alga, its age, the season, the light intensity and also the salinity and
temperature of the water [2,27]. This may be reflected in differences of anti-inflammatory
activity since the potential to reduce inflammatory mediators will be proportional to the
content of phlorotannins [59,60]. Over the years, several biological properties associ-
ated with phlorotannins have been discovered, highlighting their capability to absorb UV
radiation and avoiding the consequent photo-oxidative stress, but also the antioxidant,
antimicrobial, antiallergic and anti-inflammatory properties [61–63]. The anti-inflammatory
activity in vitro of purified extracts of phlorotannins obtained from three different Cystoseira
species (C. usneoides, C. nodicaulis and C. tamariscifolia—currently designated as Gongolaria
usneoides, Gongolaria nodicaulis and Ericaria selaginoides, respectively)—was demonstrated
via an inhibitory effect on the production of NO by RAW 264.7 macrophage cells stimulated
by lipopolysaccharides (LPS) [60]. LPS is one of the main components of the membrane
of Gram-negative bacteria [64] capable of promoting the secretion of pro-inflammatory
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cytokines [65] and NO [66]. After the incubation period, the phlorotannins extracts of the
three Cystoseira species were able to considerably reduce NO levels produced by cells, espe-
cially C. tamariscifolia extract which presented the greatest anti-inflammatory potential [60].
Furthermore, the antioxidant activity of purified phlorotannins extracts was also confirmed
in the same Cystoseira species enunciated above [20]. Ferreres and collaborators found that
these species could eliminate superoxide radicals, avoiding lipid peroxidation.

Considering these two properties, it would be interesting to use phlorotannins for the
treatment of neurodegenerative diseases, and there are already some studies developed for
this application. In two different studies, both Ferreres [20] and Barbosa [67] found that
these compounds had anti-inflammatory and neuroprotective properties that could slow
down the progression of neurodegenerative diseases. Furthermore, it was also proved that
Cystoseira species contain compounds that allow it to protect neurons from oxidative stress
through DPPH (2,2-diphenyl-1-picrylhydrazyl) capture activity and increasing in SH-SY5Y
cell viability after exposure to H2O2 [68], thus evidencing a correlation between antioxidant
activity and phenolic content.

2.2. Fatty Acids

Fatty acids (FA) have been extensively studied, not only for their significant anti-
inflammatory effect but, particularly, for their anti-tumor and antimicrobial potential. They
are composed of an aliphatic chain and a carboxyl group and can be extracted from Cysto-
seira [27,30,69,70]. FA can be classified as saturated fatty acids (SFA) when they have no
double bond between carbons, or as unsaturated in cases where they have at least one
carbon-carbon double bond. FAω-3 andω-9 have an excellent anti-inflammatory effect. Re-
garding FA ω-3, their activity is due to precursors of anti-inflammatory molecules, namely
resolvins, docosatrienes and protectins, but also to their ability to replace arachidonic
acid in cell membranes, which causes a decrease in the production of pro-inflammatory
compounds such as prostaglandins E2 (PGE2), thromboxane B2, among other arachidonic
acid derivatives [71]. In addition, FA ω-3 inhibits the activity of nuclear factor kappa B
(NFκB), which is a transcription factor with a very important role in many inflammatory
signaling pathways since it interferes with the production of several cytokines (IL-1, IL-2,
IL-6, IL-12, TNF-α). The production of adhesion molecules and chemokines, such as IL-8,
monocyte chemoattractant protein 1, among others, is also affected by FA ω-3. Addi-
tionally, this fatty acid also inhibits effector enzymes such as iNOS and cyclooxygenase 2
(COX-2) [69,72]. On the other hand, and although less studied for this purpose, extracts
with FAω 9 demonstrated an inhibitory capacity of COX-2 enzyme and NO production, as
well as pro-inflammatory cytokines (TNF-α and IL-1β) [73]. Furthermore, they stimulate
the production of anti-inflammatory cytokines and inhibit the migration and accumulation
of neutrophils and macrophages at the infection site [74]. Fatty acids can also be part
of human diet, providing neuroprotection and reducing the risk of incident Alzheimer’s
disease [75,76]. Andrade [27] proved that fatty acids extracted from different species of
Cystoseira were able to scavenge DPPH and inhibit enzymes associated with the formation
of β-amyloid plaques, the main cause of Alzheimer’s disease.

