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Abstract: Conventional Euler deconvolution is widely used for interpreting profile, grid, and un-
gridded potential field data. The Tensor Euler deconvolution applies additional constraints to the
Euler solution using all gravity vectors and the full gravity gradient tensor. These algorithms use a
series of different-sized moving windows to yield many solutions that can be employed to estimate
the source location from the entire survey area. However, traditional discrimination techniques
ignore the interrelation among the Euler solutions, so they cannot be employed to separate adjacent
targets. To overcome this difficulty, we introduced multivariate Kernel Density Derivative Estimation
(KDDE) as an extension of Kernel Density Estimation, which is a mathematical process to estimate the
probability density function of a random variable. The multivariate KDDE was tested on a single cube
model, a single cylinder model, and three composite models consisting of two cubes with various
separations using gridded data. The probability value calculated by the multivariate KDDE was used
to discriminate spurious solutions from the Euler solution dataset and isolate adjacent geological
sources. The method was then applied to airborne gravity data from British Columbia, Canada. Then,
the results of synthetic models and field data show that the proposed method can successfully locate
meaningful geological targets.

Keywords: probability density distributions; kernel density estimation; KDDE; depth resolution;
tensor Euler deconvolution

1. Introduction

The studies on the edges of geological bodies are significant for potential field data
interpretation. Furthermore, when studying lateral inhomogeneity, especially the position
of the edges of anomalous sources, gravity and magnetic surveys have advantages for
detecting geological structures like faults and tectonic boundaries [1]. With the development
of gravity gradient measurement methods and corresponding interpretation techniques,
many edge-enhancement techniques have been proposed in recent years, such as edge
detection [2], total variation [3], edge-preserved inversion [4], and focusing inversion [5].
Gravity gradient measurements are a multicomponent gradiometric surveying technology
that measures different components of Full Tensor Gravity (FTG) data and have been
widely carried out and have yielded large amounts of high-precision FTG data. However,
FTG data impose higher requirements on their corresponding interpretation techniques
because they often generate more complex anomalies for given sources [6].

Compared with other interpretation techniques of FTG data, Euler deconvolution
is suitable for analyzing and interpreting large-area potential field data because it does
not rely on prior geological information [7,8]. Euler deconvolution is based on the Euler
homogeneity relationship and uses a moving window to traverse potential field data to
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determine locations and structural indices (SIs) of geological targets [9–18]. The SIs are
associated with the source geometry [19–21] and need to be determined in advance for
performing Euler deconvolution [22]. Nevertheless, the use of a single structural index (N)
makes it difficult to characterize multiple anomaly sources [22–26].

Many extended Euler deconvolution methods have been presented to reduce the
influence of the SIs [27–31]. However, traditional Euler deconvolution produces spurious
solutions possibly because of noise, either natural or due to the fast Fourier transform
(FFT) [32–36]. To overcome this difficulty, various methods have been proposed to optimize
the determination of SIs [37–41], many extended Euler deconvolution methods are proposed
to eliminate the dependence on predicted N [23,42–47], and several methods have been
proposed to filter out spurious solutions [17,30,34,35]. For example, Gerovska and Araúzo-
Bravo [14] eliminated spurious solutions using the differential similarity transformation
based on the error estimations of singular point coordinates and SIs. Yao et al. [48] proposed
a horizontal gradient filtering criterion for removing solutions with a small horizontal
gradient modulus, a distance constraint criterion for rejecting solutions far from their
corresponding moving windows, and a constraint criterion for eliminating solutions with
low convergence. Reid et al. [30] filtered spurious solutions according to their clustering,
misfit, and the depth and distance from the moving window.

Euler deconvolution with the correct predicted N yields a tight cluster, which is formed
by Euler solutions [19,25,49]. Mikhailov et al. [50] developed a clustering technique based
on artificial intelligence to select reliable Euler solutions. However, clustering methods
cannot discriminate spurious solutions efficiently in shallow sources and neighboring
bodies [50,51]. FitzGerald et al. [34] reported spurious solution rejection using skewness
and kurtosis obtained by histogram; however, it was difficult to correct for multiple
anomalous sources. The density histogram was employed to visualize each formation to
check the coherency of the inversion process [52]; however, it was difficult to efficiently
divide a multi-dimensional space into non-coherent histogram bins to keep the error rates
small [53]. A probability density distribution is a continuous version of a histogram with
density and is widely used in geophysical inversions. Such as, Rayleigh wave inversion [54],
electromagnetic inversion [55], gravity inversion [56], and joint inversion of gravity and
magnetic data [57–60].

Unlike the histogram, Kernel density estimation (KDE) produces smooth probability
density distributions, indicating multimodality more convincingly. The deviation of the
kernel estimator is one order of magnitude greater than that of the histogram estimator [61].
The KDE is a nonparametric method for estimating the probability density function of
a random variable [62]. It can reject sparsely located solutions and retain dense clusters
formed by compact Euler solutions. Moreover, KDE lays a solid foundation for density-
based clustering algorithms, which are based on the idea that objects forming dense regions
should be grouped into a cluster [63,64]. Ugalde and Morris [65] applied KDE to filter
spurious solutions; then, a fuzzy c-means clustering algorithm (FCM) was employed in
the filtered data set to locate anomalous sources. Michel [66] used KDE to estimate the
relationship between data and predictions from geophysical 1D inversions. The former
can be applied when the relationship deviates from linear and Gaussian assumptions.
Eckert-Gallup and Martin [67] employed bivariate KDE for generating the joint probability
distribution of significant wave height and energy period.

Traditional discrimination techniques use markers with different shapes, colors,
or/and sizes to indicate depth and SI values for Euler solutions for locating anomalous
sources [33,68,69]. However, these methods can hardly analyze complex Euler solution
datasets. Furthermore, traditional discrimination techniques cannot evaluate the overall
quality of the solutions or determine how dense/compact the clusters are [34,65], such as
dense distributions (for example, the centroids of geological bodies) and sparse distribu-
tions, for example, the gaps among geological bodies, of Euler solutions. The multivariate
Kernel Density Derivative Estimation (KDDE), extended from KDE, can be used to de-
termine density clusters and distributions for given sample data [70]. Non-parametric
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statistical techniques, such as KDE and KDDE, have higher computational requirements
because they need to evaluate joint probability density distributions on a multi-dimensional
domain. Both KDDE and KDE can be considered a convolution, which can be quickly
implemented using a FFT [71,72].

The tensor Euler deconvolution converges faster [33,73] and produces tighter clusters
than traditional Euler deconvolution [74]. Therefore, we obtained Euler solutions from
tensor Euler deconvolution of FTG data for coordinates xo, yo, zo, and N. Then, we used
multivariate KDDE with a comparative analysis process to obtain probability density
curves, images, and isosurfaces for various combinations of elements of Euler solutions
xo, yo, zo, and N, such as {xo}, {xo, zo}, {xo, zo, N}, and {xo, yo, zo, N}. The results of synthetic
models and field data show that probability density isosurfaces effectively discriminate
spurious solutions and isolate complex geological sources.

