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Abstract: The upward trend of adopting Distributed Energy Resources (DER) reshapes the energy
landscape and supports the transition towards a sustainable, carbon-free electricity system. The
integration of Internet of Things (IoT) in Demand Response (DR) enables the transformation of energy
flexibility, originated by electricity consumers/prosumers, into a valuable DER asset, thus placing
them at the center of the electricity market. In this paper, it is shown how Local Energy Markets (LEM)
act as a catalyst by providing a digital platform where the prosumers’ energy needs and offerings can
be efficiently settled locally while minimizing the grid interaction. This paper showcases that the
IoT technology, which enables control and coordination of numerous devices, further unleashes the
flexibility potential of the distribution grid, offered as an energy service both to the LEM participants
as well as the external grid. This is achieved by orchestrating the IoT devices through a Consumer
Digital Twin (CDT), which facilitates the optimal adjustment of this flexibility according to the
consumers’ thermal comfort level constraints and preferences. An integrated LEM-CDT platform
is introduced, which comprises an optimal energy scheduler, accounts for the Renewable Energy
System (RES) uncertainty, errors in load forecasting, Day-Ahead Market (DAM) feed in/out the
tariff, and a fair price settling mechanism while considering user preferences. The results prove that
IoT-enabled consumers’ participation in the energy markets through LEM is flexible, cost-efficient,
and adaptive to the consumers’ comfort level while promoting both energy transition goals and social
welfare. In particular, the paper showcases that the proposed algorithm increases the profits of LEM
participants, lowers the corresponding operating costs, addresses efficiently the stochasticity of both
energy demand and generation, and requires minimal computational resources.

Keywords: local energy markets; consumer digital twin; transactive energy; thermal comfort; DER

1. Introduction

In recent years, technological advancements and policy directives in the European
Union (EU) [1] and the United States of America [2] have led to a significant increase in
the number of Distributed Energy Resources (DER) that are primarily connected to the
energy grid [3]. Therefore, the traditional energy consumers have been transformed into
prosumers, i.e., active entities of the energy market that simultaneously consume, produce
and share energy, depending on the regulatory framework, the weather and the operating
conditions [4]. Prosumers may own multiple energy assets, primarily small-scale DERs
for energy generation, and batteries or Electric Vehicles (EVs) for energy storage [5]. These
trends reshape the conventional and centralized power system and eventually disrupt
the existing energy system. In this emerging landscape, the power system must undergo

Appl. Sci. 2023, 13, 1798. https://doi.org/10.3390/app13031798 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13031798
https://doi.org/10.3390/app13031798
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8662-5591
https://orcid.org/0000-0001-7738-1604
https://orcid.org/0000-0001-8318-6100
https://doi.org/10.3390/app13031798
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031798?type=check_update&version=2


Appl. Sci. 2023, 13, 1798 2 of 22

structural changes to adapt and leverage the benefits of Internet of Things (IoT) technologies,
digitalization, and decarbonization policies.

The edge grid is a structural component of the power system; thus, the concepts of
Transactive Energy System (TES) and Local Energy Market (LEM) are considered novel
solutions that enable energy exchange between prosumers, increase the power system’s
efficiency, and reliability, and support the coordination between DERs [6]. Financial and
engineering advancements are embraced by TES and LEM, and they form an integral
part of the hierarchical energy marketplace, which includes wholesale, retail, and local
markets. Inevitably, the solutions of TES and LEM offer incentives for participation for all
stakeholders and maximize the social welfare in the energy market.

The exponential growth of computational power and IoT has created a strong techno-
logical infrastructure for collecting, transmitting, and processing data in a reliable, efficient,
and cost-effective manner. In this context, the concept of Digital Twin (DT), i.e., virtual
representations of physical entities that encompass the most discriminative characteristics
of the corresponding entity, has attracted the attention of researchers and the industry.
Bidirectional and automatic data flow between the physical and virtual entities are used
by DTs to produce predictive analytics, perform actions and support informed decisions.
In the power sector, DTs are considered promising solutions for sustainability, demand
side management, control of energy assets, reliable energy distribution and monitoring of
energy grid operations [7].

As flexibility can be obtained either at the residential or community level, this work
focuses on residential flexibility, which is then procured to the external grid through LEM.
Controlling Heating, Ventilation and Air Conditioning (HVAC) systems based on con-
sumers’ thermal comfort tolerance, scheduling household appliances and EV charging
are the typical ways to obtain residential flexibility. Based on the consumer’s preferences,
designated flexible loads are activated at optimal intervals during the desired time window
to minimize energy costs. Moreover, by allowing the consumer to specify the subjective in-
tensity of importance for each flexible load, prioritized Demand Response (DR) scheduling
can be implemented.

As residential flexibility is becoming critical for power systems and is now at the
forefront of the energy market, LEMs are acting as a catalyst in procuring residential
flexibility and empowering small RES owners [8]. LEMs simplify and accelerate this
process, enabling energy consumers at the edge of the grid to evolve from passive entities
to active integral energy market actors. Despite the fact that LEMs expedite consumers’
participation in the energy market, prosumers’ involvement will not be materialized as long
as their market engagement is conducted in a complicated way, limiting the interest on LEM
and leading to potential depreciation and eventually failure. Apparently, a seamless and
consumer-friendly way of market engagement is a decisive factor for LEM’s success. To this
end, the Consumer Digital Twin (CDT) serves as a powerful information tool that provides
automated data streams on consumers’ key characteristics and personalized preferences to
minimize their active involvement in operations, increase the efficiency of operations and
enhance the consumer-centricity of the LEM.

In this work, a LEM-CDT structure is introduced in order to bridge the gap between
local flexibility potential and the consumers’ preferences. Towards this end, the benefits
of both concepts are leveraged. On one hand, the local flexibility is procured efficiently
to the wholesale energy markets while guaranteeing monetary and social benefits for
LEM’s participants and at the same time the preferences of LEM members are not only
respected but also, and most importantly, incorporated in the optimal LEM scheduling.
By combining these concepts, the aim is to harness optimally the local flexibility capacity at
the distribution grid and attract more participants at LEM initiatives in order to create local
sustainable energy communities. To achieve this, CDT is an essential tool since it provides
the necessary information to the LEM operator in order to consider the particularities and
preferences of each participant placing them at the center of the electricity market. This user-
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centric approach is one of the main novelties of this paper, offering an efficient solution for
LEM operators to model their energy scheduling accurately and attract more participants.