2.3. Sterols

Sterols, which belong to the steroids family, are constituted by a tetracyclic structure
and are abundant in species belonging to the genus Cystoseira [27]. Several health ben-
efits have been attributed to these compounds as they were able to reduce low density
lipoproteins (LDL) and, consequently, were associated with a reduction in the risk of cardio-
vascular diseases, representing the principal cause of death globally, according to the world
health organization [77]. Phytosterols have been studied for their potential to suppress the
secretion of inflammatory factors, such as TNF-α, IL-1β, IL-6, IL-8, NO and ROS. In addi-
tion, a partial inhibitory effect of the transcription factor NF-κB on macrophages and the
ability to inhibit the expression of the enzymes COX-2 and iNOS have been reported [78,79].
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Neuroprotective functions of sterols extracted from marine organisms have already been
confirmed [27,80], although there are few studies with seaweed extracts.

2.4. Fucoidans

Fucoidans form a group of sulfated polysaccharides present in brown algae and are
generally linear, composed mainly of repeated units of sulfated fucoses in C-2 and/or C-4
with α-(1–3) and/or α-(1–4) bonds [81]. The chemical composition varies according to the
species of algae and can vary within the same species [33].

The anti-inflammatory and antioxidant activities of fucoidan extracts from three
Mediterranean species of the genus Cystoseira (C. sedoides, C. compressa and C. crinite (cur-
rently designated as Ericaria crinite) was demonstrated in vivo [33]. An edema was induced
in Wistar rats, and the tested extracts exhibited a significant anti-inflammatory activity
with the edema inhibition percentage above 50%. This sulfated polysaccharide has also
proved to reduce the inflammatory response in BV2 microglia, and the generation of ROS
and inflammatory cytokines in primary microglia [82,83].

3. Macroalgae Compounds Delivery Optimization by Nanoparticles

As discussed above, macroalgal compounds have excellent bioactivity against some
neurodegenerative diseases. However, in many situations, it is not possible to deliver
the bioactive constituents to the desired location. Considering that, one of the objectives
of using NPs in nanomedicine is to transport substances, namely bioactive compounds
to the targeted tissues and cells, the combination of macroalgae and NPs may potentiate
their therapeutic efficiency and reduce even further eventual toxicity of the transported
substances [48]. Drug delivery systems can overcome some of the biggest problems in
drug administration such as lack of specificity, low biodistribution, reduced efficiency,
lack of selectivity and side effects (Figure 3). With enormous potential as drug carriers,
the small size of NPs (1 to 100 nm) confers them unique properties such as their sur-
face/area ratio [84]. Additionally, their different shapes, sizes and compositions, have
shown enormous importance in medicine, having applicability in the diagnosis and ther-
apy of diseases [85]. They possess advantages in reducing the concentration of drugs,
reducing toxicity, improving solubility, providing protection of drugs during circulation
and preventing degradation [86–89].
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NPs are often divided into two groups: organic and inorganic nanocarriers. Inorganic
NPs incorporate mostly metallic particles. In this group we can evidence that some of the
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most common ones consist in carbon nanotubes, gold, silver and magnetic NPs, among
others. Micelles, liposomes, solid lipid NPs and dendrimers fit the organic type of carriers.
NPs are very versatile and have numerous applications in the field of biomedicine, which
are listed in Table 2 and Figure 4.
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NPs can be directed to the desired local of the treatment either by passive or active
targeting. Passive targeting is often associated with the treatment of various types of tumors.
This is due to the irregularities that the vascularity around tumors present, having various
leakages such as leaky vasculature and defective lymphatic drainage due to the rapid and
uncontrolled growth needed to supplement cancer cells, for the growth of the tumor. One
can use NPs with a small size that can accumulate specifically in these leakage sites around
the tumor and reach their desired therapeutic site [90]. Although this method can be simple
and efficient, active targeting is normally preferred since there is no efficient passive method
to deliver molecules to other diseases in other parts of the human body. Active targeting
consists in the functionalization of the surface of nanoparticles with molecules that are
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specifically recognized by cells in the local of the treatment. Moreover, this functionalization
can improve the nanoparticles pharmacokinetic and pharmacodynamic properties [91].
These can include various types of antibodies, folic acid, proteins, and hyaluronic acid,
among others (Figure 4).