2. Materials and Methods
2.1. Tensor Euler Deconvolution

Euler deconvolution is a semi-automatic/automatic interpretation method based on
Euler’s homogeneity equation, and it has been widely used to interpret profile, grid, and
ungridded potential field data. The higher-order differentiation of gravitational potential
is the homogenous function in Euler’s sense. The tensor Euler deconvolution equation is
composed of two similar Equations (1) and (2) and the traditional Euler Equation (3):

xo
∂gx

∂x
+ yo

∂gx

∂y
+ zo

∂gx

∂z
− N(Bx − gx) = x

∂gx

∂x
+ y

∂gx

∂y
+ z

∂gx

∂z
+ γx (1)

xo
∂gy

∂x
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∂gy

∂y
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∂gy

∂z
− N

(
By − gy

)
= x

∂gy

∂x
+ y

∂gy

∂y
+ z

∂gy

∂z
+ γy (2)

xo
∂gz

∂x
+ yo

∂gz

∂y
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∂gz

∂z
− N(Bz − gz) = x

∂gz

∂x
+ y

∂gz

∂y
+ z

∂gz

∂z
+ γz (3)

where (x, y, z) are the coordinates of the observation points; (xo, yo, zo) is the location
of the source; gx, gy, gz are the components of the gravity vector; for all pairs (α, β) in
{x, y, z}, gαβ represents a component of FTG, which is obtained by analytical solutions, or
a FFT; the structural index N depends on the source geometry; the parameter Bα is simply
the background, or regional field [33]; γα is a constant that usually vanishes except for
N = 0 [65]. The N defining the geometry of the anomalous source needs to be determined in
advance [22,38]. However, the use of a single N makes it difficult to characterize multiple
anomaly sources [22–26]. Traditional Euler deconvolution uses a series of predefined
SIs and yields many spurious solutions. Alternatively, using tentative SIs makes Euler
deconvolution subjective and time-consuming because the interpreter/user must evaluate
the quality of clusters of Euler solutions as the SIs change [19]. To overcome these problems,
N will not be predicted [14,34,35].

Tensor Euler deconvolution uses a moving window (length × width = wx × wy) with
wn observation points to traverse gridded potential field data. Then, each window location
generates a solution consisting of the causative source’s location (xo, yo, zo) and N. For the
ith moving window, Equations (1)–(3) are rewritten in matrix form as follows:

Am = b (4)

where A = [A1, . . . , Al , . . . , Awn ]
T , Al = [(∂gα/∂x)l , (∂gα/∂y)l , (∂gα/∂z)l , (gα − Bα)l ],

b = [b1, . . . , bl , . . . , bwn ]
T , and bl = (x∂gα/∂x)l +(y∂gα/∂y)l+ (z∂gα/∂z)l . The subscript

l represents the sequence number of the moving sliding window, m represents the Euler
solution datasets {xo, yo, zo, N}, and mi is the ith Euler solution written as [xi

o, yi
o, zi

o, Ni].
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2.2. Multivariate KDDE of the Euler Solution Datasets

Multivariate KDDE is considered a nonparametric approach for calculating probability
density distributions of data instances. Nonparametric approaches have the advantages
of asymptotic unbiasedness, square consistency, and uniform convergence. Multivari-
ate KDDE is a trendy tool for analyzing low-dimensional data instances [75,76]. Letting
X = (X1, . . . , Xi, . . . , Xn) be a d-dimensional random sample drawn from a density func-
tion F, the general form of a multivariate kernel density estimator at any given estimation
point x = (x1, · · · , xd) can be defined as follows [77]:

F(x; H) =
n

∑
i=1

KH(x−Xi) (5)

where H is a symmetric positive definite d × d diagonal bandwidth matrix; the multi-
variate kernel function KH(x) = n−1|H|−1/2K

(
H−1/2x

)
is the inner product of the scaled

kernel, which is a rescaling of the unscaled kernel K by the bandwidth matrix H [62];
|H| is the matrix determinant of H and H−1/2 is the inverse square root of its matrix.
Xi = (Xi1, · · · , Xid) is the various combinations of the elements of Euler solutions, such as
xo, (xo, zo), (xo, zo, N), and (xo, yo, zo, N). Hence, in this paper, 1 ≤ d ≤ 4.

Traditional discrimination techniques cannot evaluate the overall quality of the solu-
tions or determine how dense/compact the clusters are [65]. There is no difference between
sparse and dense distributions of Euler solutions in a scatter plot drawn by traditional dis-
crimination techniques. Crucial information about the potential density structure fails to be
recovered using density estimation results, such as saddles, peaks, and valleys. In contrast,
the density derivative estimation effectively overcomes this problem. Therefore, taking
the partial derivative of Equation (5) concerning F, the yielded kernel density derivative
estimator is:

∇F(x; H) =
n

∑
i=1
∇KH(x−Xi) (6)

where the Nabla Operator ∇ is used to find higher dimensional derivatives [76] and
∇KH(x) = n−1|H|−1/2∇K

(
H−1/2x

)
[62]. Because K is not very susceptible to the shape of

the estimator, different kernel functions can be applied to yield good results [78]. The most
widely used kernel is the zero-mean unit variance Gaussian [79]. Therefore, a Gaussian
kernel K(x) = (2π)−1/2e−x2/2 is used to estimate a density function in this paper.

For isolating complex geological sources, we are required to evaluate ∇F(x; H) on
a grid χ of estimation points, which are expressed as χl1,··· ,lk ,··· ,ld , for dimension indices
lk = 1, · · · , Mk, 1 ≤ k ≤ d and M = ∏d

k=1 Mk. Then supposing χ along the kth direction to
be an equally spaced grid and covering precisely the input samples, we define the lower
and upper bounds of the grid using the marginal sample minima {ak} and maxima {bk},
respectively. The kth bandwidth is denoted by

Hk = (bk − ak)/(Mk − 1) (7)

2.2.1. Computational Algorithm for Multivariate KDDE

Calculating ∇F(x; H) on a given estimation grid χ by directly looping over the grid
points and sample data points is time-consuming, especially for large n and/or M val-
ues. To reduce the calculation burden, according to the algorithm of Wand [80], the
KDDE can be a computationally efficient approximation by using a fast linear binning
approximation [81,82]. Therefore, by supposing that Xi falls into a hyper-rectangle (also
called a bin) with 2d facets and 2d vertices, following Gramacki and Gramacki [77] and
Wand [80], the calculation process of Equation (6) is detailed with three steps.