The envisaged LEM–CDT structure is shown in Figure 1. Flexibility stems from the
prosumers’ side, either in the form of production from various DERs or through DR actions.
As shown, prosumers are at the center of the energy market, contributing to the energy mix
with any means they own, such as DERs, EVs, or even via DR schema. Supplying flexibility
has both technical advantages (e.g., quick response time) and widens the pool of potential
LEM members; thus, consumers who do not own DER assets can also be members and
contribute to the overall supply through their load flexibility. In addition, participation via
DR schema promotes democratization within the community, as all members contribute
to the aggregation generation and benefit from their participation. The stochasticity of
both energy demand and generation is taken into account to ensure a constant, reliable,
and cost-effective energy supply, thereby mitigating the cost of remedial action.

Figure 1. The consumer-centric structure of LEM

This paper is divided into five sections: In Section 2, a comprehensive literature review
for both LEMs and CDTs is provided. In Section 3, the proposed solution for the integration
of CDT and LEM is presented. In Section 4, the results from experiments are displayed
revealing the benefits of integrating CDT into LEM. Finally, in Section 5, the conclusions of
the work are provided.

2. State of the Art
2.1. Local Energy Market

Recent research by Honarmand et al. [9] and Doumen et al. [10] emphasized the
emergence of the LEM as a solution that prioritizes consumers in integrating DERs into
distribution networks effectively. The LEM approach allows the efficient management
of DERs, thereby increasing their utilization and overall impact on the distribution grid.
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LEMs facilitate prosumers’ unfettered access to the electricity market, leading to increased
flexibility in the grid and creating revenue streams for small-scale prosumers while sup-
porting balancing, congestion management, and ancillary services [11]. An LEM comprises
small-scale energy deployments and energy assets located in a small or a wide geographic
area. They are connected to the distribution grid in a decentralized structure where par-
ticipants cooperate with the available resources (DERs, DR, EVs) on a community level,
as depicted in Figure 2. LEM’s main objective is to encourage market participation by pro-
viding monetary incentives to prosumers to trade energy with one another with minimum
or no intermediate (e.g., energy aggregators) [12]. In this market, prosumers can share the
benefits of local flexibility within the community, promoting the deployment of distributed
renewable generation and DR [13]. To promote prosumers’ participation, the LEM achieves
load balancing at a lower price compared to the external grid. Consumers (buyers) can
reduce energy costs by buying energy at a lower price. In comparison, producers (sellers)
can increase their profit by offering energy at a higher price compared to the external grid.
Moreover, from a social perspective, it allows participants to be active members of their
communities by supporting and enabling them to consume renewable energy and benefit
from its distributed generation.

Figure 2. The future decentralized electricity system.

The pricing mechanisms of an LEM constitute one of its most important elements; many
algorithms for the LEM clearing price have been proposed. Specifically, Tushar et al. [14]
investigated the feasibility of social cooperation among prosumers participating in a peer-
to-peer (P2P) energy trading market by utilizing a canonical coalition game approach.
The results indicated that the proposed scheme can increase the prosumers’ willingness
to participate in P2P energy trading schemes. Lee et al. [15] proposed a direct electricity
trading market, in which the electricity pricing scheme achieves a fair allocation of profits
between consumers and small-scale energy suppliers by using the asymptotic Shapley
value function. Tsaousoglou et al. [16] presented a TES where an auction mechanism is
implemented with non-convex prosumer models and resource constraints. Long et al. [17]
presented three examples of a P2P market structure, namely bill sharing, mid-market rate,
and auction-based pricing, to validate the effectiveness of the proposed markets. These
market structures were applied on a residential community microgrid with a PV system.
Mengelkamp et al. [18] proposed a blockchain-based microgrid energy market without
central coordination and evaluated the ‘Brooklyn Microgrid Project’ as a case study. Finally,
Paudel et al. [19] introduced a game-theoretic approach for P2P energy trading among
prosumers, where consumers can adjust their consumption according to market conditions.
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Since LEMs are not fully restricted in electricity production, Brolin et al. [20] presented
a corresponding multi-energy structure that utilizes its full flexibility potential, while
Hayes et al. [21] facilitated the efficient flexibility procurement by an aggregator. In the
proposed platform, an aggregator can communicate directly with the participants and
determine costs and rewards between them so the benefits for both the aggregator and
the electrical systems are mutually increased. Lyu et al. [22] proposed a comprehensive
energy-sharing framework for smart buildings considering multiple dynamic components
covering heating, ventilation, air conditioning, battery energy storage systems, and EVs.
Bachoumis et al. [23] investigated the provided ancillary services to the external grid and
particularly the fast frequency response service. Finally, Huo et al. [24] considered the
uncertainty of PV production by employing the chance-constraints optimization method
for the operation of an energy hub.

The current LEMs lack consumer-centrism, failing to take into account the individual
preferences of participants. This proposal aims to address this knowledge gap by designing
a consumer-centric LEM that respects the priorities of LEM participants, as expressed
through personalized preferences for the flexible residential loads and the individual’s
indoor thermal comfort level. By prioritizing the preferences of consumers, the proposed
LEM will increase the effectiveness of DERs integration in distribution networks, providing
more efficient and cost-effective energy solutions for the participants.

