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Abstract: The point cloud is the basis for 3D object surface reconstruction. An incomplete point
cloud significantly reduces the accuracy of downstream work such as 3D object reconstruction and
recognition. Therefore, point-cloud repair is indispensable work. However, the original shape of
the point cloud is difficult to restore due to the uncertainty of the position of the new filling point.
Considering the advantages of the convex set in dealing with uncertainty problems, we propose
a point-cloud repair method via a convex set that transforms a point-cloud repair problem into a
construction problem of the convex set. The core idea of the proposed method is to discretize the hole
boundary area into multiple subunits and add new 3D points to the specific subunit according to the
construction properties of the convex set. Specific subunits must be located in the hole area. For the
selection of the specific subunit, we introduced Markov random fields (MRF) to transform them into
the maximal a posteriori (MAP) estimation problem of random field labels. Variational inference was
used to approximate MAP and calculate the specific subunit that needed to add new points. Our
method iteratively selects specific subunits and adds new filling points. With the increasing number
of iterations, the specific subunits gradually move to the center of the hole region until the hole is
completely repaired. The quantitative and qualitative results of the experiments demonstrate that
our method was superior to the compared method.

Keywords: point cloud; convex set; Markov random field; variational inference

1. Introduction

The point cloud is an important means to describe the surface shape of 3D objects.
Limited by environmental factors or scanning equipment, a collected 3D point cloud is
incomplete, and incomplete point-cloud data reduce the accuracy of downstream work,
such as 3D target reconstruction, target recognition, and scene tracking and understanding.
Therefore, point-cloud repair is indispensable work in 3D vision. Figure 1 shows a point
cloud with holes.

Figure 1. Point cloud with holes.

The disorder of space points renders point-cloud repair more challenging. Some
current methods [1–3] established a mesh model and repaired the shape of the object
surface via the mesh model. The purpose of meshing is to mitigate the influence of the
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disorder of the point-cloud data. Harary et al. [4] utilized the mesh model for repairing.
The characteristic curve was restored, and the divided smooth subhole area was repaired.
Nonetheless, this method needs to manually select the points needed for fitting the curve,
and it cannot adaptively select the required points. The construction of the mesh is a
complex process, and the quality of mesh distribution directly reduces the repair effect.

There are some methods to repair point clouds through block matching. Fu et al. [5]
transformed the repair problem into an optimization problem using nonlocal self-similarity
and a local smoothing constraint to achieve better point-cloud repair. Sun et al. [6]
proposed a data-driven point-cloud completion method that repairs the point cloud through
symmetric relationship. The dataset was used to infer the 3D shape in the absence of a
symmetrical relationship. This method could repair some point-cloud models with serious
missing areas, but the effect of repairing irregular objects is poor. Gregor et al. [7] needed
to ensure that there were many symmetrical or repeated structures in the visible region;
however, the conditions required by this method were relatively strict, so the scope of
application was limited. The effectiveness of block-matching methods usually depends on
the large number of models and rich model types in the database.

With the successful application of PointNet [8] and PointNet++ [9] on point clouds,
the method based on depth learning [10–17] was applied to point-cloud completion. Point-
cloud completion methods implemented with an encoder–decoder framework mainly
follow the coarse-to-fine principle to achieve point-cloud completion [18,19]. However,
such methods often add new points in the nonhole area, changing the inherent structure
information of the point cloud [20–23]. At the same time, the effectiveness of these methods
is usually limited by the size of the training data [24,25].

To solve these problems, we propose a novel point-cloud repair method that transforms
the point-cloud repair problem into a problem of constructing a convex set. In this paper,
we weaken the convex set’s general form, so that it could be used in point-cloud repair.