The first step is to convert the original sample data X into grid counts using a fast linear
binning approximation. Comparing the natural coordinate’s definition in Rao’s book [83]
with the grid count’s definition in Chacón and Duong’s book [76], the grid count at a grid
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point of the hyper-rectangle due to Xi is equal to the value of the natural coordinate at the
same grid point. Then, these counts are accumulated into a large matrix C.

Take univariate data (d = 1) as an example, the hyper-rectangle (also called a bin) is a
line segment with two endpoints χj1 and χj1+1. Then, suppose that the ith sample data Xi
is inside the line segment. Further, assume that the length of the bin is A and the length of
the line segments, divided by Xi, are A1 and A2 as shown in Figure 1a. According to the
natural coordinate’s definition, the grid counts correspond to the two endpoints χj1 and
χj1+1 are expressed as cj1 and cj1+1, respectively. Then the counts are defined as

cj1 = A2/A, cj1+1 = A1/A (8)
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Figure 1. Linear binning counts. (a) A univariate data Xi is converted to the counts assigned to its
2 nearest grid points χj and χj+1. Their respective counts are equal to the length of the opposite
line segment divided by the total length of bin A. (b) A bivariate data Xi is converted to the counts
assigned to its four nearest grid points. Following Rao’s book [83] and Chacón and Duong’s book [76],
their respective counts are equal to their natural coordinate value. Reprinted with permission from
Ref. [76]. Copyright 2018 Taylor & Francis Group LLC.

To further illustrate the computational process of the multivariate KDDE in more
detail, we focus on the bivariate case for the remainder of this section. Take a bivariable
sample data (d = 2) as an example, the hyper-rectangle/bin is a rectangle, as shown in
Figure 1b. Then, suppose that the ith sample data Xi falls into a hyper-rectangle/bin whose
vertices are χj1,j2 , χj1+1,j2 , χj1+1,j2+1, and χj1,j2+1. The areas of the rectangles subtended
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from Xi are A1, A2, A3, and A4. The grid count is defined as the area of its diagonally
opposite rectangle divided by the total area A of the bin. Thus,

cj1,j2 = A3/A
c(j1+1),j2 = A4/A
cj1,(j2+1) = A2/A

c(j1+1),(j2+1) = A1/A
A1 + A2 + A3 + A4 = A

(9)

By a similar process as above, extending it to the case of high-dimensional samples
is easy. Then, the individual counts at the grid points are accumulated by looping this
calculation over all sample data points. For a given estimation grid χ with a size of
M = M1M2, the grid count cl1,l2 at χl1,l2 due to X is given by

cl1,l2 =
n

∑
i=1

cl1,l2(Xi) (10)

where, lk = 1, · · · , Mk, 1 ≤ k ≤ d, and the function cl1,l2(Xi) is a natural coordinate value
due Xi on χl1,l2 .

Following Gramacki and Gramacki [77] and Wand [80], the fast linear binning approx-
imation of Equation (6) at a grid point χj1,j2 is the discrete convolution of grid counts and
the kernel evaluations:

∇Fbin
(
χj1,j2

)
=

M1

∑
l1=1

M2

∑
l2=1

cl1,l2∇KH
(
χj1,j2 − χl1,l2

)
(11)

The second step is to evaluate the kernel function on the same grid χ. Equation (11) is
rewritten in the bi-dimensional convolution form, as introduced by Wand [80]:

∇Fbin(χj1,j2) =
M1−1

∑
l1=−(M1−1)

M2−1

∑
l2=−(M2−1)

cj1−l1,j2−l2kl1,l2 (12)

where kl1,l2 =n−1∇KH(H1l 1, H2l 2), and cl1,l2 = 0, for (l1, l2) /∈ {1, . . . , M1} × {1, . . . , M2}.
The third step is to carry Equation (12) out by nested for-loops. However, its computa-

tional complexity is O
(
M2) time. Many fast algorithms of computing convolution were

proposed, such as the Cook-Toom algorithm [84], the Agarwal-Cooley algorithm [85], and
the Winograd algorithm [39], to reduce the computational complexity significantly.

In fact, KDE can also be considered a convolution [71,72]. The Winograd algorithm is
known as a fast convolution to improve computational efficiency and save computational
costs through the FFT [80]. This approach does not impose any restrictions on the kernel.
The convolution between cl1,l2 and kl1,l2 can be carried out quickly by the FFT with only

the operation O
(

M∏d
j=1
(
log Mj

))
. The convolution can be rewritten as [77,80,86]:

Y = ϕ−1(ϕ(C)ϕ(K)) (13)

where ϕ is the discrete Fourier transform and ϕ−1 is its inverse transform. Letting Pk be
a power of 2 greater than size Mk, and Y be a P1 × P2 matrix. Writing 0m;n for the (m× n)
zero matrix. The zero-padded version of the binning counts C is

C =


0M1−1;M2−1 0M1−1;M2 0M1−1;P2−2M2+1

c1,1 · · · c1,M2

0M1;M2−1
...

... 0M1;P2−2M2+1
cM1,1 · · · cM1,M2

0P1−2M1+1;M2−1 0P1−2M1+1;M2 0P1−2M1+1;P2−2M2+1

 (14)
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and of the kernel evaluations K is

K =



k−M1,−M2 · · · k−M1,0 · · · k−M1,M2
...

...
...

k0,−M2 · · · k0,0 · · · k0,M2
...

...
...

kM1,−M2 · · · kM1,0 · · · kM1,M2

02M1+1;P2−2M2+1

0P1−2M1+1;P2−2M2+1 0P1−2M1+1;P2−2M2+1


(15)

Details about zero-padding versions of involved matrices for performing the FFT
operation can be found instance in Teukolsky et al. (1992, Chapter 13) [87] and Arndt
(2010, Chapter 22) [88].

The result of the approximate density estimator from Equation (12) evaluated on the
estimation grid χ is

∇Fbin(·; H) =

(
d

∏
j=1

Pj

)−1

real(Y[(2M1 − 1) : (3M1 − 2), (2M2 − 1) : (3M2 − 2)]) (16)

where the function real(·) returns the real part of the complex number, and
Y[row1 : row2, col1 : col2] denotes the submatrix of Y formed by selecting the elements in
rows row1 to row2 and columns col1 to col2. For simplicity, Equations (14) and (15) only
present two-dimensional variants, which are easily extended to the higher-dimensional
case. The result of Equation (16) is a probability or probability value, written as the p-value.
This procedure is given in Algorithm 1.

In line 1, the gridded data gα, gαβ(α, β ∈ (x, y, z)) are obtained by survey, forward
modeling, or derived from field data using FFT.