2.2. Consumer Digital Twin

In electricity markets, DTs are promising solutions for sustainability, control of energy
assets, demand-side management, control of energy assets, reliable energy distribution,
and monitoring of energy grid operations [25]. Danilczyk et al. [26] proposed a DT to
address security issues and detect potential failures in a microgrid, such as instabilities and
failures in power distribution, in a timely manner. Darbali-Zamora et al. [27] introduced
a real-time DT that optimizes DER operations for distribution voltage regulation and
increases the awareness of power system dynamics. Podvalny et al. [28] proposed a scalable
and evolutionary DT framework to simulate the behavior of a power system under critical
events by employing a neural network as a decision support infrastructure. Wu et al. [29]
introduced a DT of grid batteries to diagnose faults in time and control their usage to extend
their lifetime, while Jain et al. [30] proposed a virtual replica of solar PVs to promptly detect
operational faults and evaluate their power generation performance. Atalay et al. [31]
proposed a DT that performs simulations over the virtual copy of the physical grid to
detect possible power supply interruptions. Dembski et al. [32] introduced an urban
DT representing a real community to enable the execution of scenarios over the virtual
twin and provide customized energy services to prosumers. Bazmohammadi et al. [33]
mentioned the enhancement of microgrid operations through DTs. Nguyen-Huu et al. [34]
and Han et al. [35] utilized DTs as an orchestration mechanism to coordinate the operation
of LEM and DER, respectively. Aghazadeh Ardebili et al. [36] used DTs as a tool to predict
energy production in power systems with a high volume of RES. Zhou et al. [37] highlighted
the benefits of DTs for providing flexibility in industrial power systems.

In the energy sector, the employment of DTs has gained significant attention as a
means to optimize the management of DERs. However, while DTs have proven to be
versatile tools in representing and simulating physical entities, their application to human
entities remains a challenge. The complexity of human behavior, influenced by factors
such as mental activities, ethics, and social interactions, makes it difficult to model human
behavior deterministically [38]. As a result, human DTs tend to only include key attributes
and selected characteristics to represent the corresponding human entity from a specific
socioeconomic perspective. Despite this limitation, the development of human-oriented
DTs holds potential for further advancements in the energy sector, particularly in the areas
of demand response and local energy markets.

The proposed CDT is a human-oriented, simplified virtual replica that represents the
entity of an electricity consumer within the context of an energy market. It incorporates



Appl. Sci. 2023, 13, 1798 6 of 22

the most informative and distinguishing characteristics, attributes, and behaviors of its
physical counterpart, while ensuring synchronous and bidirectional data flow between the
physical and virtual entities. To achieve this, raw data from both physical sources (smart
meters and wearable devices) and digital sources (REST API services) are collected and
processed to extract knowledge and facilitate informed decision-making.

The functionalities performed by the CDT include developing dynamic constructs of
prosumer energy behaviors, while also identifying consumer preferences with respect to
energy usage, thermal comfort tolerance and openness to engaging in flexibility and DR
actions, and the assessment of prosumer’s indoor thermal comfort level according to the
ASHRAE-55 standard [39] using environmental and physiological parameters captured
by a wrist-worn device. Thermal comfort expresses the personal thermal satisfaction as-
sociated with indoor thermal environmental conditions and adheres to an ideal thermal
condition and the appropriate tolerance limits within which the consumer feels comfort-
able. Continuous and automatic consumer thermal comfort assessment in conjunction
with consumer preferences is critical since it enables pertinent and optimal demand side
management while preserving the desirable thermal tolerance limits making the consumer
predictable energy-wise.

By utilizing time series of predicted weather data, CDT produces forecasts of the
consumer’s energy demand and projected energy production from owned RES, which
are further optimized based on the user’s preferences. With this in mind, the proposed
CDT is a core element that facilitates the deployment of human-centric DR optimization
strategies, it enables personalized and non-intrusive control functions of energy assets
without compromising the consumer’s desired thermal comfort tolerance, and it provides
consumer flexibility to aggregators. Additionally, it ensures the improvement of short and
mid-term demand forecasting by using real data streams from the consumer’s energy assets
to address the stochasticity of the distribution grid and minimize DR strategy overruns.

The CDT consists of a front-end, a back-end, and a database intending to act as a
web-based tool that records and processes the user’s preferences to produce priority vec-
tors through multi-criteria decision analysis, and user’s environmental and physiological
parameters through ML methods to assess indoor thermal comfort. Additionally, CDT
completes analytics and enables interoperability to cater to aggregator platforms with
critical flexibility information in real-time.

The overall contribution of this paper can be summarized as follows:

• An energy market design that enables the unfettered participation of small-scale,
local DERs and residential flexible loads in electricity markets, allowing the exchange
of energy without any external involvement and eliminating the requirement for
ownership of energy assets;

• A consumer-centric LEM that respects the priorities of LEM participants, as expressed
through personalized preferences for the flexible residential loads and the individual’s
indoor thermal comfort level;

• The maximization of potential benefit for LEM participants by integrating CDT in-
formation into the LEM marketplace. The CDT provides information regarding the
consumer’s energy demand and production, the energy consumption of electric ap-
pliances within the household, the consumer’s personalized preferences, and the
consumer’s indoor thermal comfort level;

• An optimal energy scheduling considering the stochastic nature of both the generation
assets and the local demand by employing the chance-constraints method.

3. Framework Implementation

In this section, the CDT and LEM-implemented models are described and their inte-
gration is presented. The main goal of the proposed framework is to integrate the benefits
of CDT into the LEM architecture. This will enable every member of an LEM to be an active
prosumer and empower its position in the energy market through the LEM. In that context,
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CDT offers the opportunity of seamless participation in the local market and at the same
time the incorporation of consumers’ preferences into the market outcome.

3.1. Consumer Digital Twin

Consumer preferences constitute a set of decision criteria that reflect the consumer’s
prioritized demand response potential within an LEM. As such, the consumer defines the
subjective intensity of importance for each residential flexible load, i.e., HVAC system, heat
pump, EV charger, battery storage unit, dishwasher, and washing machine, and the desired
operation time window of each load, to generate a priority vector as input to the LEM.
Additionally, the boundaries of the consumer’s thermal comfort tolerance are defined,
adhering to Fanger’s 7-point thermal sensation scale [40], as depicted in Figure 3. In this
scale, each state of thermal sensation corresponds to a numerical value between −3 and +3,
where −3 and +3 denote the cold and hot thermal states, respectively, and 0 denotes the
neutral state.