In this paper, we weakened the convex set’s general form, introduced the MRF to
predict the special subunit, and added new 3D points in the specific subunit, so that the
subunit would become a convex set. First, we built a 3D unit S with the size of L×W × H
in the neighborhood of the hole boundary (S had to contain T adjacent boundary points,
and the value of T was positively related to the density of the boundary neighborhood.
In this paper, T > 3). Second, we limited the distribution of new filling points according
to weakened convex set theory, so that new spatial points were distributed in the hole
area. The calculation of the distribution area of new filling points is mainly divided into
two stages, namely, coarse screening and fine screening. At the coarse-screening stage,
we discretized S into K subunits and set the label of the subunits with 3D points to 1;
otherwise, we set it to 0, thus obtaining the initial label field. Then, the subunits without
filling points were eliminated by using the neighborhood attribute information of boundary
points to reduce the cost of subsequent calculation. Fine screening is used to accurately
predict subunits that need new filling points. Therefore, we introduced a Markov random
field (MRF) to transform the selection of subunits into the maximal a posteriori probability
(MAP) of the random field label and then used the variational mean field to approximate
MAP. Lastly, we added new points to the final filtered subunit, so that the specific subunit
would become a convex set.

We reconstructed the original features of the point-cloud surface by constructing a
convex set of subunits located in the missing area. The division of the subunit set and the
construction of the convex set were carried out iteratively. Each iteration made the subunit
gradually move towards the direction of hole shrinkage and lastly repair the entire hole
area. Our method could accurately infer the distribution of new filling points to ensure that
the repaired shape was as consistent with the real surface shape as possible. The proposed
method is not limited by the category of point clouds and could repair various categories
of point clouds while maintaining the position of points in nonhole areas unchanged. The
key contributions of this paper are as follows:
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(1) We introduce a Markov random field and transform the subunit selection problem
into the maximal a posteriori of the random field label. By solving the maximal probability,
we ensure that the new filling point is always located in the missing area.

(2) We introduce and weaken the concept of a convex set, and redefine the problem of
point-cloud repair into the problem of the composition of a convex set. The entire hole area
is gradually repaired by constructing the specific subunit into a convex set.

2. Methods

The input of our method is a 3D point cloud with holes, and the output is a fully
repaired point cloud. The main flow of our algorithm is shown in Figure 2. The extraction
of boundary points is the reference centroid method [26,27].

Figure 2. The overview of our method.

2.1. Hole Definition

Let ϕ1 be the missing area inside the 3D point cloud, and ϕ2 be an unclosed missing
area at the outer boundary. As illustrated in Figure 3, the line segment connecting A and B
is marked by LAB, where A and B are points on the ϕ2 boundary. Any boundary point in
ϕ2 is in the closed area defined by line segments LAB and ϕ2. Assuming that 0 ≤ ∆ ≤ 0.1
(in this paper, ∆ = 0.1), the boundary arc length of ϕ2 is Cϕ. If LAB < ∆Cϕ, ϕ2 is considered
a boundary hole. Inner hole ϕ1 and boundary hole ϕ2 are collectively referred to as hole.

Figure 3. Example of point-cloud holes.

2.2. Weakening of Convex Set

Because the position of the 3D point is uncertain, a looser uncertainty analytical
method is needed to deal with this ill-posed problem. Nonprobabilistic set theory can
effectively deal with various uncertainty problems. If a set is convex, it is called a convex
set. In the 3D point cloud, to reasonably distribute new filling points, we weakened the
general definition of the convex set, so that it could be used in point-cloud repair and avoid
the confusion of point distribution due to the uncertainty of the 3D point.

Definition 1. In the repair of a 3D point cloud, let S be a 3D vector space containing xi and xj.
For the segment formed by the connection of xi and xj in subset s of S, when all new filling points
contained in s are in the direction domain of the line segment, s is a convex set. As shown in Figure 4,
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the new fill (blue) points were located in a direction of the line segment connected by xi and xj. In
the repair of 3D point clouds, the properties of convex sets are as follows: (1) The intersection of any
convex set is also a convex set.

(2) If s is a convex set, any new filling point xnew in s is located on the side of the line segment
formed by xi and xj.

Considering the gradualness of the spatial point-cloud data change, it was assumed
that the point-cloud data of the area to be filled and the hole edge point cloud had similar
distribution rules, and the distribution of the points in the area to be filled could be inferred
from the geometric information of the edge point set. When the set consisting of new filling
points and edge points in a specific area meet the appeal definition, the set is convex.

