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Featured Application: Collapsing cavitation bubbles can be used in material surface cleaning,
the medical field, and so on. By adjusting the micro-jet intensity of the collapsing bubbles, the
cavitation phenomenon can be employed to clean irregular material surfaces, such as sections,
cracks, and vegetable leaves. In the medical field, cavitation bubbles can be used as microbubble
contrast agents for ultrasound diagnostic imaging or vehicles for drug or gene delivery. The
growth and violent collapse of cavitation bubbles can also be employed in sterilization or killing
viruses such as COVID-19.

Abstract: The interaction mechanism between the cavitation bubble and a solid wall is a basic
problem in bubble collapse prevention and application. In particular, when bubble collapse occurs
near solid walls with arbitrarily complex geometries, it is difficult to efficiently establish a model
and quantitatively explore the interaction mechanism between bubbles and solid walls. Based on
the advantages of the lattice Boltzmann method, a model for cavitation bubble collapse close to a
solid wall was established using the pseudopotential multi-relaxation-time lattice Boltzmann model.
Solid walls with arbitrarily complex geometries were introduced in the computational domain, and
the fractal dimension was used to quantify the complexity of the solid wall. Furthermore, owing
to the lack of periodicity, symmetry, spatial uniformity and obvious correlation in this process,
the Minkowski functionals-based morphological analysis method was introduced to quantitatively
describe the temporal evolution of collapsing bubble profiles and acquire effective information from
the process. The interaction mechanism between the bubble and solid wall was investigated using
evolutions of physical fields. In addition, the influences of the solid walls’ surface conditions and the
position parameter on collapsing bubbles were discussed. These achievements provide an efficient
tool for quantifying the morphological changes of the collapsing bubble.

Keywords: cavitation bubble; lattice Boltzmann method; solid wall with complex geometry; morpho-
logical analysis; Minkowski functionals

1. Introduction

Cavitation occurs when the local pressure becomes less than a liquid’s saturated vapor
pressure. The bubble collapse that happens near a solid wall can severely damage the neigh-
boring solid surface owing to the resulting high velocities, pressure, and temperature [1].
In addition, the bubble experiences inward deformation, micro-jet formation, collapse, or
multiple collapses owing to the retarding effect of the solid wall. The potential applications
of cavitation have been extensively explored in material surface cleaning [2], ultrasonic
therapy [3], and environmental protection [4].

The interaction mechanism between a cavitation bubble and a solid wall has an
important role in various applications. In particular, when cavitation occurs near a solid
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wall involving a complex geometry, the profile evolution of the collapsing bubble can be
more varied. The effect of the surface geometry of the solid wall on the dynamic behavior
of the collapsing bubble has been experimentally investigated [5–7]. A complex boundary
can significantly alter the dynamic behavior of cavitation bubbles, such as the bubble shape
and micro-jet. However, it is difficult to investigate the interaction mechanism between
bubbles and solid walls with arbitrarily complex geometries because of the limitations
of experimental methods, e.g., experimental conditions cannot be changed at any time.
Numerical methods have been adopted to efficiently simulate cavitation bubble collapse
near a solid wall and investigate the dynamic bubble collapse process. Conventional
numerical simulation methods include the finite volume method (FVM) [8,9], the boundary
element method (BEM) [10], and the finite element method [11]. Yu et al. [9] investigated the
dynamic process of a vapor bubble collapse near a rectangular groove wall using the FVM
and the volume of fluid (VOF) method. Saleki-Haselghoubi and Dadvand [10] adopted the
BEM to investigate the dynamics of a spark-generated bubble that oscillated near a circular
aperture in a curved rigid plate. However, these macroscopic numerical methods require
other approaches to track or capture gas–liquid interfaces, such as the VOF [12] and level
set method [13], which may reduce computational efficiency. In implementing the complex
geometry boundaries, it is difficult for these macroscopic models to choose approximate
functions in each discrete unit to characterize changes in arbitrarily complex boundaries.

Over the past few decades, the lattice Boltzmann method (LBM), has been developed
as a powerful tool for simulating multiphase flow problems [14–19]. The LBM based on the
discrete Boltzmann equation with the simplified collision operator can model phase segre-
gation and interfacial dynamics in multiphase flows with collision and streaming steps [15].
The mesoscopic approach has multiple unique advantages such as high efficiency, com-
pletely parallel algorithms, and the simplicity of programming. Generally, the multiphase
models in the LBM inlude four kinds of different models, i.e., the color-gradient [20], pseu-
dopotential [21–23], free-energy [24], and phase-field models [25]. The pseudopotential
model proposed by Shan and Chen, is also named as Shan–Chen (SC) model. In this
model, an interparticle potential is proposed to simulate the interactions between the fluids,
from which a non-monotonic equation of state (EOS) can be obtained. As a result, the
interface can be formed automatically, and the pressure can be calculated from the EOS
efficiently. Sukop and Or [26] first introduced the Shan–Chen LBM into the cavitation field
and concluded that applications to more complex problems should be possible. Later on,
several scholars devoted themselves to investigating the cavitation phenomenon with the
pseudopotential LBM [27–31]. Meantime, the LBM has good spatiotemporal flexibility in
dealing with boundary conditions, which enables the easy introduction of solid boundaries
with complex geometries into numerical models. Shan et al. [32,33] simulated the collapse
process of a single bubble near a plane solid wall and between two parallel solid walls. Mao
et al. [34] and He et al. [35] both used a multi-relaxation-time (MRT) pseudopotential model
to simulate dual-bubble collapse near a rigid boundary. It can be found that the relative
position of two bubbles plays an important role in the bubble near-wall collapse process.
Xue et al. [36] simulated the cavitation bubble near a curved wall using the MRT-SC model
and discussed the influence of bubble–wall distance on bubble collapse. Shan et al. [37,38]
investigated the influence of a rectangular bulge solid wall and hydrophobic concave corner
on cavitation bubble collapse from the evolution of physics fields. The geometry of the solid
wall significantly influences bubble collapse. However, previous studies have considered
the complex geometries of solid walls as periodic shapes with equal widths [9,37]. This
cannot account for certain characteristics of actual complex solid walls, such as sections
and cracks. Thus, it is necessary to accurately model actual complex solid walls.