The hierarchical ordering of consumer preferences needs to be arranged through
a formal methodological approach. Therefore, the Analytical Hierarchy Process (AHP),
which is a decision-making framework that allocates weights to a set of N decision criteria
and produces a priority vector imposing pairwise comparisons between them, is employed.
A 9-pointed balanced importance scale is utilized, in which the consumer defines whether
a criterion is superior or inferior to the compared one in terms of verbal appreciation.
More specifically, the scale’s values come under the discrete set of ∆1 = {1, 3, 5, 7, 9}
and indicate equal, moderate, strong, very strong, and extreme importance, respectively,
whereas intermediate values of the discrete set ∆2 = {2, 4, 6, 8} are omitted as they represent
a compromise between the compared criteria. To a superior criterion, the corresponding
numerical value of the verbal response is assigned as priority value aij, while the reciprocal
a−1

ij one is assigned to the inferior one. The priority values are allocated to a squared
decision matrix AN×N to derive the normalized priority vector for the set of decision
criteria (preferences). To evaluate whether the obtained weights from the AHP method
are plausible, the consistency ratio metric (CR) is applied to the normalized priority vector.
This metric employs the random consistency index, whose value results from a predefined
set of constant values with respect to the number of decision criteria. The results of the
method are considered sufficiently consistent and acceptable if the CR index is less than 0.1.
If this condition is not met, the stakeholder should revise the intensity of importance for
each pairwise comparison, and the process of the method is iterated.

CDT provides two matrices as input to LEM; the load flexibility matrix, denoted by LF ,
whose elements represent the relative importance of each flexible load as determined by the
AHP method along with the operating time window of each flexible load as defined by the
consumer, and the thermal flexibility matrix, denoted by TF, whose elements include the
consumer’s current thermal comfort level and thermal comfort tolerance deviation.

The LF matrix allocates to each row the weight of the corresponding flexible load and
the operating time window intervals, respectively, so that the first column vector l f:,1 of
LF matrix represents the priority vector determined by the AHP method. For instance,
the vector l fn,: = [0.2, 2, 7] represents a weight of 0.2 assigned to the corresponding load
and a desired load’s operating time window between 2:00 a.m. and 7:00 a.m., whereas the
vector l f:,1 = [0.2, 0.1, 0.1, 0.3, 0.1, 0.2] indicates weights of 0.2, 0.1, 0.1, 0.3, 0.1, 0.2 to the
HVAC system, the heat pump, the EV charger, the battery storage unit, the dishwasher and
the washing machine, respectively. At the same time, CDT provides data streams with the
consumer’s current thermal comfort level and the thermal comfort tolerance deviation from
the desired range in 15-min intervals. For instance, the TF = [−1.1, +0.9, +2.1] represents
a consumer with thermal comfort tolerance desired range from −2 (cool) to +1 (slightly
warm) and a current thermal comfort level of −1.1.

To insert and update the subjective intensity of importance for each residential flexible
load, as well as the desired load’s operation time window and thermal comfort tolerance
boundaries, CDT offers a user-friendly graphical interface. This interface allows consumers



Appl. Sci. 2023, 13, 1798 8 of 22

to determine their thermal comfort tolerance over the thermal comfort scale, as presented
in Figure 3 and the intensity of importance for each load through pairwise comparisons
and the desired operation’s time window intervals over a 9-pointed importance scale,
as presented in Figure 4.

Figure 3. The implemented thermal comfort scale.

Figure 4. The implemented 9-pointed importance scales.

3.2. Local Energy Market

The LEM is a digital platform that facilitates transactions between a number of energy
actors, i.e., consumers and prosumers, at a local level. A community, comprising at least
two participants engaging in energy trading, can be characterized as LEM. The LEM
optimizes the Day-Ahead (DA) scheduling to minimize its operating costs. The price at
which the transaction is cleared within LEM can be determined using different approaches.
In this section, two applied pricing algorithms are presented and compared along with the
market design.

3.2.1. Market Design

LEM allows small-scale DER owners to actively engage in energy trading among
themselves and to participate in the wholesale and retail energy markets. The fundamental
feature of the LEM is the lower market clearing price compared to the external grid, which
provides an incentive for prosumers and consumers to participate in such a cooperative
market mechanism. Another important feature of the proposed LEM market is the clear
definition of the market architecture and the pricing rules. It is evident that the rules of
the design should be disseminated and explained in detail to the LEM participants so that
each participant knows in advance the operation of the market. In our case, a two-sided
market is considered, meaning that several buyers hold items for sale and several buyers
consider buying these items. The key concept in such a market is that every participant
(either buyer or seller) has a different valuation and risk profile of the held items, products
and services. An efficient market maximizes the total profit obtained both from the buyers’
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and sellers’ sides. To achieve an efficient local market, the total profit must be maximized
for both groups.

3.2.2. Pricing Algorithms

For the validation of the proposed coordination scheme between CDT and LEM,
the first step is the local price clearing at which the transactions take place in the market.
Regarding the pricing algorithms, two different approaches are considered. In both algo-
rithms, the price resolution is hourly, similar to the price signals of the external day-ahead
market (DAM). Therefore, there is a different arbitrage (difference between LEM price and
external price) for each particular hour. The two algorithms are summarized below:

• Peer-to-peer (P2P) pricing algorithm: The first approach is a direct P2P pricing mecha-
nism. In a P2P transaction, the buyer and the seller transact directly with each other in
terms of the delivery of the good or service and the exchange of payment. Specifically,
after the initial submission of the bids from both sides, the order book of the pairs of
transactions is created. Multiple price levels are initially created since different energy
levels are offered at different prices. Prices are ranked for sellers from the lowest to
the highest and vice versa for buyers. If the lowest price for consumers is lower than
the highest price for sellers, the transaction can be executed. Otherwise, there is a
case of supply deficit; in that case, the minimum of the supply-demand pair is cleared
within the internal market and the rest is supplied by the grid. The clearing price
Plem (the average value of the two prices) creates one universal price inside the LEM.
A universal (same) price is desirable since it is easier to evaluate the efficiency of the
market. The clearing price results from:

Plem =
Pprodlow

+ Pconshigh

2
(1)

• CDT-LEM pricing algorithm: In this work, the price is calculated based on the LEM’s
production and consumption values. In other words, the participants are not directly
participating in the market in the form of bids. This pricing mechanism has three
main advantages. First, it minimizes the participants’ involvement so that the LEM
is accessible to more potential members by lowering the entry barriers. Secondly,
the elimination of a bidding process strengthens the resiliency of LEM against market
manipulation concerns. Finally, the solution’s applicability is straightforward since all
the necessary data are directly taken from smart meters or IoT devices. The process of
determining the clearing price is analyzed in more detail in the following section.