Figure 4. Convex set formed by new filling points.

2.3. Discretization of Regional Space

In general, the smaller the hole area is, the higher the repair accuracy. In view of this,
we discretized the 3D space around the hole boundary points and divided it into k subunits.
We defined X as the set of boundary points. X = {x1, x2, · · · , xm}, m is the number of hole
boundary points. We first selected T (T > 3) adjacent boundary points xi,· · · ,xi+(T−1) and
took midpoint x̂i of xi and xi+(T−1) as the base point to define 3D space S with a size of
L×W × H, and x̂i was the central point of S. xi+(T−1) is denoted by xj for convenience in
the description. Then, we discretized 3D space S, so that the resolution of each spatial unit
was dL × dW × dH . After discretization, the 3D tensor of shape L

dL
× W

dW
× H

dH
was obtained.

Because we needed to include xi and xj in the spatial unit, we took dL = L = ||xi − xj||2
and divided S into k (k = 9) subunits, S = {s1, s2, · · · , sk}. After discretization, the 3D
points contained in S were also allocated to different subunits. We took subunit-containing
points xi and xj as the central unit s1, and the subunits surrounding the central unit
were neighborhood subunits sk(sk 6= 1). With the increasing number of iterations, the
specific subunits gradually moved to the center of the hole region until the hole had been
completely repaired.

2.4. Filtering of Spatial Subunits

In general, new filling points in the hole area and 3D points in the nonhole area should
be distributed on both sides of the hole boundary. For this reason, we assumed that there
was a special subunit s in S and s was located in the hole area. When s is a convex set, the
3D points in s all meet Property 2 of the weakened convex set, which means that the filling
points in the s are distributed in the hole area.

Specifically, the density of 3D points contained in subunit sk(sk ⊂ S) may have three
conditions: (1) the density of 3D points is close to ρ; (2) the density of points is less than
ρ; (3) the density of the point is 0. ρ is the mean density of the points in neighborhoods xi
and xj. According to the experimental analysis, the probability that Condition 2 would
occur in central subunit s1 was the highest. However, Condition 3 only appeared in subunit
sk(sk 6= 1), so it was only necessary to filter the unit blocks in Condition 3 to obtain the
subunit to which the filling points had to be be added and record it as s∗. We defined s1 and
s∗ to form a specific subunit s. The selection of s is mainly divided into two steps: coarse
screening and fine screening.
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2.4.1. Coarse Screening

We used the similarity feature of the normal point-cloud neighborhood vector to
conduct coarse screening. First, we used the point set of the neighborhood of point x̂i (x̂i is
the midpoint of xi and xj) to calculate normal vector ~n. Considering that 3D spatial unit
S on different scales contains a different number of points, it is impossible to accurately
calculate the normal vector of the surface composed of xi and the set of neighborhood
points. To solve this problem, we calculated normal vector ~ni at three scales (the number
of points on the three scales was 7, 14, and 21) and mean value ~̂ni as the contrast value.
Then, the surface normal vector formed by the central point of each subunit and the nearest
neighbor point of k (k was 7, 14, or 21), and mean value σ were calculated. Lastly, we used
cosine similarity to calculate the difference between normal vector~σ and contrast value ~̂ni.
The cosine similarity was calculated as follows:

cos
(
~σ,~̂n

)
=

∑3
i=1 (~σi × ~̂ni)√

∑3
i=1 (~σi)2 ×

√
∑3

i=1 (~̂ni)2
. (1)

We needed to specify a rule to retain those spatial cells with high normal vector
similarity. Therefore, we calculated the degree of difference of any two vectors in ~ni, and
found the maximal cosmax and took it as the threshold. if cos(~σ, ~ni) > ϑ ∗ cosmax, then
we reserved the subunit. ϑ is a controllable parameter. In this paper, 0.50 6 ϑ 6 1.00.
Coarse screening eliminates some useless subunits, reducing the calculation amount for
the subsequent fine screening.