Interestingly, algae extracts are often utilized not only as compounds that are encap-
sulated in NPs for the treatment of various diseases, but also as stabilizers and catalyzers
for metallic NPs production [92,93]. In addition, some studies combine the use of chitosan-
based NPs with commercially acquired bioactive compounds, such as fucoidan, developing
thus chitosan/fucoidan NPs for the delivery of chemicals in breast cancer treatment and
nerve regeneration [94,95]. Regarding the last three years, we can find some studies based
on fucoidan-based nanoparticles, which allow the enhancement of fucoidan biological
activity. In addition, it has already been demonstrated that the synthesis of NPs is pro-
moted by the molecular weight, as well as the structure of fucoidan [96]. Furthermore,
the combination of this natural compound with others, or even drugs, may result in the
enhancement of the desired effect. As example, Xu Zhang and colleagues have devel-
oped fucoidan-coated mesoporous silica NPs to deliver curcumin to the colon tumor site
microenvironment [97], which is a polyphenol compound that has also been shown to
have neuroprotective effects [98]. The green synthesis of NPs is also a very current topic,
which makes it possible to take full advantage of the therapeutic properties, avoiding
the use of highly toxic materials and proving to be an ecologically correct and low-cost
technique [99,100]. A much smaller number of studies that deliver compounds using NPs
are found. Min-Hsuan Tsou and colleagues have developed mesoporous silica NPs to
deliver fucoidan to A549 cells [101], and, in line with the main application that we review
in this article, PLGA-PEG NPs were developed by Mengxiang Yang and colleagues to
facilitate anti-Alzheimer’s effects of fucoxanthin [102].

Table 2. Examples of nanosystem types, their characteristics and applications in biomedicine.

Type of Nanosystem Size (nm) Characteristics Applications Refs.

Carbon nanotubes 0.5–3 nm diameter and
20–1000 nm length

Formed from graphene
sheets rolled in cylindrical

shape. Classified in
single-walled nanotubes

(SWNTs) and multiwalled
nanotubes (MWNTs).

Cancer photothermal
therapy; tissue engineering [103]

Magnetic
nanoparticles 5–50 nm

Normally constituted by
iron, cobalt and nickel,

with magnetic
susceptibility.

Detecting amyloid plaques
and biomarkers in

Alzheimer’s disease; colon
cancer cell theragnostic;

treatment of gastric cancer

[104–106]

Silver nanoparticles 10–500 nm Unique optical, electrical
and thermal properties.

Antimicrobial properties;
anti-proliferative activity;
infections of the central

nervous system treatment

[39,107,108]

Gold nanoparticles 5–400 nm Unique optoelectronic
properties.

X-ray contrast agent;
Alzheimer’s disease

diagnostic; HIV diagnostic;
tuberculosis diagnostic;
angiogenesis therapy;
antibacterial therapy

[48,109–113]
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Table 2. Cont.

Type of Nanosystem Size (nm) Characteristics Applications Refs.

Polymeric
nanoparticles 10–1000 nm

Solid and spherical
particles formed from

natural or synthetic
polymers. Can be

organized into
nanospheres and

nanocapsules.

Uveitis treatment;
treatment of chronic

obstructive pulmonary
disease;

neuroinflammation in
Parkinson’s diseases;
therapeutic agents for

peripheral arterial disease;
treatment of

periodontal disease

[114–117]

Liposomes 100–200 nm

Spherical vesicles
consisting of

phospholipids and other
components. Composed of

successive bilayers that
close on themselves,
originating vesicles.

Cancer immunotherapy;
antimicrobial therapy;
respiratory disorders

treatment; arthritis therapy;
treatment of Parkinson’s

diseases; ocular
delivery drugs

[118–120]

Dendrimers Up to 10 nm

Polymeric macromolecules
in the form of a branched

tree.
Three fundamental

components: the central
nucleus, the lower layer

where branches linked to
the nucleus appear

polymerization and the
outside region.

Treatment of osteoarthritis;
cancer therapy; corneal

tissue engineering;
antiamyloidogenic agent

[121–123]

Micelles 10–100 nm

Lipid aggregates in a
globular form.

Amphipathic character of
these molecules makes

them have a natural
tendency to aggregate

when exposed to water.

Breast cancer therapy;
cervical cancer
chemotherapy

[124,125]

Solid lipid
nanoparticles 50–1000 nm

Composed by solid lipids
and surfactants. The

surfactants are composed
by hydrophilic head and a

lipophilic tail.