In both pricing algorithms, the internal market is cleared at a price lower than the
selling price of the retail external grid and higher than the buying price of the external
grid. The internal energy is practically exempt from transfer losses and any other monetary
burdens (such as transfer may incur due to the transition of energy through a large-scale
grid) and thus the internal price can be lower. The time horizon that transactions take
place depends on the market design (Day-ahead market, Real-time market, etc.), while
the granularity of the algorithm’s solution is determined mainly by how often the system
updates its information and control signals.

3.2.3. LEM and CDT Integration

The potential impact of CDT on LEM services is significant due to the integration
of consumers’ energy flexibility information with supplementary parameters from third-
party resources, such as the energy retailer’s price. As shown in Figure 5, bidirectional
and automatic data flows between the LEM and the CDT platform are enabled by the
communication layer, so thus individual parameters that affect the consumer’s energy
flexibility potential are seamlessly elicited by CDT for each LEM participant, specifically,
the participant’s energy demand and production, the prioritized DR scheduling based
on the participant’s preferences and the participant’s thermal comfort level. The LEM
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platform refers to the energy market and the assets that locally generate electricity while
CDT involves information regarding user comfort. The information exchange between
the platforms aims at the maximization of users’ benefits. To this end, CDT serves as a
strong knowledge base for enhancing the efficiency of LEM operations and price discovery
mechanism and optimizing energy management services.

Figure 5. Integration of LEM and CDT.

The information exchange between LEM and CDT is critical for the integration of the
two platforms and provides the following benefits:

• Information about the LEM participant’s priorities and preferences. CDT employs
a multi-criteria methodological framework, as described in Section 3.1, from which
the importance level of a family of energy criteria is determined. Thus, the consumer-
centrism of LEM is enhanced and LEM operations are personalized.

• Information about LEM participants energy consumption and production. The con-
sumption levels of the consumer are elicited from the IoT devices installed within the
domicile, i.e., smart meters and sub-meters, on the desired time scale. The energy
production levels from RES are retrieved from the smart sensors installed on house-
hold rooftop solar. In addition, CDT analyzes historical consumption data to forecast
future energy demand and employs a forecast model for energy production from
solar PVs based on the predictive analytics of outdoor weather conditions. For the
implementation of LEM, energy demand and generation data are essential for both
price discovery and energy scheduling. The forecasted values of energy consumption
and production allow LEM to plan its operation in a more efficient way.

• Optimization of Energy Management System (EMS) services. CDT can optimize
the EMS services since it contributes valuable information about the behavior of an
LEM participant. More specifically, it provides data related to the individual’s energy
consumption, which is utilized to discover energy consumption patterns and classify
consumers into groups. Thus, LEM can be operated in a coordinated manner to
initially connect users with similar behavioral patterns, and then seek alternative
solutions. In addition, the LEM operator can classify LEM participants based on their
flexibility potential, as retrieved from the CDT information. In a nutshell, the LEM-
CDT integration can offer a highly scalable and easy-to-implement solution that
enables LEM to harness the available flexibility in its ecosystem in an optimal and
efficient manner.
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4. Results and Validation
Use Case Description

In this work, the CDT-LEM pricing is compared with P2P pricing [18]. The evaluation
is conducted in terms of consumers’ payment, prosumers’ profit, and computational per-
formance of both algorithms. To assess the applicability of LEM, both pricing algorithms
are examined in a real-world test case: a residential community in central Germany. In par-
ticular, the total number of participants in the community is 27 residential members, 12 of
them have installed PV systems on their rooftops, while the rest of them are solely energy
consumers. The former group contributes to the LEM through their flexible loads, in our
case their HVAC systems, via a DR scheme. This specific flexible load was chosen since it
is the most energy-consuming appliance in households and, in our case, it is possible to
control HVACs’ operation through smart controllers. Moreover, the time period is a typical
single day during summer, characterized by substantial PV production and high demand
for HVAC load.

The pricing algorithm and the optimal scheduling are calculated on the LEM operator’s
cloud platform. Additional critical services, such as load and generation forecasting,
interaction with the wholesale energy market, and integration of meteorological data, are
also deployed in LEM’s cloud. Regarding the CDT implementation, each participant is
equipped with a wrist-worn wearable device, which assesses and transmits the thermal
comfort level. In addition, energy preferences have been provided by the consumer and
processed by CDT, as described in Section 3.1. Based on this information, participants are
classified into three classes. To simulate the participation of the consumers, the different
classes of flexibility capacity stemming from each participant are considered to follow
the normal distribution. The classes are derived based on the values provided by the
flexibility and thermal comfort matrices. The first class contains the non-flexible consumers
whose load profile cannot be altered. The second class contains low-flexibility participants,
while the third class contains fully flexible participants with no constraints of adjusting
their load. In all three classes, the thermal comfort limits of each user are not violated.
These classes are formulated as parameters in the optimization problem and determine the
allowed shiftable demand of each participant. In that context, CDT extends the flexibility
capabilities of LEM by creating a more stable and fair cooperative energy scheme, since even
the members who do not own any energy production assets can contribute to the energy
community. Accordingly, all participants contribute to LEM for mutual benefit. Finally,
CDT offers a seamless way of performing load shifting based on participants’ preferences.
The main advantage of the CDT-LEM pricing algorithm is that active engagement of
participants is not required. Consumers are encouraged to participate, as the price results
are always within the range of feed-in and feed-out tariffs. The inputs of the algorithm
are consumption and generation forecasts, along with feed-in and feed-out tariffs, and the
output is the resulting LEM clearing price. The LEM price curve is a representation of the
local generation and demand, and is made available to all participants. It is depicted as a
three-dimensional surface, as illustrated in Figure 6. The curve is generated for each hour,
although it can be created for any other desired time horizon.