2.4.2. Fine Screening

To ensure that the repaired point-cloud surface was closer to the real surface, the
filtering results needed to be further refined. The Markov random field (MRF) [28] is an
undirected probability graph model that is a random field with Markovian characteristics.
The value of each node is only related to the surrounding nodes. The K-nearest neighbor
(K-NN) graph of an unordered point cloud is an undirected graph constructed by con-
necting each point with its nearest K neighbors [5]. Therefore, we introduced MRF, took
the geometric attributes of local point clouds as the observational information, and trans-
formed the fine screening of elements into the maximal a posteriori (MAP) of random field
labeling. Given an incomplete 3D point-cloud model P, let G(V, E) represent MRF, where
V represents a set of voxels, and E represents a set of edges connecting subunits. Each
subunit vi ∈ V was assigned a label li ∈ {0, 1}. The units retained after rough screening
were regarded as an unstable label set, and recorded as Label 0. Similarly, the units with 3D
points in their neighborhood were recorded as 1. Let L = {li} ∈ {0, 1}|V| be a set of labels.
We optimized the energy of the subunits with li = 0; that is, we determined whether the
subunit needed filling points. First, the state distribution function of the MRF was obtained
according to the Hammersley–Clifford theorem:

P(L) = Z−1 ∏
Q∈C

ψQ
(

LQ
)
, (2)

where z is the normalization factor to ensure that P(L) forms probability distribution. Q is a
subgroup, C is a group set, and ψQ is the potential energy function corresponding to group
Q that is used to model the variable relationship in group Q. To ensure the non-negativity
of the potential energy function, ψQ is defined as follows:

ψQ
(

LQ
)
= exp−{αi ∑i∈V Vi(li)+βi,j ∑i,j∈E Vi,j(li ,lj)}, (3)
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where αi and β(i,j) are adjustable parameters. The former only considers the potential
energy of a single node, while the latter considers the relationship between each pair of
nodes. Vi,j

(
li, lj

)
represents the cost of placing labels li, lj at two adjacent subunits i, j:

Vi,j
(
li, lj

)
= exp

1− 1
1+cos(ni ,nj)+α , (4)

where α = 0.000001 to avoid 0 denominators, and ni and nj are the normal surface vectors
formed by the subunit’s central point and the set of neighboring points. Similarly, Vi(li)
represents the observational cost of a single cuboid unit i in each state li.

Vi(li) = logP(ni|li). (5)

Like the traditional Markov random field, likelihood function P(n|l) is established
as follows:

P(n|l) =
N1

∏
i=1

P(ni|li) =
N1

∏
i=1

1√
2πσli

N1

∏
i=1

1√
2πµli

. (6)

where P(n|l) represents the joint probability of observational variable n when the state
l of MRF is given. When building the label field model of MRF, we used M Gaussian
distributions to fit the histogram distribution of the normal vector information of the
surface formed by the central point of the unstable subunit and the neighboring point set.
M indicates that labels are divided into several categories. In this paper, labels were divided
into two categories, M = 2. The expectation maximization (EM) algorithm was used to
calculate the mean µ = {µ1, µ2, · · · µM} of the M Gaussian distributions and standard
deviation σ = {σ1, σ2, · · · σM}. The detailed solution process of the likelihood function
can be found in [29]. According to the obtained likelihood function P(n|l) and the state
distribution P(L) of the MRF, the optimal state of the MRF of the subunit set is as follows:

L∗ = maxP(l|n) ∝ max{P(n|l)P(L)}. (7)

According to Equation (7), we transformed the problem of solving the optimal state of
the MRF of the subunit set into a problem of calculating the maximal a posteriori (MAP)
estimate. Variational inference (VI) is a large class of Bayesian approximate inference
methods that can transform a posteriori inference problems into optimization problems for
a solution. The core idea of variational inference is to maximize objective function J(Q) to
produce variable distribution Q(l). Q(l) is the mean field in the form of ∏

|M|
i=1 Qi(li). The

objective function J(Q) is defined as follows:

J(Q) = ∑
l

Q(l)logP(l, n)−∑
l

Q(l)logQ(l). (8)