In lines 2–4, we select a moving window with size wx×wy to traverse the gridded data
using Equation (4) to yield a Euler solution dataset associated with causative sources. We
found that simply using a fixed-size moving window for different-sized geological targets
would lose the ability to distinguish spurious solutions. Therefore, we use a fixed-size
moving window for synthetic models and a series of moving windows with a size ranging
from 4 × 4 to 12 × 12 to traverse the field data throughout this paper.

In lines 5–9, we set the problem dimensionality d, choose a variant of the Euler solution
dataset as a data instance, and calculate its marginal sample’s minima a and maxima b. Due
to grid size being inversely proportional to bandwidth, based on Equation (7), we select
the size M1 × . . . ×Md or take H as an input parameter, then construct an estimation grid
to cover exactly [a1, b1] × . . . × [ad, bd] for the input sample data.

In lines 10–17, grid counts c are obtained by binning the sample data into an estima-
tion grid with the fast linear binning approximation in lines 10–13, and kernel function
evaluations k are calculated based on Equation (13) in lines 14–16. Then, the zero-padded
versions of the grid count C and the kernel evaluation K are constructed for carrying out
Y = ϕ−1(ϕ(C)ϕ(K)) with the FFT operations. In the end, the probability density distribu-
tions ∇Fbin are obtained by multivariate KDDE to discriminate spurious solutions and
isolate complex geological sources. All the tests were carried out on a server equipped with
an Intel(R) Xeon(R) Gold 5117 CPU and 64 GB of memory.
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Algorithm 1. Multivariate kernel density derivative estimation (KDDE)

input :gz, wx, wy, M or H
1: Calculate gα, gαβ(α, β ∈ (x, y, z))
2 : for i-th moving window

3 : Solve Equation (6) to obtain mi =
[

xi
o, yi

o, zi
o, Ni

]T

4 :endfor
5: Set the problem dimensionality d
6: Pick a variant of Euler solutions as {X1, . . . , Xn}
7: Calculate a, b
8 : Calculate H by predefined M, vice versa
9: Binning grid to cover[a1, b1]× · · · × [ad, bd]

10: Initialise Pk := 2dlog2 (2Mk)e, 1 ≤ k ≤ d
11 : for l1, · · · , ld := 1 to M1, · · · , Md
12 : Compute binning counts cl1,··· ,ld

13 :endfor
14 : for l1, · · · , ld := −M1, · · · ,−Md to M1, · · · , Md
15 : Evaluate kernel functions kl1,··· ,ld

16 : endfor
17 : Create zero− padded versions of counts C and of kernel matrices K
18 : Carry out the FFT operations Y = ϕ−1(ϕ(C)ϕ(K))
19 : Use Equation (17) to extract the result of KDDE

output :∇
∧

Fbin(·; H)

2.2.2. Computational Performance of Multivariate KDDE

To verify the computational efficiency of the fast linear binning approximation and
multivariate KDDE proposed in this paper, we used the following parameters: µ = {−2, 0, 2}
and δ = {1/6, 1/2, 1/3}, to construct eight data instances, which are drawn from a function
f (µ, δ, n) = ∑3

i=1 µi + δi × randn(n, 1), with n = 19,200, 38,400, 76,800, 153,600, 307,200,
614,400, 1,228,800, and 2,457,600, respectively. Here, randn(·, 1) is 1-D normally distributed
random numbers function. For the convenience of comparative analysis, the performance
for calculating grid counts of the Brute-Force algorithm and the fast linear binning approxi-
mation is carried out by looping eight data instances over a series of one-dimensional grids
with different-sized M1 = 40, 80, 160, 320, 640, 1280, 2560, and 5120, respectively.

Two relatively tight line clusters are formed in Figure 2, indicating that using different-
sized grids in fast linear binning approximation and the Brute–Force method does not
significantly impact the computation time. In general, as the number of sample data in-
creases, such as in the partially enlarged drawing, the corresponding computation time
increases linearly. Meanwhile, the computation time of both algorithms tends to increase
sharply with the increase in the number of observation samples. Compared with the
Brute-Force calculation, the fast linear binning approximation can significantly save compu-
tational times by about an order of magnitude. However, the accelerating tendency of this
algorithm gradually weakens with the number of observation samples increasing, which
may be affected by the computer performance.

Based on the above eight data instances, we verify the computational performance
of the multivariate KDDE. The 1-D KDDE was calculated using nested for-loops and
FFT based on Equation (16) over a series of grids = [40, 80, 160, 320, 640, 1280, 2560,
5120], respectively.
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Figure 2. Computation times of the Brute-Force algorithm and the fast linear binning approximation
according to the number of sample data n and the grid size M.

In Figure 3, the computation time of both algorithms increases slightly as the number
of observation samples increases. However, the result of 1-D KDDE with nested for-loops
is more pronounced, for example, when the grid size is not greater than 160 in the partially
enlarged drawing. Along with the increase in grid size, the 1-D KDDE with FFT is more
computationally efficient by about 3–4 orders of magnitude than the 1-D KDDE with nested
for-loops. However, as the grid size increases (i.e., M1 > 1280), the accelerating tendency
of 1-D KDDE with FFT gradually decreases, perhaps owing to computer performance.
Fortunately, we do not adopt such a large estimation grid in practical applications.
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3. Results
3.1. Model Studies
3.1.1. Verification of the Validity of the Multivariate KDDE Algorithm

Two simple models (cube and cylinder) were established to validate the tensor Euler
deconvolution algorithm and the multivariate KDDE algorithm. Both models have a
density contrast of 0.36 g/cm3. The geometric parameters and theoretical N of the two
models are shown in Table 1. Then, a rectangular survey grid, with 200 points, with 100 m
grid interval in both horizontal directions, was employed for forward processing. The study
used the noise-free FTG data obtained by the analytical solutions and noise-corrupted data,
which contaminated the FTG data by Gaussian noise with zero-mean and variance σ(p),
which is a function of the percentage p of input data:

σ(p) =
p

100

√
∑nobs

i=1 obs2
i

nobs
(17)

where obsi is the ith data and nobs is the number of the given data sample.

Table 1. The geometric parameters and structural indices for two simple models.

Model Centroid Radii Lengths Theoretical N

Cube (−1000, −2000, 1500) / 1000 × 1000 × 1000 2
Cylinder (0, 0, 2500) 1000 4000 1~2

Equations (1)–(3) were applied to the noise-free and the noise-corrupted FTG data to
estimate xo, yo, zo, and N. The size of the square moving window was wx = wy = 15. As
shown in Figure 4, the solutions were filtered by N > 0.
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Figure 4. Scatter plots of the Euler solutions. (a,b) Contours of noise-free gravity. (c,d) Euler solutions
derived from noise-free FTG. (e,f) Euler solutions derived from noise-corrupted FTG. (g,h) Euler
solutions for noise-corrupted FTG in the plan view, for the cube and the cylinder, whose frames are
solid black.
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As Figure 4b shows, the Euler solutions were around the center of the cylinder and their
SIs (N ≈ 2) were consistent with the theoretical values. In Figure 4c,d, the SIs of the Euler
solutions in red were consistent with their theoretical values (Table 1). Compared to the
cylinder’s Euler solutions, the cube’s ones formed a tighter cluster in Figure 4c. There were
no spurious solutions in the Euler solution dataset in Figure 4c,d. Figure 4e–h show that the
magnitudes of the SIs for the Euler solutions around the anomalous sources were consistent
with their theoretical values. However, there were many more spurious solutions.