On the contrary, in the case of P2P pricing, the price is calculated based on each
participant’s bidding strategy, which is prone to market manipulation, especially in the case
of a single participant with significant market power (e.g., higher installed PV capacity).
Hence, the adoption of the P2P algorithm requires a sufficient regulatory framework. Even
so, both algorithms lead to lower energy costs, where consumers and prosumers interact
with the external grid via feed-in and feed-out tariffs respectively.

LEM’s main goal is to optimize the DA scheduling by minimizing its operating costs.
Batteries’ charging and discharging are among the decision variables of the optimization
problem. The minimization of LEM’s operating cost is calculated based on the forecasted
values of local generation and local demand in a one-day horizon. The forecasting error,
especially in low-scale energy deployments [41], leads to deviations in the output of the
optimization problem. Hence, the DAM schedule differs from the optimal deterministic
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solution, leading to remedial actions that bear down higher costs on LEM participants.
Incorporating stochastic variables in the optimization problem is the key to ensuring a
constant, reliable power supply and achieving a cost-efficient LEM operation.

Figure 6. LEM pricing curves with feed-out and feed-in tariffs as limits.

The stochasticity of DERs generation and local consumption affects the LEM schedul-
ing [42]. It is crucial to design a market that effectively deals with stochasticity, as the
cost for remedial actions will be significant in the case of high uncertainty levels [43].
A wide variety of stochastic optimization methods have been employed to cope with
uncertainty in power systems operation, namely scenario-based approaches, robust opti-
mization, and chance-constrained optimization [44]. The chance-constraints method allows
certain unexpected events to violate specific constraints considering the overall constraint
satisfaction is satisfied with a predefined level of probability. Chance constraints are trans-
formed into deterministic equivalents, and a standard solution method is then employed to
solve the problem. The uncertainty of DERs and demand is incorporated into the optimal
scheduling process by using statistical moments of the parameters’ distribution, which
are derived from historical data such as mean and standard deviation [45]. The ability
to accommodate a wide range of distributions eliminates the need for discretization of a
probability space for scenario sampling [46] or the derivation of a finite uncertainty set [47].

In this work, a chance-constraints approach for the DA scheduling is employed,
which explicitly incorporates the stochasticity of DERs generation and local demand and
analyzes the effect of uncertainty level on LEM’s social welfare. The rationale behind our
choice was that compared to the other two stochastic optimization methods, the chance-
constrained leads to less conservative results [48]. Another important factor is that the level
of uncertainty can be tuned via a confidence interval [49]. Finally, by incorporating the
stochastic optimization problem into a chance constraints formulation, the convexity of the
optimization problem is maintained. In this paper, stochasticity is accounted for on both
the supply (i.e., solar PV) and demand sides. The granularity of the optimal scheduling of
the LEM is equal to 1 h and has an interval horizon of 24 h, similar to the wholesale DAM
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market architecture. The objective function of the optimization problem is formulated
as follows:

min Ctotal =
24

∑
i=1

(πi
int × Pi

int + πi
buy × Pi

in − πi
sell × Pi

out) (2)

where i, l, k, and n indicate the hour, flexible consumers, PV owners and battery owners,
respectively. Ci

total denotes the total LEM cost, πi
int is the LEM price, and πi

buy and πi
sell

are the respective feed in and feed out grid tariffs. Pi
in and Pi

out denote power import and
export from and to the grid.

Equations (3)–(6) outline the energy conservation laws and constitute the constraints
of the optimization problem:

Pi
int = Pi

gen + Pi
BBdis − Pi

load + FI × SC+
l,i − FI × SC−l,i − Pi

BBch (3)

Pi
gen =

k

∑
1
(Pi,k

gen) (4)

Pi
load =

l

∑
1
(Pi,l

load) (5)

Pi
int = Pi

gen + Pi
BBdis − Pi

load + FI × SC+
l,i − FI × SC−l,i (6)

where FI indicates the flexibility index derived from the flexibility matrix and thermal
comfort matrix, SC+

l,i and SC−l,i indicate the amount of power consumption for the specific
i-hour, shifted by each household at each time-step and the amount of power consumption
that has previously been shifted and is now consumed, respectively. Additionally, Pi

gen

indicates the total LEM production, Pi
BBdis and Pi

BBch indicate the battery’s discharging and
power, respectively, and Pi

load indicates the LEM’s load profile. The notations of k, l and n
indicate the number of producers, consumers and storage owners, respectively:

0 ≤ Pi
in ≤ Pmax

in (7)

0 ≤ Pi
out ≤ Pmax

out (8)

The allowed bounds of energy exchange between the LEM and the grid are defined by
constraints (7) and (8):

en,i
BB = en,i−1

BB + ηn
chPn,i

BBch × ∆t− (1/ηn
dis)× Pn,i

BBdis × ∆t (9)

0 ≤ Pn,i
BBch ≤ Pn

BBch,max (10)

0 ≤ Pn,i
BBdis ≤ Pn

BBdis,max (11)

0 ≤ en,i
BB ≤ en

BB,max (12)

en,1
BB = en,T

BB = (1/2)en
BB,max (13)

Equations (9)–(13) denote the storage energy state update, in which en,i
BB denotes the

battery’s energy state and ηn
ch and ηn

dis show charging and discharging efficiency levels,
respectively. Lastly, Pn

BBch,max and Pn
BBdis,max denote the maximum and minimum storage

charging rate while en
BB,max and SDt define the maximum storage capacity and shifted

demand, respectively,
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FI × SC+
l,i ≤ FI × SDt + SC−l,i (14)

SC−l,i = SC+
k,i−1 (15)

SC+
l,I = 0 (16)

Demand can be shifted by one hour at a fixed rate determined for each tenant based
on their preferences. Constraint (14) assures that the amount of the shifted demand does
not exceed the maximum residential load, by restricting the amount of shifted demand to
the residential load for the specific time step plus the shifted demand in the previous time
step. Equation (15) guarantees that the already shifted demand is either consumed in the
current time-step or shifted further. The shifted demand at the end of the time horizon for
the optimization problem in Equation (16) should equal zero, ensuring that the demand
will not be shifted to the next day’s optimization problem:

Pr{Pi
gen ≤ P̃i

gen} ≥ α
′

(17)

Pr{Pi
gen ≥ P̃i

gen} ≤ β
′

(18)

α
′
+ β

′ ≤ 1 (19)

Equations (17)–(19) denote the probability of the actual production to be in a specific
range, where P̃i

gen is equal to the forecasted generation value plus the forecast error εi.