We could calculate by substituting Q(l) into Equation (8):

J(Q) = −KL(Q(l)||P(l|n)) + const. (9)

KL divergence is used to measure the similarity between Q(l) and target P(l|n), KL is
non-negative, and const is a constant. J(Q) is essentially the evidence lower bound objective
(ELBO), which is a function of Q. According to Equation (9), calculating argmax{J(Q)}
is equivalent to minimizing KL. In other words, we needed to find a posteriori Q∗(l), so
that Q∗(l) = L∗. In this way, the problem of variational inference is transformed into an
optimization problem. The solution of maximal J(Q) satisfies:

logQ∗
(
lj
)
= E∏i 6=j Qi(li){logP(l, n)}, (10)

where EΠi 6=jQi(li){·} is the expectation about Q(l). When solving, Q∗(lj) is fixed first and
then Q∗(lj) is updated with logP(l, n) on Πi 6=jQi(li). There were several iterations until
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logQ∗(lj) had converged to a fixed value, and the maximal J(Q) had been obtained. The
optimal state after the solution was to allocate unstable subunits to stable label set (li = 1).
When the label of a pointless subunit is 1, the spatial unit is determined to be filled with
new points.

2.5. Generate Fill Points

After twice screening, subunit s∗ with the highest probability in space S around xi and
xj was calculated; s∗ and central subunit s1 together formed a specific subunit s (s includes
the boundary area and the hole area). Then, we needed to add new points to the subunit s.
Let the direction from xi to xj be ni,j according to the definition of the weakened convex set
when all the new filling points are in the closed area contained by s, all the new points are
in the direction domain of line segment Ci,j connected by xi and xj, s is a convex set. The
filling direction of the new point is:

v =
~̂n× ni,j

||~̂n× ni,j||22
, (11)

where v is a normalized vector pointing in the direction of hole shrinkage. By combining
the Markov random field and convex set theory, we determined the distribution area of
new points (along the direction of hole shrinkage). In combination with density ρ of the
neighborhood point set, enough points were uniformly sampled on segment Ci,j and new
points were added along the direction of v:

xnew = q + ζv, (12)

where q is a point on Ci,j, and ξ is a controllable parameter to ensure that xnew is in the
subunit. After generating enough 3D points in specific subunit s, xi was moved out of
the X set and continued to iterate xi+1 and xj+1 in the same way. When there is only one
element left in X, and the hole boundary is closed, the last element should pair with the
first element in X to form a unit S. When X was an empty set, we added the boundary
formed by the new 3D points to X to generate new fill points again. During the whole
repair process, the specific subunit gradually moved to the center of the hole region until
the hole had been completely repaired.

3. Results and Discussion

In this section, we experimentally analyze the method proposed in this paper. We con-
ducted the experiments on an Intel Xeon (R) 2.50GHz vCPU computer with 8.00 GB memory.
To verify the performance of this method, we conducted quantitative and qualitative com-
parisons with the latest technologies of SnowflakeNet [30], SpareNet [31], PF-Net [11]
and SCCR [32]. We evaluated our method on widely used public datasets PCN [33] and
Stanford. The PCN and Stanford datasets are public point-cloud datasets that have greatly
contributed to the research of 3D vision. In addition, we experimentally analyzed the
point-cloud data that we had collected to fully prove the effectiveness of our method.
Similar to [34], we used GPSNR and NSHD as quantitative evaluation indicators of the
experiment. GPSNR [35] measures the error between Point Clouds A and B on the basis of
the optimized peak signal-to-noise ratio (PSNR). The higher the GPSNR is, the smaller the
difference between A and B. Normalized symmetric Hausdorff distance (NSHD) [36] is a
normalized metric based on the unilateral Hausdorff distance. The lower the NHSD is, the
smaller the difference between A and B.

3.1. Qualitative Analysis

Figure 5 shows the subjective repair effect of our and other comparison methods on
the PCN dataset. We selected four types of objects in the PCN dataset: airplane, table, chair,
and car. As can be seen from the results, our method could accurately repair the missing
parts in the point cloud without producing redundant 3D points in nonmissing regions.