Glioblastoma treatment;
rheumatoid arthritis

therapy; topical treatment
of pityriasis versicol

[126–128]

Nevertheless, with the growing use of NPs and their application in the biomedical
field, which implies exposure and incorporation into the human body, the need for studies
to assess their toxicity effects emerges.

Nanoparticle Toxicity and Bioactivity Screening for Neurodegenerative Diseases

Nanotoxicology is the science that studies the toxicity of nanotechnology products,
and their interactions in the body, assessing the risks and benefits [129]. This toxicity
depends on nanoparticle physicochemical properties, such as composition, size, surface
area and charge, among others [130]. These properties also control what will happen to the
nanoparticles in vivo and their degradability after excretion from the organism and once
in the environment. So, nanomaterial characterization is essential and usually achieved
by chromatography techniques, microscopy techniques, and spectroscopic techniques.
Some of the techniques are energy dispersive X-ray spectroscopy (EDS); scanning electron
microscopy (SEM); dynamic light scattering (DLS); differential scanning microscopy (DSC);
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inverse gas chromatography (IGC); atomic absorption spectroscopy (AAS), inductively
coupled plasma spectroscopy (ICPS); transmission electron microscopy (TEM); atomic force
microscopy (AFM); zeta potential and UV-visible spectroscopy and Fourier-transformed
infrared spectroscopy (FTIR) [131]. These analytical methods are therefore very important
to predict their behavior in storage and during their intended application (in vitro, in vivo,
ex vivo) [130]. An upcoming area in recent years implies the use of in silico methods, which
will certainly become more potent and useful in their predictive power with the assistance
of artificial intelligence.

Regarding nanomaterial degradation, the mechanistic studies will greatly depend
on whether it is a natural or synthetic material [130]. The degradation pathways that
may be analyzed are: (1) hydrolysis of water-sensitive groups, (2) oxidative degradation,
(3) photodegradation, and (4) enzymatic degradation. This assessment will provide crucial
understanding on nanoparticle stability, safety, efficacy and potential side effects.

One of the major problems associated with the treatment of neurodegenerative diseases
is the blood-brain-barrier (BBB), which separates systemic circulation and central nervous
system through highly selective permeability, not allowing the drugs to freely reach and act
on the brain [132]. One of the very advantageous characteristics of some NPs is the ability to
cross the BBB, revealing a non-invasive alternative path due to their favorable characteristics
such as reduced size and low hydrophilicity [133]. Additionally, beyond the good ability
to cross the BBB, the nanocarriers must comply some other important parameters: good
targeting to the target site, reduced toxicity and high circulation time [134].

A toxicity assessment can be performed in vitro, using cell culture, ex vivo, using cells
and tissues collected from humans, or in vivo, using animal models [130]. The in vitro mod-
els are simpler biological systems that allow a quick assessment of the effects of NPs. They
are low cost and easy to manipulate, making it easy to control and interpret the results. An
advantage of these models is that they do not present such ethical restrictions as for in vivo
studies [129]. For the in vitro study of the neurotoxicity of NPs, specific brain cell types can
be used, namely glial cells, BBB and blood-blood barrier cells and neurons with or without
myelin sheath [135]. There are several in vitro techniques usually used to study drug up-
take in central nervous system, such as in situ brain perfusion, microdialysis, intravenous
injection, brain uptake index, determination of the blood/plasma ratio, cerebrospinal fluid
sampling and quantitative autoradiography [136]. The most common nanotoxicity parame-
ter assessed in the brain is related to oxidative stress, resulting from the intense production
of ROS, induction of apoptosis that leads to neurons death and neuronal inflammation
due to the release and circulation of pro-inflammatory cytokines [137]. However, 2D cell
cultures have an important limitation: they do not mimic the 3D microenvironment to
which tissues are exposed in organisms. In living organisms, the cells are arranged in a 3D
environment, which provide an adequate metabolism, cell-cell and matrix-cell interactions
and responses to physiological signals or injuries [38,138,139]. In addition, there are some
important factors in assessing the toxicity of NPs that can only be correctly evaluated
through in vivo studies, such as biodistribution, biodegradability, route of administration,
occurrence of developmental damage, long-term disposition, and activation of the immune
system. The correlation between the results of in vitro and in vivo studies of nanotoxicity
is scarce, as well as in the correlation between studies in cells and animals [140].