The histogram was used to discriminate spurious Euler solutions [34]. When there
was no noise in the input data, the tensor Euler deconvolution yielded very pure solutions,
indicating that many similar or duplicate solutions were generated and may be clustered
tightly in the vicinity of the real sources (Figures 4c and 5a). Conversely, the tensor
Euler deconvolution produced many spurious solutions in Figures 4e–h and 5b,d. This
phenomenon shows that the tensor Euler deconvolution was susceptible to noise. Moreover,
as for the cylinder model, the SIs derived from the noiseless data fluctuated between 0.41
and 2.25; in contrast, the solutions derived from noise-corrupted data tended to diverge
because their maximum N value was smaller than the former.
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Figure 5. Histograms of the N of Euler solutions derived from: (a) noise-free gravity data; (b) noise-
corrupted gravity data of the cube model; (c) noise-free gravity data; and (d) noise-corrupted gravity
data of the cylinder. The width of each bin for N is 0.025.

For comparison, using the 7th, 8th, and 9th strategies proposed by FitzGerald et al. [34]
to select the most reliable Euler solutions, we could effectively remove spurious solu-
tions (such as N > 3 or N < 0) to quickly determine the anomaly source’s location in
Figure 5c,d. Compared to the Euler solutions drawn from the noise-free data, the mag-
nitudes of all SIs decreased for the ones derived from the noise-corrupted data in the
cylinder model. Ravat [22] pointed out that the N changes discontinuously as the source-to-
observation distance changes. Therefore, only using the SIs made it difficult to determine
optimal solutions.

To overcome those difficulties, we used multivariate KDDE to estimate the combina-
tions of Euler solutions. Peaks could be obtained for each probability density curve using
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the findpeaks function. In Figure 6a, the coordinates x of the two peaks were −1.0 km
and 0 km, respectively, consistent with their theoretical values. This correspondence also
appeared in Figure 6b. In contrast, in Figure 6c,d, the leftmost peak of each curve corre-
sponded to shallow-buried Euler solutions, considered spurious ones; the rightmost peak
of each curve corresponded to their theoretical values.
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Figure 6. Probability density curves obtained using 1-D kernel density derivative estimate (KDDE)
with M = 100 for the subsets: (a) {xo}, (b) {yo}, (c) {zo}, and (d) {N}, of the cube and cylinder models,
with n = 6700 and 7227, respectively.

Generally, a simple geological body has only one peak. However, a complex geological
body has two or more peaks. For example, in Figure 6b–d, there were two peaks for each
curve, leading to difficulty in selecting the optimal Euler solutions. This phenomenon
resulted in the histograms and probability density curves being unable to intuitively
characterize the underground space, as shown in Figures 5 and 6.

The locations and SIs were easily interpreted in this study using the 2-D KDDE.
However, there were too many 2-D combinations of Euler solutions, so interpreting simul-
taneously all probability density images was difficult. Furthermore, visualization of the
5-D results {xo, yo, zo, N, p-value}, obtained by multivariate KDDE to estimate the entire
Euler solution dataset, was very challenging. The results derived from the three subsets
{xo, yo, N}, {xo, zo, N}, and {yo, zo, N} need to be more intuitive and straightforward. The
interpretation of the Euler solution datasets using 3-D KDDE relied mainly on the subset
{xo, yo, zo}, with assistance from other subsets. Therefore, we illustrated only results of the
subset {xo, yo, zo} in the remainder of this paper.

Then, we obtained four isosurface subplots of the probability density distributions
using 3D-KDDE for the two models in Figure 7. The isosurfaces throughout this paper had
20 levels whose p-values were evenly spaced points between the minimum and maximum
values of probability density distribution. The isosurface levels from the lth to the last were
plotted. The twenty isosurface levels (lth = 1) were plotted in Figure 7a,c, and many small
contours corresponded to the spurious solutions. Conversely, when lth = 2, these contours
were removed in Figure 7b,d. Therefore, we could determine the lth to locate meaningful
geological bodies.
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wx = wy = 5. M = [100, 100, 100].

3.1.2. Sensitivity of 3-D KDDE to Separations

To assess the performance of the proposed algorithm in distinguishing adjacent
anomaly sources, we used two similar causative sources with separations of L = 4.0 km,
2.5 km, and 1.0 km to form three models. These separations of L allowed two causative
bodies to simultaneously approach each other in the x- and y- directions. The parameters
of the two causative bodies were listed in Table 2. The rectangular survey grid was divided
into 40,000 = 200 × 200 observation points with an interval of 100 m. The 3-D KDDE was
used in the current investigation to analyze the subset {xo, yo, zo} derived from the FTG
data contaminated by 3% Gaussian noise based on Equation (17).

Table 2. The geometric parameters for the three synthetic models with various separations.

Separations Centroid of Left Cube Centroid of Right Cube

4000 (−4000, 4000, 2500) (4000, −4000, 2500)
2500 (−2500, 2500, 2500) (2500, −2500, 2500)
1000 (−1000, 1000, 2500) (1000, −1000, 2500)

As the separation L decreased, it became more difficult to distinguish the two adjacent
cubes using the Euler solutions in Figure 8d–f. Furthermore, in Figure 8g–i, the FCM
algorithm, whose performance depended on the preset number of clusters, effectively
distinguished adjacent anomaly sources, and did not eliminate spurious solutions. In
contrast, when the distance between adjacent anomaly sources was considerable, the
density-based spatial clustering of applications with noise (DBSCAN) could determine
some spurious solutions, such as the Euler solutions in green in Figure 8j,k. Nevertheless, if
the two anomaly sources were close (Figure 8l), this method could not effectively separate
them or discriminate spurious solutions.
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Figure 8. Clustering methods were used to separate the adjacent clusters formed by Euler solutions.
(a–c) Contours of contaminated gravity. (d–f) The Euler solutions derived from the contaminated
FTG with wx = wy = 15. (g–i) Clusters of Euler solutions got by the FCM algorithm, which initializes
with two random clusters and the minimum improvement is 10−5. (j–l) Clusters of Euler solutions
got by the density-based spatial clustering of applications with noise (DBSCAN) algorithm yields
three clusters, and the object numbers of their neighborhood are 61, 70 and 72, respectively. Their
neighborhood radii are 238.62 m, 222.97 m, and 238.22 m, respectively.