Appl. Sci. 2023, 13, 1830 8 of 12

For example, in the table category, our method could focus on repairing the missing areas
in the point cloud, keeping nonhole areas unchanged, and the distribution of newly filled
points was more uniform than that of other methods. On the other hand, SpareNet could
not focus on the missing area and only generated a complete point cloud on the basis
of the trained parameter model. Therefore, redundant 3D points were generated in the
nonpore area, blurring the original shape of the point cloud. The point cloud completed by
the SnowflakeNet method had new missing areas on the chair point cloud because it had
reconstructed the entire point-cloud model and generated new 3D points in the nonhole
area. New hole areas appear when new 3D points are not evenly distributed. Our method
predicts the surface shape of the missing area according to the distribution information of
the points in the hole neighborhood in order to ensure that the distribution of 3D points in
the nonhole area remains unchanged. PF-Net is a rough-to-fine process. To improve the
resolution of the output results, the number of 3D points was increased. However, this is
different from the ground truth. The SCCR method failed to completely repair the large
holes on the table and the surface of the airplane because when the point distribution is too
scattered, and the hole area is large, the SCCR method only generates new filling points
on the basis of a small number of hole boundary points. In addition, our repair method
achieved a better visual effect for the car model than that of related work.

 

 Input SnowflakeNetSpareNet PF-Net Ours Ground Truth

A
irp

la
ne

C
ha
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bl
e

C
ar

SCCR

Figure 5. Subjective repair effect on PCN dataset.

Figure 6 shows the visualization effect on the point cloud collected by Stanford and
our method. We selected monsters, monkeys, and a sphere as experimental point clouds,
and none of these three categories of point clouds was used as training data for SpareNet,
PF-Net, and SnowflakeNet. The monster point-cloud model was from the Stanford dataset,
and we collected the monkey [37] and sphere point-cloud models. The experimental results
show that SpareNet, PF-Net, and SnowflakeNet repaired the results, severely distorting
the original shape of the point cloud and causing the repaired point cloud to be far from
the true shape. SpareNet, PF-Net, and SnowflakeNet produced bad results because they
were constrained by the training data and could not complete the untrained point cloud.
However, training a large amount of data consumes huge amounts of time, so their methods
cannot be widely used. Compared with the SpareNet, PF-Net, and SnowflakeNet methods,
our method only focused on the missing areas and was not limited by the object category.
At the same time, our method could effectively repair various point clouds regardless of
target category. This shows that our method has wider applicability. On the pipe surface
model, due to the large hole area and the scattered point distribution, the SCCR method
could not completely repair the hole. Compared with the SCCR method, our method could
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not only completely repair the holes in the point cloud, but also ensure that the repaired
surface was consistent with the surrounding neighborhood.

 
 

Input SpareNet SnowflakeNet SCCR Ours Ground Truth

M
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er

M
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ke
y

Sp
he

re

PF-Net

Figure 6. Effect of visualization on point cloud collected by Stanford [38] and our method.

Figure 7 shows the subjective repair effect of our method for multiple holes in a single
point cloud. The rabbit point cloud is from the Stanford dataset, and there were many holes
at the bottom. To prevent the influence of adjacent holes on the repair results, our method
does not repair multiple holes at the same time, but repairs them one by one. The repaired
surface was assumed to be a real surface that provided geometric information for repairing
adjacent holes. Experimental results show that our method could repair multiple holes in a
single point cloud and achieved satisfactory results.

(a) input (b) output

Figure 7. Repair effect of multiple holes.

Figure 8 shows the repair effect of our method on irregular holes. Because the holes
in this point cloud were naturally formed, there was no ground truth cloud with which
to compare. The visualization results of the experiment show that our method could
completely repair the point cloud and achieve ideal repair results.

(a) input (b) output

Figure 8. Irregular-hole repair effect.