For in vivo toxicology studies, one of the most used animal models are rodents, due
to their small size, great similarity of their biochemical processes with humans, easy
adaptation to life in the laboratory and short time between generations [133]. However,
there are some disadvantages, namely that they are more cumbersome, have a higher cost
relatively to cell lines and associated ethical issues. Directive 2010/63/EC on the protection
of animals for scientific purposes has pushed laboratories in Europe to actively develop
alternatives to animal testing or strategies to greatly reduce them. In this way, zebrafish
have been singled out by OECD as a good alternative for toxicology [141]. Furthermore,
zebrafish have a cardiovascular, nervous and digestive systems very similar to those of
mammals, and signaling pathways present a high level of genomic homology comparing
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with humans or other mammals [49,142], being possible to evaluate many parameters
in preparation for mammal (and human) testing. Most of the toxicity tests are generally
carried out in zebrafish embryos until 120 h post-fertilization, which are legally considered
as non-animal model, thus not requiring additional ethical permits [143]. This organism has
a small size which promotes an easier handling, a very high reproducibility making possible
a weekly procedure repetition and a quick development that leaves to faster experiments on
zebrafish. At the embryo stage, this organism provides an easier collection of multiple data
points by using high-quality imaging. In addition, a low volume of solutions is required,
with the possibility of testing various conditions at each experiment. The embryos are
transparent which allows to observe the cells since early larval stages and are generally
used to assess the development of acute toxicity, while adult fish are used to study chronic
toxicity, as well as transport and bioaccumulation of NPs [144,145].

Neurodegenerative diseases such as familial Alzheimer’s disease can be originated through
mutations, leading to characteristic hallmarks of this pathology in zebrafish [146–148], through
addition of various acids to cause oxidative stress [149], which is known to result from a
cellular redox state originated inside the cells by complex redox reactions. Oxidative stress
causes DNA damage, protein carboxylation, lipid oxidation, and eventually cell death, a
mechanism that causes the progression of human neurodegenerative diseases [150]. The
induction of phosphorylation of the Tau protein [151], the accumulation of β-amyloid pep-
tides [134], or the formation of neurofibrillary tangles [152], can also be stimulated inducing
neuroinflammation, another hallmark of Alzheimer’s disease (Figure 5. Other neurodegen-
erative diseases such as Parkinsonism may also be induced in zebrafish by exposure to cer-
tain toxins or chemicals, such as MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) [153]
which leads to loss of dopaminergic neurons in the midbrain with resulting Parkinsonian
symptoms.
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Figure 5. The main hallmarks of Alzheimer’s disease can be mimicked in zebrafish model, namely
the induction of TAU expression, and ROS or β-amyloid peptide accumulation.

Zebrafish disease models are thus upcoming as valid, interesting alternatives for
screening both toxicity and bioactivity of new therapeutic compounds and/or formulations
currently being developed to tackle neurodegenerative diseases.

4. Conclusions and Future Perspectives

It is recognized that bioactive compounds derived from macroalgae with neuropro-
tective activity are mostly associated with brown algae (57.6%), followed by red (28.3%)
and green (14.1%) algae [154]. Many studies have been performed searching for molecules
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with neuroprotective effects by acting against oxidative stress, reduction of Aβ-induced
cell death, inhibition of pro-inflammatory cytokines production, among others (reviewed
in [155]). Additionally, some studies can be found in the literature combining the use of
NPs with bioactive compounds, such as fucoidan, most of the time commercially acquired.
However, to the best of our knowledge, there is lacking information on the use of NPs for
delivery of natural compounds extracted from brown algae, namely Cystoseira spp., alone
or in combination with other chemicals, for the prevention and treatment of neurodegener-
ative diseases. We strongly believe that some of the compounds described in this review
present biological activities that can help to reduce neuroinflammation and oxidative stress,
both hallmarks of these pathologies. Moreover, the combination of these bioactive com-
pounds with nanotechnology will reduce any associated toxicity or side effects and improve
their high circulation time. Furthermore, the use of NPs will also enhance the desired effect
by improving the ability of the compounds to reach the target site by crossing the BBB.
However, and despite nanotechnology being a solution to overcome some problems in
drug delivery, as already mentioned above, this physical barrier remains one of the biggest
roadblocks in accelerating of clinical trials, since in vivo, a large percentage of studies fail
to show clear therapeutic efficacy.
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