In contrast to the solid walls in previous works, the arbitrarily complex geometry solid
walls have more complex geometries. To reflect the differences between the solid walls,
the fractal dimension is adopted to quantitatively describe the complexity of a solid wall,
and it increases with the complexity. Various processes occur when a cavitation bubble
collapses near a solid wall with a complex geometry. Further research is required on the
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methods for describing the cavitation bubble near-wall collapse process and the effect of
the solid wall on the collapsing bubble considering the large amount of data obtained from
the bubble collapse process, various complex configurations, and evolutions of physical
fields. The Minkowski functionals-based morphological analysis method (Min-MAM) [39]
has been introduced to investigate complicated physical fields. Sofonea and Mecke [40,41]
introduced the Minkowski functionals to describe the morphological evolution of homo-
geneous phases during spinodal decomposition. Gan et al. [42] characterized the density
and velocity fields of the phase separation process in a complex fluid using the Minkowski
functionals. They clarified the effect of the temperature field on phase morphology and
spinodal decomposition. Xu et al. [43] conducted a detailed review of the Minkowski
functionals and adopted them to explore the complex procedure of shock wave reaction on
porous material. The Min-MAM is an efficient tool for analyzing and acquiring effective in-
formation in complicated physical fields [44–46]. Therefore, the Min-MAM can potentially
be adopted to quantify the profile evolution of collapsing bubbles.

In this study, we introduce a solid wall with an arbitrarily complex geometry and in-
vestigate the dynamic bubble collapse process. The pseudopotential MRT-LBM is adopted
to establish the collapse model of a cavitation bubble in the vicinity of a solid wall with
an arbitrarily complex geometry. Furthermore, the fractal dimension and Min-MAM are
used to quantitatively describe the complexity of the solid wall and the evolution of bubble
morphology. The interaction mechanism between a cavitation bubble and a solid wall
is investigated by changing the surface complexity, geometric features of the solid wall,
and position offset parameter. In general, this study systematically investigates the effect
of solid walls with arbitrarily complex geometries on the bubble collapse process. The
morphological evolution of the collapsing bubble is described with quantitative measures,
which provides an alternative tool for analyzing the cavitation bubble near-wall collapse
process. The remainder of this paper is organized as follows. The pseudopotential MRT-
LBM and Min-MAM are presented in Section 2. The numerical simulation model and
dynamic bubble collapse process are described in Section 3. The morphological characteri-
zation of the collapsing bubble in the vicinity of a solid wall with a complex geometry is
discussed in Section 4. Finally, the conclusions are presented in Section 5.

2. Methods
2.1. Pseudopotential MRT-LBM

The pseudopotential MRT-LBM is adopted to simulate the flow field. By using the
MRT collision operator, the evolution of the density distribution function can be expressed
as [47]

fα(r + eαδt, t + δt) = fα(r, t)−
(

M−1ΛM
)

αβ

(
fβ − f eq

β

)
+ δtF′α (1)

where fα(r, t) is the particle density distribution function, f eq
β (r, t) is the corresponding

equilibrium distribution function, r is the particle position, δt = 1 is the time step, eα is the
discrete velocity along the αth direction, F′α is the component of forcing term F′ along the
αth direction, M is an orthogonal transformation matrix, and Λ is the relaxation diagonal
matrix.

For the D2Q9 lattice model, eα is defined as [48]

eα =


(0, 0) α = 0(
cos
[
(α− 1)π

2
]
, sin

[
(α− 1)π

2
])

α = 1, 2, 3, 4√
2
(
cos
[
(α− 5)π

2 + π
4
]
, sin

[
(α− 5)π

2 + π
4
])

α = 5, 6, 7, 8

(2)
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M is given by

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


(3)

and Λ is expressed as

Λ = diag
(

τ−1
ρ , τ−1

e , τ−1
ξ , τ−1

j , τ−1
q , τ−1

j , τ−1
q , τ−1

ν , τ−1
ν

)
(4)

where τ−1
ρ , τ−1

e , τ−1
ξ , τ−1

j , τ−1
q , and τ−1

ν are the relaxation time factors for different moments.

In the simulation, these relaxation times are selected as τ−1
ν = τ−1

ρ = τ−1
j = 1.0, τ−1

e =

τ−1
ξ = 0.8, and τ−1

q = 1.1.