3.2. Quantitative Analysis

It is very important to objectively evaluate the geometric differences of point clouds.
Similar to [5], we used GPSNR and NSHD as quantitative evaluation indicators of the
experiment. Tables 1 and 2 show the quantitative comparison results between our method
and related work. Experimental data show that our method achieved the best performance
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in all categories. Specifically, Table 1 shows the quantitative comparison values of the
normalized symmetric Hausdorff distance (NHSD), which is a normalized metric based
on the unilateral Hausdorff distance. The lower the NHSD is, the smaller the difference
between A and B. The experimental data show that our method achieved the lowest NHSD
on each point-cloud model. On average, our method was 23.67 lower than the second
method, with a relative decrease of 59.2%. SpareNet, PF-Net, and SnowflakeNet changed
the 3D position in the source point cloud and generated redundant filling points in the
nonhole area, so there was a large difference in the NHSD value between them and the
ground truth. On the monkey, monster, and pipe surface models, the output of the SpareNet,
PF-Net, and SnowflakeNet methods severely distorted the geometric shape of the point
cloud (see Figure 6), so the values of NHSD of the SpareNet and SnowflakeNet methods
were larger on these three types of point clouds. These results show that our method could
repair point clouds with high stability and quality.

Table 1. Quantitative comparison of NHSD (×10−2).

Model SpareNet [31] SnowflakeNet [30] PF-Net [11] SCCR [32] Ours

Airplane 3.28 2.52 2.79 1.85 0.23
Chair 4.06 3.38 4.10 1.58 1.04
Table 18.56 13.39 19.31 4.25 0.51
Car 6.33 10.30 12.39 2.96 1.13

Monster 811.98 5567.67 6092.97 240.32 107.44
Monkey 290.11 529.26 603.14 2.77 1.21
Sphere 148.25 182.33 223.45 26.01 2.47
Mean 183.22 901.26 994.02 39.96 16.29

Table 2 shows the GPSNR performance comparison values of our and other methods.
GPSNR is based on the optimized peak signal-to-noise ratio (PSNR) to measure the error
between Point Clouds A and B. The higher the GPSNR is, the smaller the difference between
A and B. The experimental data show that our method achieved the highest GPSNR on
each point-cloud model with an average of 48.47 DB, which was 44.9% higher than that of
a suboptimal method. The experimental results show that the point cloud repaired by our
method had high fidelity.

Table 2. Quantitative comparison of GPSNR (DB).

Model SpareNet [31] SnowflakeNet [30] PF-Net [11] SCCR [32] Ours

Airplane 18.54 19.31 18.01 40.38 62.41
Chair 15.15 14.48 15.11 32.05 37.71
Table 19.22 19.91 13.38 41.52 58.95
Car 15.48 14.53 13.51 40.20 44.23

Monster 4.81 5.01 2.33 32.41 51.72
Monkey −2.52 3.01 −3.74 37.36 50.83
Sphere −7.17 −9.31 −8.63 10.17 33.45
Mean 11.78 9.56 7.14 33.44 48.47

4. Conclusions

This paper proposed a point-cloud repair method via a convex set for an incomplete
point cloud. First, we constructed a cube unit S centered on several adjacent hole boundary
points and discretized S into K(K = 9) subunits. Second, pointless subunits that are
roughly screened by the difference of normal vectors are called unstable unit sets. Then,
the objective function was calculated from the joint distribution function of the attribute
information of the unstable unit set and the state distribution function of MRF, and the MAP
was solved by using variational inference to determine subunit s∗ that needed to be filled.
Lastly, s∗ and central unit s1 formed a specific subunit s. Combined with the weakened
convex set, new 3D points were added to the hole area, so that subunit s became a convex
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set. Our method could accurately infer the distribution of new filling points to ensure that
the repaired shape was as consistent with the real surface shape as possible. The proposed
method was not limited by the category of point clouds and could repair various categories
of point clouds while maintaining the position of points in non-hole areas unchanged. The
experimental results show that our method is superior to the compared methods in terms
of GPSNR and NHSD. However, the method in this paper was limited by the size of unit S.
Large or small units S reduce the final repair effect. Therefore, we will consider using more
prior information to repair incomplete point clouds in the future.
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