Finally, α
′

and β
′

denote the probabilities of upper and lower bounds, respectively.
The proposed method in [50] is applied in order to transform the probabilistic chance

constraints into deterministic values that can be used as input to the optimization procedure.
The maximum PV forecasting error εi is considered equal to 20% following the nor-

mal distribution N(0, σ2), with a 99.7% confidence interval achieved in [−3σ,+3σ] range.
At time interval i, σ is equal to 0.1Pi

Fgen, which is the forecasted PV generation. Moreover,

εi is constrained between maximum installed capacity Pmax
gen and the forecasted value Pi

Fgen;

therefore, the error distribution εi belongs within the range [−Pi
Fgen, Pmax

gen − Pi
FPV ]. The εi

follows the conditional probability distribution given by:

Φi(x) ∼ N(0, 0.01(Pi
FPV)

2) (20)

where Φi(x) is the conditional probability distribution:

Φ
′
i(x) =

Φi(x)−Φi(−Pi
Fgen)

Φi(Pmax
gen − Pi

Fgen)−Φi(−Pi
Fgen)

(21)

Φ−1′
i (x) = Φ−1

i [xΦi(Pmax
gen − Pi

Fgen) + (1− x)Φi(−Pi
Fgen)] (22)

If (22) is solved and Φ−1′
i (x) can be found, then (17) and (18) can be transformed into

the following equation:
F−1

β
′ {P̃i

gen} ≤ Pi
gen ≤ F−1

1−α
′ {P̃i

gen} (23)

where F−1{P̃i
gen} is the inverse forecasted PV production distribution.

To address the stochastic nature of demand, a similar approach as the one described
above for the generation is followed. Across the literature, there are two approaches
for modeling load uncertainty as a way to ensure that demand will not be shifted with
equality constraints containing stochastic parameters in the optimization problem. The first
method converts the equality constraints into inequality ones, whereas the second method
eliminates variables [51]. However, by following the second one, the final variable values
will remain uncertain; this is because the aforementioned variables depend on stochastic
parameters. In our case, those variables are the charging/discharging level of the batteries
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and the demand shift, while the parameter is the day-ahead load. Moreover, if the variables
that will be eliminated contain stochastic parameters as coefficients, eliminating such
variables leads to nonlinear optimization problems. On that account, this approach is not
recommended because the eliminated variables (i.e., the charging/discharging level of
the batteries and the demand shift) depend on the stochastic parameters, which is the
day-ahead demand. Moreover, it is evident that the selection of variables determines
the subsequent optimization problem. In other words, the choice of different eliminating
variables leads to different optimization problems.

Based on the above, the first approach is followed and the equality constraints (4) and
(5) are converted into inequality constraints (25) and (26), respectively:

k = Pi
gen + Pi

BBdis − Pi
load − Pi

BBch (24)

k− d ≤ Pi
int ≤ k + d (25)

l

∑
1
(Pi,l

load)− d ≤ Pi
load ≤

l

∑
1
(Pi,l

load) + d (26)

where d is a small parameter to ensure that the above inequalities are tight at optimality.

5. Results

In Figure 7, the hourly prices for both pricing algorithms are presented. The price
levels of both algorithms are within the bounds defined by the external grid (feed-in and
feed-out tariffs); therefore, consumer participation in an LEM framework is beneficial under
both pricing algorithms. In particular, the prices of our proposed algorithm are lower than
those of the P2P approach during hours of high PV production. This is to be expected
since, in the CDT-LEM pricing, no direct bids are submitted by the participants; the price
behavior follows the pattern of residual load. Therefore, during time intervals with excess
PV production, the community energy demand is lower and the prosumer is not adequately
compensated. On the other hand, the prices of the proposed algorithm are significantly
higher during the night hours of the day (7:00 p.m.–6:00 a.m.), as shown in Figure 7.

Figure 7. Hourly prices with the two (2) different pricing algorithms.

In Table 1, it is evident that, without an LEM, the procurement daily costs are sig-
nificantly higher. Specifically, employing the proposed algorithm without CDT, the cost
is reduced by 20.7%, while the cost reduction with CDT is 27.8%. It is noticeable that,
while P2P pricing also leads to cost reduction, the percentage drop is smaller compared
to the respective one from our proposed algorithm. This is due to the different way,
in which the LEM operates; under the P2P algorithm, there is a higher trade of energy with
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the external grid, while the proposed algorithm seeks to optimize the energy within the
LEM framework.

Table 1. Total Daily Cost in Euros.

Market No LEM (e) P2P w/o
CDT (e)

Proposed
Algorithm

w/o CDT (e)
P2P w/t CDT (e)

Proposed
Algorithm

w/t CDT (e)

Total Cost 20.091 e 18.792 e 17.490 e 16.351 e 15.612 e

In Table 2, consumer payments are the lowest under the proposed method with
CDT. The producers’ profit is also the highest under the same schema since the traded
energy is higher with the proposed algorithm than with the P2P approach, which leads to
profit maximization.

Table 2. Total payment and profit in euros.