Using m = M f and meq = M f eq, fα and f eq
β can be projected onto the moment space.

Equation (1) can be transformed to [49]

m∗ = m−Λ(m−meq) + δt(I− 0.5Λ)S (5)

where m∗ = (m∗0 , m∗1 , . . . , m∗8), I is the unit tensor, and S is the forcing term in the moment
space with (I− 0.5Λ)S = MF′. For the D2Q9 lattice, meq can be expressed as

meq = ρ
(

1,−2 + 3
∣∣∣v∣∣∣2, 1− 3

∣∣∣v∣∣∣2, vx,−vx, vy,−vy, v2
x − v2

y, vxvy

)T
(6)

where ρ = ∑α fα is the macroscopic density, v is the macroscopic velocity and |v|2 = v2
x + v2

y.
Then, the streaming process can be given as

fα(r + eαδt, t + δt) = f ∗α (r, t) (7)

where f ∗ = M−1m∗.
v in Equation (6) can be obtained from

v =
∑α eα fα + δtF/2

ρ
(8)

where F = (Fx, Fy) is the total force acting on the fluid system in the two-dimensional
(2D) space. F includes the fluid–fluid interactive, fluid–solid interactive, and bulk forces.
According to the criteria described in Ref. [50], the influence of gravity can be neglected
in the investigation of the cavitation bubble collapse problem. The fluid–fluid interaction
force is adopted in the pseudopotential LBM, which is expressed as [51]

Fα(r) = −Gψ(r)∑
α

ω
α

ψ(r + eα)eα (9)

where G is the overall interaction strength, ψ(r) is the pseudopotential, and ωα is the weight
coefficient, which is given by

ωα =

{
1/3,

1/12,
|eα|2 = 1
|eα|2 = 2

(10)
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In this study, ψ(r) is considered as [51]

ψ(r) =

√
2(pEOS − ρc2

s )

Gc2 (11)

where pEOS is the prescribed EOS, c = 1 represents the lattice constant, and cs = c/
√

3 is
the lattice sound speed. The Carnahan–Starling (C–S) EOS is adopted according to Ref. [52],
which is expressed as

pEOS = ρRT
1 + bρ/4 + (bρ/4)2 − (bρ/4)3

(1− bρ/4)3 − aρ2 (12)

where a = 0.4963(RTc)
2/pc and b = 0.1873(RTc)

2/pc with Tc and pc being the critical
temperature and pressure, respectively. In our simulation, a = 1, b = 4, and R = 1 [52].

For the D2Q9 lattice, the forcing term S proposed by Li et al. is expressed as [49]

S =



0

6(vxFx + vyFy) +
0.75ε|F|2

ψ2δt(τe−0.5)

−6(vxFx + vyFy)− 0.75ε|F|2
ψ2δt(τξ−0.5)

Fx
−Fx
Fy
−Fy

2(vxFx − vyFy)
vxFy + vyFx


(13)

where ε is an adjustable coefficient used to tune the mechanical stability condition. In the
present study, when ε is set as 1.86 in the case of a cavitation bubble, the coexistence curve
simulated by the pseudopotential MRT-LBM agrees well with the solution of the Maxwell
equal-area construction over a wide temperature range [33].

In addition, all physical quantities use the corresponding lattice units under the
framework of the LBM, as shown in Table 1.

Table 1. Basic physical quantity units.

Name Variable Unit

Time δt ts
Length δx lu
Mass m mu

Density ρ mu/lu3

Pressure p mu/
(
ts2lu

)
Velocity v lu/ts

2.2. Min-MAM

The Min-MAM is an effective quantitative method for characterizing shocked porous
materials [43] and patterns in the phase separation of complex fluids [42]. Therefore, as
the cavitation field is a typical multiphase flow system, the Min-MAM can be applied to
quantify the profile evolution of cavitation bubble.

For a pixelized density map ρ(r), the first step is to set a threshold value ρth =
0.25465 mu/lu3 and form a binary map, which can be expressed as

P(r, ρth) =

{
0,
1,

ρ(r) < ρth
ρ(r) ≥ ρth

(14)
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where r is the position, ρ(r) is the density at r, and P(r, ρth) denotes the corresponding
binary map. The grid node at r is regarded as a black vertex when ρ(r) is less than ρth.
Otherwise, it is regarded as white. A region containing connected black (white) pixels
is defined as the black (white) domain [42]. The value of the black (white) domain is 0
(1), as shown in Figure 1. In the 2D space, the three Minkowski functionals geometrically
correspond to the fractional area F(ρth), boundary length U(ρth), and Euler characteristic
X(ρth).
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F(ρth) represents the black domain in a binary map and can be given by

F(ρth) =
N − Nρth

N
=

1
N

[
N −∑

r
P(r, ρth)

]
(15)

where Nρth is the number of white pixels and N is the total number of pixels whose
function is to normalize Nρth. The process of a cavitation bubble collapse near a solid wall
is accompanied by the inward deformation of the bubble. Thus, F(ρth) decreases from the
maximum value to zero in a certain curve form.