In addition, FitzGerald et al. [34] reported that Euler deconvolution yields many simi-
lar or duplicate solutions, which may tightly cluster in the vicinity of real sources. Therefore,
the density cluster is essential for classifying Euler solutions [65,89]. This main feature
could discriminate spurious solutions to indicate adjacent anomalous sources. Therefore,
we used the multivariate KDDE, which has the advantages of asymptotic unbiasedness,
square consistency, and uniform convergence [75,76], to overcome this difficulty.

Figure 9 illustrates the partitioning of geological bodies using the 3-D KDDE to esti-
mate the subset {xo, yo, zo}. Compared to other techniques for separating adjacent anoma-
lous sources, as shown in Figure 8, two probability density peaks directly discriminated
the two geological bodies with varied separations.
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Figure 9. Probability density isosurfaces obtained using the 3-D KDDE for the subset {xo, yo, zo} with
varied separations: (a) 4.0 km; (b) 2.5 km; and (c) 1.0 km. M = [100, 100, 100]. wx = wy = 15. lth = 2.

3.1.3. Sensitivity of 3-D KDDE to Gaussian Noises

If the signal-to-noise ratio of the input data is low, the corresponding solution will be
masked, which makes it challenging to outline the boundaries of geological targets. Various
criteria for clustering methods have been introduced to reject spurious solutions with low
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tolerance [9,34,38]. However, clustering methods could not discriminate spurious solutions
efficiently in shallow sources and neighboring bodies [50,51]. For this reason, to study the
sensitivity of our methods to Gaussian noise, 3-D KDDE was applied to the subset {xo, yo,
zo} obtained by tensor Euler deconvolution derived from a synthetic model containing two
cubes with a separation L of 2.5 km (Figure 9b). In Figure 10, as the noise percentage grows,
there were increasingly disturbed contours in the gravity maps, and the number of Euler
solutions with low SIs dramatically increased. Conversely, because spurious solutions
were more unstable and their numbers increased, their corresponding probability density
contours had tiny values and were removed by lth = 1. Therefore, the value of probability
density isosurfaces increased after normalization. The estimated locations derived from
4-D probability density distributions were very close to the theoretical locations of the
synthetic models, despite the noise percentage being equal to 8% (p = 8). Although the
tensor Euler deconvolution method is susceptible to noise [90], it was concluded that the
3-D KDDE results were reliable.
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3.1.4. Sensitivity of 3-D KDDE to Grid Size

The estimated effect in multivariate KDDE mainly depends on the bandwidth or grid
size. For a given data sample, its marginal sample maximum and minimum values are
constant, and its grid size is inversely proportional to its bandwidth. The 3-D KDDE, in
conjunction with the subset {xo, yo, zo}, was carried out with different-sized cubic grids,
whose length along one direction was 16, 32, 64, 128, 256, and 512, to analyze its sensitivity
to grid size and its computational time was 0.0113, 0.0251, 0.1017, 0.7271, 7.8461, and
51.7940 s, respectively.

As tensor Euler deconvolution produces many similar or duplicate solutions, these
solutions may cluster closely together in the vicinity of the true sources [34]. Figure 11 shows
that as the grid size/bandwidth increased/decreased, the probability density distribution
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formed a tiny cluster, which was not conducive to determining the spatial distribution of
anomalous sources but could effectively determine the centroid of the density structure.
Because we constructed an efficient multivariate KDDE algorithm (in Algorithm 1), it was
possible to isolate complex geological targets by trying different-sized girds.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 31 
 

As tensor Euler deconvolution produces many similar or duplicate solutions, these 
solutions may cluster closely together in the vicinity of the true sources [34]. Figure 11 
shows that as the grid size/bandwidth increased/decreased, the probability density distri-
bution formed a tiny cluster, which was not conducive to determining the spatial distri-
bution of anomalous sources but could effectively determine the centroid of the density 
structure. Because we constructed an efficient multivariate KDDE algorithm (in Algo-
rithm 1), it was possible to isolate complex geological targets by trying different-sized 
girds. 

 
Figure 11. Probability density distribution obtained using 3-D KDDE with different-sized grid: (a) 
16 × 16 × 16; (b) 32 × 32 × 32; (c) 64 × 64 × 64; (d) 128 × 128 × 128; (e) 256 × 256 × 256; (f) 512 × 512 × 

512. =x yw w  = 7, and lth = 5. 

3.2. Case Study in British Columbia, Canada 
The survey area was located in the Quesnellia Region in south-central British Colum-

bia, Canada, a region famous for copper and gold porphyry deposits. Several gold and 
silver (plus copper, lead, and zinc) deposits have been mined in this area since 1884 (Fig-
ure 12). The region is covered by a thick layer of sand and gravel left behind by glaciers. 
Airborne gravity surveys were used to identify potential targets and help understand the 
geology of this area [91,92]. In our study, the survey block consisted of two connected 
parallelograms, where the larger one was about 386 km in length and 120 km in width, 
and the smaller one was 120 km in length and 60 km in width. 

Figure 11. Probability density distribution obtained using 3-D KDDE with different-sized grid:
(a) 16 × 16 × 16; (b) 32 × 32 × 32; (c) 64 × 64 × 64; (d) 128 × 128 × 128; (e) 256 × 256 × 256;
(f) 512 × 512 × 512. wx = wy = 7, and lth = 5.

3.2. Case Study in British Columbia, Canada

The survey area was located in the Quesnellia Region in south-central British Columbia,
Canada, a region famous for copper and gold porphyry deposits. Several gold and silver
(plus copper, lead, and zinc) deposits have been mined in this area since 1884 (Figure 12).
The region is covered by a thick layer of sand and gravel left behind by glaciers. Airborne
gravity surveys were used to identify potential targets and help understand the geology of
this area [91,92]. In our study, the survey block consisted of two connected parallelograms,
where the larger one was about 386 km in length and 120 km in width, and the smaller one
was 120 km in length and 60 km in width.
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Figure 13 shows the construction of gravity data for irregular gravity anomaly data,
with a grid size of 250 × 250 m. Figure 13a illustrates the topographic relief contours of the
study area, and the measured heights ranged from 717 to 2609 m above the mean sea level.
Potential data continuation from an uneven surface to the horizontal planes −2700 m and
−5700 m was necessary to obtain the new gravity and background field in Figure 13b. The
continuation height corresponding to the background field was determined by the radial
average spectrum using Oasis montaj software [93]. The background field was subtracted
from the new gravity anomaly to obtain the local gravity anomaly shown in Figure 13c.
The FTG data were derived from the local gravity anomaly using the FFT, but only the gzz
component of the FTG is illustrated in Figure 13d.