No LEM (e) P2P Algorithm (e) Proposed Algorithm (e)

Payment 48.555 e 37.087 e 33.767 e

Profit 36.670 e 51.096 e 58.196 e

In Table 3, the results for both pricing algorithms are displayed, with and without
the utilization of the CDT. The results focus on two time periods, between 2:00 a.m. and
8:00 p.m. and between 2:00 p.m. and 8:00 p.m. These time periods are selected because
the pricing algorithms generate different state-of-charge values during these time periods.
In particular, under P2P pricing, the excess energy (during midday) is sold to the exter-
nal grid, leading the batteries to reach their lowest accepted levels (20% state of charge)
regardless of the CDT. On the other hand, with CDT-LEM pricing, this energy is used to
charge the batteries, which is why there are no abrupt peaks. This fact leads to a more
“self-sufficient” LEM since the interaction with the external grid is lower than in the P2P
case. In the CDT-LEM pricing mechanism, the LEM prioritizes the local energy needs and
then the energy trading with the external grid via the wholesale markets. Apparently, our
algorithm leads to battery charging when there is a higher local generation while the P2P
algorithm sells the excess capacity to the wholesale market.

Figures 8 and 9 show how the probability of constraint violation affects the total
operational LEM costs. As the probability decreases, the total expected cost increases due
to the fact that the LEM operation becomes more “conservative” in order to respect the
optimization constraints. Furthermore, the CDT-LEM pricing coupled with the CDT results
in the lowest costs, regardless of the probability. Clearly, there is a trade-off between higher
operating costs and low-risk scheduling, and the associated decision rests with the LEM
operator and the specific pricing mechanism.

In Figure 10, the energy exchange levels with the external grid are presented. Positive
values represent the sale of energy to the grid and negative values represent the purchase
of energy from the grid. As mentioned earlier and shown in Figure 10, the energy exchange
is actually higher in the P2P approach, while our algorithm leads to lower dependence on
the external grid. This is due to the fact that LEM first resolves its local imbalances and then
interacts with the external grid. The hourly intervals with the highest grid interactions are
around midday since the production level within LEM is high during these hours leading
to a large energy surplus.
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Finally, in Table 4, the scalability and the computational performance of the two pro-
posed algorithms are examined for an increasing number of LEM participants. Apparently,
our proposed algorithm outperforms the P2P pricing, as it is multiple times faster, particu-
larly as the number of participants increases. This is due to the fact that the P2P algorithm
requires a computationally demanding matching algorithm between the energy supply
offers and energy demand bids. This procedure is conducted through an optimization
problem in order to achieve optimal matching. Hence, as the number of participants in-
creases, the optimization problem is more complex with a higher computational burden.
On the other hand, the CDT-LEM pricing computational needs are minimal, since it results
from a heuristic process that requires only the generation/demand values and the external
market tariffs.

Figure 8. Total cost vs. probability of generation stochasticity violation

Table 3. Batteries state of charge.

Hour P2P w/o CDT (%)
Proposed

Algorithm w/o
CDT (%)

P2P w/t CDT (%)
Proposed

Algorithm w/t
CDT (%)

2 a.m. 22.0 23.4 27.9 27.0

3 a.m. 21.5 33.0 30.0 37.3

4 a.m. 48.2 59.1 38.0 74.0

5 a.m. 73.0 100.0 74.3 74.0

6 a.m. 100.0 100.0 100.0 100.0

7 a.m. 25.0 75.0 20.0 73.9

8 a.m. 22.5 75.1 20.0 73.5

2 p.m. 22.0 24.0 20.0 67.0

3 p.m. 20.0 25.7 20.0 66.2

4 p.m. 20.0 75.2 20.0 65.3

5 p.m. 76.7 74.0 40.0 72.0

6 p.m. 76.7 75.2 42.3 69.2

7 p.m. 76.7 75.0 36.1 65.0

8 p.m. 25.0 26.0 20.0 20.0
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Table 4. Computational performance of the P2P and proposed algorithm.

Algorithm N = 10 N = 20 N = 50 N = 100

P2P 0.1 s 0.12 s 0.47 s 3.2 s

Proposed 0.004 s 0.0035 s 0.0065 s 0.017 s

Figure 9. Total cost vs. probability of demand stochasticity violation.

Figure 10. Energy exchange with the external grid.

Visualization of Results through CDT

In the proposed integration, CDT additionally serves as a visualization tool for con-
sumers to track key indicators of their participation in LEM, as shown in Figure 11, promot-
ing energy flexibility as a financial incentive. Specifically, a dashboard displays information
on weekly energy production and demand with a daily resolution, financial profit from
LEM participation, and specific parameters that affect thermal comfort.
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Figure 11. Consumer digital twin dashboard.

6. Conclusions

This paper presents an integrated framework of LEM-CDT that maximizes the flexibil-
ity potential of the participants and improves the market’s operations efficiency. A detailed
market design with different pricing mechanisms for handling LEM transactions is also
introduced. The results of the proposed framework are summarized as follows:

• Consumer preferences regarding thermal comfort and residential loads are proved to
be valuable inputs for optimizing LEM operations.

• The attainment of optimal energy exchange with the external grid and the maximiza-
tion of social welfare is accomplished.
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• The enhancement of consumer-centricity and ease of implementation, as the partic-
ipants are not required to actively submit energy selling or buying offers through a
bidding process.

• The democratization of LEM through CDT-enabled automated participation broadens
the potential participant base, positioning it as a more environmentally-friendly,
attractive, and consumer-centric alternative to traditional energy markets.

• The generation and demand stochasticity is modeled by a chance-constrained schedul-
ing optimization algorithm that ensures lower balancing needs with minimal require-
ments for market participation or remedial actions, despite the higher costs.

The proposed solution encounters challenges with regard to regulatory compliance
and ensuring the confidentiality of participants’ data. Despite a current dearth of clear
guidelines for LEMs design and operations, efforts are being undertaken to rectify this.
In order to establish trust and attract new members, LEMs must prioritize creating a reliable
environment. Additionally, the integration of a large number of IoT devices accentuates
the necessity for robust cybersecurity measures to safeguard against potential breaches.

The proposed model holds the potential for further enhancement in two directions.
One area of improvement would be the integration of a more comprehensive collection of
consumer preferences, with the aim of augmenting its consumer-centric orientation and
further refining the consumer priorities for LEM operation. Another avenue for research
would be to incorporate the distribution network constraints within LEM, in order to
prevent voltage and line congestion incidents. Additionally, the proposed integration of
LEM-CDT should be assessed in a larger-scale study utilizing a larger volume of data.
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