The second morphological parameter of the Minkowski functionals is U(ρth), which
is expressed as

U(ρth) =
Bρth

N
=

1
N ∑

P(r,ρth)=0

4

∑
i=1

P(r + ei, ρth) (16)

where Bρth denotes the pixels that separate the black and white domains. U(ρth) decreases
to zero with F(ρth). However, the two curves are significantly different because of the
depression at the top of the cavitation bubble, causing the acceleration of U(ρth) to decrease
before the first collapse.

X(ρth) can directly reflect the number of bubbles in the bubble collapse process and is
given by

X(ρth) = Nb
ρth (17)

where Nb
ρth is the number of connected black domains.

When the first collapse occurs, X(ρth) increases from one to two or more and decreases
to zero after the second collapse. The vanishing X(ρth) represents a complete collapse in
the dynamic process of bubble near-wall collapse.

3. Cavitation Bubble Collapse near a Solid Wall with Complex Geometry
3.1. Numerical Model

The computational domain for the collapsing bubble near a solid wall with a complex
geometry is established in a 512 lu× 512 lu lattice system. The content inside the bubble
is only vapor without other non-condensable gas. As shown in Figure 2, pv and p∞ are
the internal and external pressure. R0 denotes the maximum radius of the initial spherical
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bubble. h represents the distance between the bubble center and the bottom of the solid
wall. λ = h/R0 is defined as the dimensionless position offset parameter. A complex
geometry boundary with a bounce-back boundary condition [53] is applied in the bottom
region. The periodic boundary is defined in the vertical direction, and a pressure boundary
by the Zou–He scheme [54] is applied in the top region. 
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The process from the initial spherical bubble with the maximum radius to complete
disappearance is studied to investigate the interaction mechanism between the bubble and
solid wall. The maximum radius of the initial spherical bubble and the non-dimensional
temperature are set as R0 = 80 lu and T/Tc = 0.7, respectively. The density field is
initialized as [55]

ρ(x, y) =
ρl + ρv

2
+

ρl − ρv

2
× tan h

2
(√

(x− x0)
2 + (y− y0)

2 − R0

)
W

 (18)

where ρl and ρv denote the densities of the liquid outside the bubble and the vapor inside
the bubble, respectively, (x0, y0) denotes the coordinate of the bubble center, tan h(x) =
(e2x − 1)/(e2x + 1) is the hyperbolic tangent function, and W = 5 lu represents the pre-
scribed width of the phase interface.

In simulating the process of cavitation bubble collapse, we can artificially tune the
initial density of the liquid to achieve a positive pressure difference ∆p = p∞ − pv based
on the C–S EOS.

3.2. Solution of Boundary Conditions

The fractal dimension, used to quantitatively describe the surface complexity of the
solid wall with an arbitrarily complex geometry, is expressed as [56]

D =
ln N(d)
ln(L/d)

(19)

where D is the fractal dimension which fluctuates between 1 and 2, N(d) is the scale number
which is the total number of steps of the curve measured with the scale of step d, and L is
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the length of the straight line connecting the start and end points of the curve. N(d) and L
are the lengths of the red polyline and green straight line in Figure 3, respectively.
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In the previous works [29,31,32,37], the fluid–solid interactive force is zero, and the
interaction between the fluid and solid wall is considered as fully rebounded. However,
in contrast to a plane solid wall, a solid wall with arbitrarily complex geometry exhibits
irregular geometric shapes and a solid wall orientation, causing the fluid–solid interface to
undulate. Thus, an algorithm is proposed to automatically differentiate between the fluid
and the solid wall. In the simulation, a label array r(x1 + eαδt) is adopted to signify the
adjacent grid node that x1 reaches in a time step δt along a certain direction eα, where x1
represents the position of a certain lattice node in the first layer fluid above the solid wall.
Therefore, the value of r(x1 + eαδt) can be used to identify the fluid and solid wall. The
grid node at location x1 + eαδt is viewed as a solid wall node when the value of r(x1 + eαδt)
is one. Otherwise, it is regarded as a fluid node.

In this study, the interaction between the fluid and solid wall is considered as fully
rebounded, which can be expressed as

f−α(x1, t + δt) = fα(x1, t) when r(x1 + eαδt) = 1 (20)

where fα and f−α denote the density distribution functions along the directions toward and
away from the solid wall, respectively.

When the value of r(x1 + eαδt) is one, the interaction potential ψ(x1 + eαδt) at location
x1 + eαδt is numerically the interaction potential at position x1. Therefore, the pseudopo-
tential force Fα can be expressed as

Fα(x1) =

{
−Gψ(x1)∑α ωαψ(x1)eα,
−Gψ(x1)∑α ωαψ(x1 + eαδt)eα,

r(x1 + eαδt) = 1
r(x1 + eαδt) = 0

(21)

The boundary condition and interaction potential of the interface between the liquid
and rigid wall are discussed in this subsection. If the lattice node is fluid, it normally
executes the collision and streaming processes, then enters the next round of evolution.