The entire survey gravity map was covered by a series of moving windows with sizes
ranging from 4 × 4 to 12 × 12 data points to form tight clusters of solutions. A total of
2,592,878 solutions were generated using tensor Euler deconvolution before filtering. The
Euler solutions are drawn in the plan and perspective views in Figure 14. Difficulties were
encountered in separating adjacent clusters of solutions (Figure 14a) and determining the
depths of the causative bodies (Figure 14b).
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To show the details of the 3-D KDDE results, we selected a small survey grid (red line
in Figure 15) with a similar process to that in Figure 14, to yield 155,327 Euler solutions, as
shown in Figure 16.
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The traditional Euler deconvolution tried to determine the locations of geological
targets using a series of tentative N. We used different minimum N and z to filter Euler
solutions to simulate this process, as shown in Figures 17 and 18. The scatter plots of
the Euler solutions filtered by minimum N (Figure 17) show that the large clusters, es-
pecially those in Figure 17d–i, corresponded to the gravity high of gz in the survey grid
in Figure 15. However, it was difficult to determine which cluster corresponds to weak
anomalous sources.
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The scatter plots of the Euler solutions filtered by different depths (Figure 18) show that
multiple-ridge clusters correspond to the boundaries of the gravity high of gz in the survey
grid in Figure 15. However, this correspondence became worse as the depth increases.
Therefore, it was difficult to determine which cluster indicated an actual geological body.
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If all the clusters are dense enough and are well separated by low-density areas,
DBSCAN can find clusters of any shape in the spatial database with “noise” [63,64]. For
comparison purposes, we used the DBSCAN to analyze the Euler solutions. The clusters of
the Euler solutions (Figure 19) show that the clusters were related to the gravity high of
gz in the survey grid in Figure 15 and the scatter plots of Euler solutions in Figure 17. As
the DBSCAN only removed some spurious solutions, there was also no difference between
sparse and dense distributions of solutions in the scatter plot compared to other traditional
discrimination techniques.
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For further comparison, the inversion density distribution maps (Figure 20) were
obtained using the UBC-GIF inversion code [94], which was developed based on the
Occam’s-style algorithm [95,96]. As surface gravity data had no depth resolution [94] and
the Occam’s-style algorithm had difficulty recovering the depth resolution, the density
distribution maps became increasingly blurry with the increase of depth z.



Appl. Sci. 2023, 13, 1784 22 of 29

Appl. Sci. 2023, 13, x FOR PEER REVIEW 23 of 31 
 

 
Figure 19. Scatter plots of clusters and spurious solutions of Euler solutions (Figure 16): (a) Perspec-
tive view; (b) Plan view, using the DBSCAN method. 

For further comparison, the inversion density distribution maps (Figure 20) were ob-
tained using the UBC-GIF inversion code [94], which was developed based on the Oc-
cam’s-style algorithm [95,96]. As surface gravity data had no depth resolution [94] and 
the Occam’s-style algorithm had difficulty recovering the depth resolution, the density 
distribution maps became increasingly blurry with the increase of depth z. 

 
Figure 20. Inversion density distributions using the UBC-GIF inversion code for the gz data in the 
survey grid in Figure 15 at different depths z: (a) −600; (b) 350; (c) 1350; (d) 2300; (e) 3300; (f) 4250; 
(g) 5250; (h) 6200; and (i) 7200. 
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(g) 5250; (h) 6200; and (i) 7200.

Therefore, we used the 3-D KDDE with M = [500, 500, 250] to estimate the Euler
solutions (Figure 16) and isolate anomalous sources. We found no probability density con-
tours in Figure 21a, meaning that the spurious solutions, as shown in Figures 17 and 18a,
were discriminated by the 3-D KDDE. As the depth z increased from 0.35 to 4.25 km,
many probability density contours/ridges appeared, as shown in Figure 21b–f. The con-
tours of probability density images with a higher depth z had high probability values,
as shown in Figure 21e–g and their corresponding clusters with larger N values were
shown in Figure 18e–h, which confirm each other. These tight clusters with high N shown
in Figure 18e–g were discriminated by the 3-D KDDE in Figure 21e–g because they are
sparsely located solutions. The other clusters of solutions with lower SIs in Figure 18b–f
indicated relatively weaker/smaller geological bodies, as shown in Figure 21b–f.

Figure 22 illustrates the performance of the 3D isosurfaces in estimating the probabil-
ity density distribution. Figures 16 and 17 show that only using the N to filter spurious
solutions made it challenging to determine which clusters of solutions corresponded to
actual geological bodies. When lth = 4, the 3D isosurfaces in Figure 22 show that most proba-
bility density contours had more meaningful depth resolutions than the Occam’s-style algorithm
(Figure 20).



Appl. Sci. 2023, 13, 1784 23 of 29

Appl. Sci. 2023, 13, x FOR PEER REVIEW 24 of 31 
 

Therefore, we used the 3-D KDDE with M = [500,500,250] to estimate the Euler solu-
tions (Figure 16) and isolate anomalous sources. We found no probability density contours 
in Figure 21a, meaning that the spurious solutions, as shown in Figures 17 and 18a, were 
discriminated by the 3-D KDDE. As the depth z increased from 0.35 to 4.25 km, many 
probability density contours/ridges appeared, as shown in Figure 21b–f. The contours of 
probability density images with a higher depth z had high probability values, as shown 
in Figure 21e–g and their corresponding clusters with larger N values were shown in Fig-
ure 18e–h, which confirm each other. These tight clusters with high N shown in Figure 
18e–g were discriminated by the 3-D KDDE in Figure 21e–g because they are sparsely 
located solutions. The other clusters of solutions with lower SIs in Figure 18b–f indicated 
relatively weaker/smaller geological bodies, as shown in Figure 21b–f. 

 
Figure 21. Probability density images obtained using 3-D KDDE to analyze the subset {xo, yo, zo} in 
Figure 16, at different depths, z: (a) −600; (b) 350; (c) 1350; (d) 2300; (e) 3300; (f) 4250; (g) 5250; (h) 
6200; and (i) 7200. 

Figure 22 illustrates the performance of the 3D isosurfaces in estimating the proba-
bility density distribution. Figures 16 and 17 show that only using the N to filter spurious 
solutions made it challenging to determine which clusters of solutions corresponded to 
actual geological bodies. When lth = 4, the 3D isosurfaces in Figure 22 show that most 
probability density contours had more meaningful depth resolutions than the Occam’s-
style algorithm (Figure 20). 

Figure 21. Probability density images obtained using 3-D KDDE to analyze the subset {xo, yo, zo}
in Figure 16, at different depths, z: (a) −600; (b) 350; (c) 1350; (d) 2300; (e) 3300; (f) 4250; (g) 5250;
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4. Discussion

Spurious solutions may be because of noise, either natural or due to the FFT [32],
which was employed to calculate the spatial gradients. This easily produces spurious
solutions and yields poor results, especially for potential profile data [24,69].