3.3. Verification of the Collapsing Bubble near the Solid Wall

In previous work, the validity of the pseudopotential MRT-LBM in simulating the
cavitation bubble collapse process has been verified from the perspectives of coexistence
curves and Laplace law verification [33]. As shown in Figure 4, the experimental and LBM
simulation results are presented for comparison. Figure 4 depicts the profile evolutions
of the collapsing bubble near a solid wall with complex geometry (D = 1.03476). In the
experiments, a metal block is attached to the solid wall sample to prevent the solid wall
from moving, because the mass of the sample is light. So the bottom of the solid wall
sample needs to be sketched in Figure 4a. It is clearly shown that the numerical result
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is in agreement with the experiment. These two groups of figures can present a similar
dynamic process of the collapsing bubble. The validity of the numerical model to simulate
the cavitation bubble near-wall collapse process is verified from the comparisons with
the experimental photos. Owing to the solid wall with complex geometry, the bubble
deformation is asymmetric. The evolutions of the physical fields will be analyzed in detail
in the following subsections.
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Figure 4. Comparison of the profile evolutions of the collapsing bubble between (a) the experiments
(λ ≈ 1.6, R0 = 5 mm) and (b) LBM simulations (λ = 1.6, R0 = 50 lu).

In addition, the grid independence of the numerical model is verified. As shown in
Figure 5, three different lattice systems, i.e., 312 lu× 312 lu, 412 lu× 412 lu, and 512 lu×
512 lu, are chosen to carry out a more precise comparison and present asymmetry of the
collapsing bubble near the solid wall with complex geometry. According to the same
proportion principle, the maximum radii of the cavitation bubble are set as R0 = 50 lu,
R0 = 65 lu, and R0 = 80 lu, respectively, and the offset parameters are both λ = 1.5.
Moreover, a non-dimensional time T∗ is defined to represent the interval between the initial
state and the first collapse. Therefore, Figure 5 extracts the bubble profiles at 0, 0.2T∗,
0.4T∗, 0.6T∗, 0.8T∗, and T∗ with the acquired coordinate points normalized in the x and y
directions.
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Figure 5. Grid independence verification of the cavitation bubble collapse model near a solid wall
with complex geometry.

The normalized profiles of the collapsing bubble near the solid wall with complex
geometry almost coincide with one another under different grid resolutions. In other words,
the collapse processes of the cavitation bubble near the solid wall under different grid
resolutions are the same. Given the efficiency and accuracy of the numerical model, the
computational domain is established in a 512 lu× 512 lu lattice region in this manuscript.
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3.4. Evolution of Density Field

Figure 6 shows the evolution of the density field, where the bubble profiles can
be visually distinguished. This figure depicts the dynamic process of cavitation bubble
collapse near two different solid walls, i.e., the plane solid wall and solid wall with a
complex geometry (D = 1.03476). The offset parameters are set as λ = 1.25 and λ = 1.5 in
these two cases, respectively. The morphological evolution of the collapsing bubble in the
vicinity of the solid wall with a complex geometry is analyzed in detail.
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The initial spherical bubble starts to collapse under the pressure difference ∆p =
0.0135994 mu/

(
ts2lu

)
. The collapse velocity of the bubble is low in its initial stage, and

the bottom bubble wall exhibits a significant deformation at t = 100 ts. The bubble is
elongated into an ellipsoid before t = 550 ts, owing to the retarding effect of the solid
wall. With the higher density area diffusing, the upper bubble wall is flattened, then it
becomes concave from t = 550 ts. There appears a denser density area in the concave
region, which accelerates the change of the bubble profiles. Consequently, a micro-jet is
formed because of the interaction between the bubble and the solid wall. When the upper
and bottom bubble walls collide, the cavitation bubble splits into small bubbles. This
phenomenon can be referred to as the first collapse. The bubble deformation is asymmetric,
and the deformed bubble tends to collapse into two asymmetric small bubbles owing to the
irregular geometry of the solid wall. Subsequently, the small bubbles continue to collapse,
and the visible bubble surface completely disappears after the second collapse.

The processes of bubble collapse near the plane solid wall and solid wall with a
complex geometry exhibit a similar dynamic process. However, the solid wall with a
complex geometry causes the asymmetric deformation of the bubble. The effect of the
solid wall with complex geometry on the collapsing bubble can be reflected in the profile
evolution. Meantime, the validity and feasibility of the numerical model to simulate the
bubble collapse process are again verified.
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3.5. Evolution of Pressure and Velocity Fields

In contrast to the density field evolution, the evolution of the pressure and velocity
fields can clearly and intuitively reflect the driving force behind the dynamic process
of the collapsing bubble close to a solid wall with a complex boundary and reveal the
corresponding physical mechanism. The simulated pressure and velocity fields are shown
for several representative moments in Figure 7.
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Initially, the cavitation bubble is spherical. Thereafter, it deforms into an elliptical
bubble under the pressure difference ∆p = 0.0135994 mu/

(
ts2lu

)
. A micro-jet is formed,

and the micro-jet in the concave area is considerably stronger than that in other areas. The
micro-jet velocity increases as the upper bubble wall sags. The micro-jet breaks through the
bubble wall when the first collapse occurs at t = 705 ts. The cavitation bubble splits into
two asymmetric small bubbles owing to the retarding effect of the solid wall with a complex
geometry. The smaller right bubble collapses first and forms a radial pressure propagation
trend at the collapse point. After the second collapse at t = 770 ts, the cavitation bubble
completely collapses, and there appears a high-pressure shock wave near the surface of the
solid wall. Then, the shock wave is driven by the micro-jet and spread to the surrounding
solid wall until it disappears at the collapse point.

4. Morphological Analysis Method Exerted on the Cavitation Bubble Collapse Model
4.1. Morphological Verification

The phenomenon examined in this study belongs to multiphase flow. However, it is
necessary to verify the validity and feasibility of the Min-MAM in quantitatively describing
the evolution of collapsing bubble profiles. Therefore, Figure 8 depicts the time evolution
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of the Minkowski measures for the collapsing cavitation bubble near a solid wall with
a complex geometry. This figure also includes the density field at several representative
moments and the extended dot–line diagrams of the Minkowski measures for the period
before the second collapse.
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Figure 8. Time evolution of Minkowski measures for the collapsing bubble near a solid wall with
complex geometry. (a) the whole process from t = 0 to t = 800 ts, (b) the part process from t = 680 ts to
t = 780 ts.

As shown in Figure 6, the collapsing bubble near the solid wall generally goes through
the stages of inward collapse, top depression, micro-jet formation, first collapse, and second
collapse. Therefore, as shown in Figure 8, the entire evolution process can be divided into
the following parts: the first deformation from t = 0 to t = 550 ts, the second deformation
before t = 705 ts, the first collapse at t = 705 ts, the circular bubble formation from
t = 705 ts to t = 770 ts, and the second collapse at t = 770 ts. In the first deformation part,
the initial spherical bubble deforms into an elliptical bubble under the pressure difference
∆p. The fractional area F and boundary length U decrease during this period, and their
slopes increase with time t. This indicates that the inward collapse velocity of the bubble
increases gradually. In addition, the fluid velocity increases toward the solid wall, thereby
forming an inceptive micro-jet. In the second deformation part, F and U continue to
decrease, but their corresponding accelerations begin to increase. From t = 550 ts, the
bubble top wall begins to sag downwards, which partly compensates for the effect of
the inward collapse on the bubble fractional area and boundary length. When the upper
and bottom bubble walls collide at t = 705 ts, the cavitation bubble splits into two small
asymmetrical bubbles. After the first collapse, the visible bubble surface is composed of
two asymmetrical bubbles in the 2D space and an annular bubble in the three-dimensional
(3D) space. At this stage, the smaller bubble collapses earlier than the larger bubble, causing
the slope of the U(t) curve to increase significantly. After the second collapse, the values of
F and U simultaneously decrease to zero.

As the third Minkowski measure, the Euler characteristic X can directly reflect the
number of bubbles in the bubble collapse process. X remains at 1 before the first collapse. X
increases to 2 at t = 705 ts and remains at 2 before the smaller bubble collapses. X decreases
to 1 when the smaller bubble collapses. X decreases to 0 after t = 770 ts, indicating that the
cavitation bubble completely collapses. In the curves for U(t) and X(t), the red circles in
the figure can be described as “the first collapse point” and “the second collapse point”.

The results demonstrate that the three Minkowski measures can describe the morpho-
logical characteristics of the collapsing bubble in the vicinity of a solid wall with a complex
geometry from different perspectives. The three curves can clearly distinguish between
several typical moments in the cavitation bubble collapse process. Hence, we success-
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fully verify the validity and feasibility of the Min-MAM in quantifying the morphological
evolution of the collapsing bubble.

4.2. Evolution of Bubble Profiles

In the simulation, solid walls with arbitrarily complex geometries are synthesized,
and their complexities are quantified by the fractal dimension. It is found in processing
a fractal wall that two solid walls with different geometric features may have the same
fractal dimension. Therefore, similar complex solid walls with different fractal dimensions
and different complex solid walls with the same fractal dimension are designed as rigid
boundaries to comprehensively analyze the effect of the fractal wall on the profile evolution
of the collapsing bubble. Meanwhile, given that the bubble’s relative position to the solid
wall has an important significance for the retarding effect of the solid wall, the influence of
the position offset parameter on the bubble collapse process is also analyzed.

4.2.1. Complexity of Solid Walls

The first factor involves the complexity of the solid wall, which can be quantitatively
described using the fractal dimension. As shown in Figure 9, there are five solid walls with
different fractal dimensions but similar orientations. Figure 10 depicts the morphological
metric curves of the Minkowski functionals for λ = 1.5 and D = 1.03476, D = 1.06289,
D = 1.08107, D = 1.10391, and D = 1.13124.
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The three Minkowski measures for the collapsing bubble near a solid wall with a
complex geometry depict similar trends regardless of the fractal dimension. It can be
obviously observed from Figure 9 that the surface of the solid wall with a higher fractal
dimension is rougher than the one of the solid wall with a lower fractal dimension. The
maximum scale difference of the solid wall surface is about 5 lu in these five solid walls,
which is much less than the radius of the bubble R0 = 80 lu. As a result, it takes more time
to reflect the differences in the retarding effect of the solid wall on the collapsing bubble.
Therefore, from the beginning to t = 550 ts, the variation curves of the fractal dimension
and boundary length almost coincide with each other. It is illustrated that the dynamic
processes of the collapsing bubbles have very high similarity. In addition, there is a clear
distinction between these curves from t = 550 ts. This is because the differences in the
retarding effect of the solid wall on the collapsing bubble begin to take effect as the time
goes on.