According to our numerical results, satisfactory probability density distribution results
were obtained using 3-D KDDE combined with tensor Euler deconvolution compared to
the traditional Euler deconvolution, Euler deconvolution with truncated singular value
decomposition [17], and joint Euler deconvolution of gravity gradiometry data [97].

The N is a function of the moving window size and the source-to-observation distance.
Consequently, for an arbitrarily shaped source, Euler deconvolution easily yields spurious
solutions because no single N is correct at all source-to-observation distances [22]. In
addition, using a series of predefined SIs according to a particular step size, the procedure
of Euler deconvolution will yield a large number of solutions [25]. To overcome these
problems, the N was not predicted in this paper.
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Finally, following the suggestions of Reid et al. [69], we proposed a multivariate KDDE
approach based on nonparametric estimation to overcome the problem that traditional
discrimination techniques are challenging to analyze Euler solutions for visualizing Euler
solutions on modern graphics workstations.

For a given Euler solution dataset, the grid size is inversely proportionate to the
bandwidth. The bandwidth features a trade-off between the estimator’s bias and its
variance. When the bandwidth decreases, the estimated point density has abrupt changes;
when it increases, the estimated point density change becomes smoother. The quality of the
final probability density distribution of multivariate KDDE is determined by the bandwidth
parameters/the grid size. However, if the grid size increases, the computational efficiency
of multivariate KDDE with nested for-loops will dramatically decrease. Moreover, when
the sample data are combined with high-dimensional sparse data, determining the “best”
bandwidth/grid size is time-consuming [62]. The multivariate KDDE, in conjunction with
the fast linear binning approximation and the FFT, was proposed with high computational
efficiency to overcome this difficulty.

In applying the multivariate KDDE to field data, while the computational efficiency
of the multivariate KDDE is essential, we were also concerned with the ability for noise
suppression and distinguishing spurious solutions. Hence, based on adjacent anomalous
sources with various separations, the results of employing FCM, DBSCAN, and 3-D KDDE
were compared and analyzed. Of them, using the probability density contours/isosurfaces
of the 3-D KDDE allowed efficient separation of adjacent anomalous sources. Furthermore,
the results of the 3-D KDDE for different Gaussian noises indicated that it can effectively sep-
arate adjacent anomalous sources and perform consistently, which provides a basis for the
application of the multivariate KDDE to complex data. Because of the high-computational
efficiency of the multivariate KDDE method, we could try different-sized grids or/and
select various lth layer contours to find interesting geological structures more effectively.
For example, the 3-D KDDE, in conjunction with the subset {xo, yo, zo} in Figure 16, was
carried out with different-sized cubic grids, whose length along one direction was 16, 32,
64, 128, 256, and 512. Its computational time was 0.1109, 0.2552, 0.3581, 1.0352, 7.9938, and
60.4556 s, respectively.

Applying the multivariate KDDE to 1-D or 2-D subsets of Euler solutions yielded too
many probability density distribution curves or images, which were challenging to interpret
simultaneously. Furthermore, visualization of the 5-D results {xo, yo, zo, N, p-value}, which
were obtained by the 4-D KDDE to estimate the entire Euler solution datasets, was very
challenging. Although the gplotmatrix function, which plots a matrix with scatter plots by
group, can be employed to present high-dimensional data, such as for a simple geological
target, it can effectively show characteristics of its locations and SIs. However, applying the
gplotmatrix function to analyze complex geological sources is difficult. For this reason, in
subsequent research, we will focus on the graphical method of high-dimensional results
{xo, yo, zo, N, p-value}.

The 3-D KDDE in conjunction with the subsets {xo, yo, zo}, which derived from the
synthetic models and the field data from the survey conducted in British Columbia, Canada,
was used to recover more meaningful geological structures than other discrimination
techniques successfully.

It is well known that the surface gravity data has no depth resolution [94], and Occam’s
-style algorithm is difficult to recover depth resolution. However, the 4-D probability density
distribution obtained by our 3-D KDDE method in conjunction with the subsets {xo, yo,
zo} derived from tensor Euler deconvolution yielded a higher depth resolution. This is an
important finding that will broaden surface gravity data’s application in determining the
depths of geological targets.

5. Conclusions

The Geoscience BC project provided the field data used in the study. The residual
Bouguer gravity anomaly was the difference between the gravity data continuing upward
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to −2700 and −5700 m to remove the contributions induced by near-surface. By comparing
the results of two clustering methods in Figures 8 and 19 and traditional discriminate
techniques in Figures 17 and 18, the results of the multivariate KDDE in conjunction with
the subset {xo, yo, zo} obtained using tensor Euler deconvolution were more intuitive and
can effectively characterize the geological targets in Figures 9, 21 and 22. In addition,
compared to the Occam’s -style algorithm failing to recover the depth resolution from the
surface gravity data (Figure 20), our results effectively obtained the depth resolution of the
anomalous sources.

In illustrating Euler solutions, because many Euler solutions need to be drawn one by
one, the top/newly drawn ones will obscure the bottom/previously drawn ones, whether
using a three-dimensional or two-dimensional scatter plot.

Therefore, the multivariate KDDE method of Euler solutions for characterizing geo-
logical bodies proposed in this paper contains the following processes: selecting a series of
different-sized or fixed-size moving windows, traversing the gridded data using Equation
(4) to obtain Euler solutions, constructing an estimation grid with predefined grid size M
or bandwidth H, and binning the subset {xo, yo, zo} into the estimation grid via the fast
linear binning approximation to yield grid counts c, calculating kernel function evaluations
k based on Equation (13), constructing the zero-padded versions of the grid count C and
the kernel evaluation K, and carrying out the convolution between C and K quickly by FFT
to get the probability density distribution of the subset {xo, yo, zo}.

Tests on the field data showed that the multivariate KDDE, which was used in con-
junction with the subset {xo, yo, zo} obtained using tensor Euler deconvolution, proposed
in this paper, does not rely on a priori geological information. Therefore, it is suitable for
analyzing and interpreting large-area potential field data. In addition, the depth resolution
information extracted from the surface gravity data using 3-D KDDE can be used as a
constraint to analyze geological targets. Consequently, the ideal geological targets would be
compact three-dimensional bodies with sharp boundaries, such as salt domes, ore bodies,
and igneous intrusions.

The estimated grid size is proportional to the bandwidth size for a given input data
instance. Therefore, only one parameter, H or M, was required in the manuscript regard-
ing the multivariate KDDE to process the sample data. Regarding the analysis of the
multivariate KDDE of the field data, the required data and parameters were gz, wx, wy,
H, or M.
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