There is no doubt that the retarding effect of the solid wall becomes stronger as the
fractal dimension increases. The velocity of the bubble’s inward collapse will be different
because of the variation in the retarding effect of the solid wall, which directly influences
the size of the collapsing bubble at t = 550 ts. In Figure 10b,c, as D increases, the first
and second collapses are delayed, and the interval between the first and second collapses
evidently increases. These changes are also closely associated with the size of the collapsing
bubble. The smaller the bubble, the faster it collapses. Therefore, the retarding effect of the
solid wall on the collapsing bubble can be indicated by the occurrence time of the first and
second collapses. In conclusion, the retarding effect of the solid wall is proportional to its
complexity when the solid walls with complex geometries have similar orientations.

Figure 11 depicts the jet velocity evolution of the collapsing bubble from t = 550 ts
to the first collapse. The figure also shows the corresponding boundary length of the
collapsing bubble under five different fractal dimensions to clearly interpret the variations
in the cavitation bubble jet velocity. The evolution of the jet velocity almost follows a trend,
that is, it gradually increases to a peak and then slightly decreases with time. Moreover,
the intervals at which the jet velocity reaches its peak are the same. The variation range
of the jet velocity decreases as the fractal dimension increases. The trend in the boundary
length indicates that an increase in the fractal dimension influences the depression speed of
the collapsing bubble and causes the depression degree of the bubble top wall to increase
slowly. When the depression degree of the bubble top wall increases with time, the surface
tension increases correspondingly, causing the acceleration of the jet velocity to decrease.
Therefore, the higher the fractal dimension, the slower the peak jet velocity. Based on the
above analysis, an increase in the fractal dimension can also affect the evolution of the jet
velocity.
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4.2.2. Geometric Features of Solid Walls

As shown in Figure 12, three solid walls with the same fractal dimension are selected
as rigid boundaries to further analyze the effect of the surface geometry of the solid wall
on the collapsing bubble. From Figure 12, it can be found that the actual distance between
the bubble and the solid wall’s surface has a great difference in these three solid walls. The
difference between the solid walls a and b is up to 25 lu. Figure 13 depicts the morphological
metric curves of the Minkowski functionals for λ = 1.5 and D = 1.03274.

The three Minkowski measures for the collapsing bubble near a solid wall with a
complex geometry no longer show similar trends, as shown in Figure 13. In the initial stage
of bubble collapse, the actual distance from the bubble to solid wall’s surface plays a major
role in the morphological evolution of the collapsing bubble. As a result, the curves of F(t)
and U(t) have a certain difference before t = 300 ts. Except for the actual distance between
the bubble and the solid wall’s surface, the variations in the surface geometry of the solid
wall also influence the dynamic process of the collapsing bubble. For instance, the first
collapse near the solid wall b occurs before that near the solid wall c, but the corresponding
second collapse occurs after that near the solid wall c. This is because the surface geometry
of the solid wall influences its retarding effect on bubble collapse and leads to differences
in the size of the collapsing bubble at the first collapse and the length of the collapse time.
Therefore, the geometric feature of the solid wall plays a significant part in the evolution of
the bubble profiles, thereby affecting the bubble collapse process.
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Figure 14 depicts the evolution of the boundary length and jet velocity of the collapsing
bubble near the three different solid walls from t = 550 ts to the first collapse. The trend
of the jet velocity shows clear differences before the first collapse due to the differences
in the surface geometry of the solid wall. For instance, the evolution of the jet velocity of
the collapsing bubble near the solid wall a is similar to that in Figure 11. However, the jet
velocities near solid walls b and c increase almost throughout the process. Moreover, the
evolution of the corresponding boundary length of the collapsing bubble appears to have
no apparent connection. Therefore, the surface geometry of the solid boundary affects the
bubble collapse process, and there are no evident trends in the jet velocity evolution.
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4.2.3. Dimensionless Position Offset Parameter

In this subsection, the effect of the position offset parameter on the collapsing bubble is
discussed. Five offset parameters are selected, and the corresponding morphological metric
curves of the Minkowski functionals are obtained under two different fractal dimensions.
The position offset parameter influences the deformation speed of the collapsing bubble
(Figure 15), causing the curves of the Minkowski functionals to clearly differ from t = 550 ts.
It is apparent that the deformation speed increases with λ. The retarding effect of the solid
wall on the collapsing bubble is more suitable with the vapor bubble in the lower region of
the liquid (1.4 < λ ≤ 1.5), making the interval between the first and second collapses more
obvious.

Figure 15I,II demonstrates that the absence of the second collapse is related to λ and
the geometric characteristics of the solid wall. The profile evolution of the collapsing bubble
illustrates that the bubble deformation process is significantly affected by the solid wall.
There is a significant difference between the shrinkage speeds of the left and right bubble
walls because of the geometric characteristics of the solid wall, determining the size of
the bubble at the first collapse. When the bubble at the first collapse is extremely small,
the corresponding second collapse disappears during the entire process. Therefore, it is
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necessary to comprehensively consider various parameters that affect the deformation of
bubbles to reduce the instability of the collapse process.
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5. Conclusions

The interaction mechanism between a cavitation bubble and a solid wall with a
complex geometry is investigated using the pseudopotential MRT-LBM. In this study, we
introduce an arbitrarily complex geometry and propose an effective boundary processing
method. A model of gas–liquid–solid three–phase coupling with adjustable solid boundary
characteristics is established. The dynamics of the collapsing bubble are investigated
using the evolution of the density, pressure, and velocity fields. The Min-MAM is used to
quantitatively describe the evolution of the bubble profiles. Several representative moments
of bubble collapse can be clearly distinguished from the morphological metric curves of the
Minkowski functionals. Furthermore, the effect of different surface conditions of the solid
walls on the dynamic characteristics of the collapsing bubble is systematically analyzed.
The results indicate that the shift in the bubble profiles is inseparable from the surface
geometry of the solid wall. The conclusions of this study are summarized below.

(1) The validity and feasibility of the numerical model to simulate the bubble collapse
process are verified by comparing the LBM simulation with experimental results. The
collapse process of a vapor bubble close to a solid wall with an arbitrarily complex geometry
is accurately simulated. This provides theoretical support for investigating the dynamics of
collapsing bubbles in fractal cracks.

(2) The Min-MAM is adopted to quantitatively describe the evolution of the bubble
profiles and acquire effective information from the collapse process. The morphological
metric curves of the Minkowski functionals can characterize several typical moments,
including the top depression, first collapse, and second collapse of the bubble.

(3) The inherent properties of the solid wall, such as its complexity and surface geome-
try, should be considered when the solid wall is generalized from a plane solid wall to a
solid wall with a complex geometry. Specifically, the influence of the solid wall on collaps-
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ing bubble profiles can be analyzed by tuning different parameters, e.g., the complexity of
solid walls, geometric features of solid walls, and the position offset parameter. The results
demonstrate that the bubble collapse becomes slower as the complexity of the solid wall
increases. The geometric features of the solid wall can influence its retarding effect on the
collapsing bubble, making the bubble collapse process more varied. The effect of the geo-
metric features of the solid wall on the collapsing bubble is stronger than that of the surface
complexity. In addition, the length of the collapse time is affected by the position offset
parameter. Bubble collapse becomes faster as the offset parameter increases. However, the
effect of the position offset parameter on the collapsing bubble is also associated with the
geometric features of the solid wall, which influences the length of the collapse time and
the occurrence of the second collapse.

Last but not least, based on the advantages of the pseudopotential MRT-LBM, the
model in this paper can simulate the bubble dynamics near a solid wall with arbitrarily
complex geometry. Several typical solid walls are introduced in this study to investigate
the effect of fractal walls on the bubble collapse process, and general conclusions can be
drawn. In the future, we will further study the temporal evolution of the collapsing bubble
profiles near more solid walls with complex geometry or in a fractal crack. Moreover, the
effect of the viscosity and surface tension on the bubble collapse model will be discussed
in the subsequent study. Then we will attempt to extend the present 2D model into a 3D
one and explore the dynamic characteristics of the collapsing bubble near a solid wall with
complex geometry in the 3D space.

Author Contributions: Conceptualization, M.S. and Y.Y.; methodology, M.S. and F.S.; software, Y.S.;
validation, M.S., F.S. and Y.Y.; formal analysis, C.Y.; investigation, F.S. and Y.S.; resources, M.S.; data
curation, M.S. and F.S.; writing—original draft preparation, F.S.; writing—review and editing, M.S.,
Y.Y. and Q.H.; visualization, Y.Y. and Y.S.; supervision, M.S. and C.Y.; project administration, M.S.;
funding acquisition, M.S. and Q.H. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
grant numbers 11874140 (M.S.) and 12174085 (Q.H.), and the State Key Laboratory of Acoustics,
Chinese Academy of Sciences under grant number SKLA201913 (Q.H.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within this article.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Roman letters
f the particle density distribution function
f eq the equilibrium particle density distribution function
r the particle position
eα the discrete velocity
δt the time step
M−1 the inverse of the orthogonal transformation matrix
M the orthogonal transformation matrix
F′ the forcing term
m the density distribution function
meq the equilibrium density distribution function
I the unit tensor
S the forcing term in the moment space
v the macroscopic velocity
F the fluid–fluid interactive force
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F(ρth) the fractional area
U(ρth) the boundary length
X(ρth) the Euler characteristics
Nρth the number of the white pixels
N the total number of the pixels
Bρth the number of the pixels separating the black and white domains
Nb

ρth the number of connected black domains
R0 the maximum radius of the cavitation bubble
h the distance from the bubble to the wall
W the prescribed width of the phase interface
Tc the critical temperature
T temperature
pc the critical temperature
G the overall interaction strength
c the lattice constant
cs the lattice sound speed
D the fractal dimension
N(d) the scale number
T∗ the non-dimensional time
p∞ the external pressure
pv the internal pressure
∆p the pressure difference
Greek letters
Λ the relaxation diagonal matrix
τ the relaxation time factor
ρ density
ψ the pseudopotential
ωα the weight coefficient
ε an adjustable coefficient used to tune the mechanical stability condition
ρth a threshold value
λ the dimensionless position the offset parameter
ρl the density of the liquid
ρv the density of the vapor
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