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Abstract: Back focal plane (BFP) ellipsometry, which acquires the ellipsometric parameters of reflected
light at different incident and azimuthal angles through a high-NA objective lens, has recently shown
great potential in industrial film measurement. In on-line metrology cases for film manufacturing,
the film vibration, which is caused by equipment vibrations or environmental disturbances, results in
defocus blur and distortion of the received BFP images. Thus, subsequently extracted ellipsometric
spectra and film parameters significantly deviate from the ground truth values. This paper proposes
a cost-effective method for correcting vibration-induced BFP ellipsometric spectral errors. The
method relies on an initial incident angle calibration of BFP radii at different defocus positions. Then,
corresponding ellipsometric spectral errors are corrected by inserting a calibrated Jones compensation
matrix into a system model. During measurement, the defocus position of the vibrational film
is first determined. Then, BFP ellipsometric spectral errors, including incident angle mapping
distortion and ellipsometric parameter variations, are corrected for a bias-free film analysis using the
previous calibration results. Experimental results showed that this method significantly improved
measurement accuracy without vibrational defocus compensation, from over 30 nm down to less
than 1 nm.

Keywords: microellipsometry; back focal plane; antivibration measurement; thin film

1. Introduction

Thin films play an essential role in manufacturing semiconductors and display elec-
tronics. The thicknesses and refractive indices of thin films should be well controlled
and measured for production efficiency improvement and yield control [1,2]. Among
the various thin-film sensing technologies [3–6], ellipsometry is widely used due to its
ability to carry out rapid, nondestructive, and high-precision measurement [7–11]. In
recent times, ellipsometry has also been widely used in surface and interface measurement
and characterization of nanostructures and optoelectronic materials [12–14]. Ellipsometric
measurements depend on a mechanical system called a goniometer. Any vibration results
in signal distortion problems in the ellipsometric measurements and consequent variation
in the optical parameters of the investigated film [15–17]. The signal distortion problems
resulting from the vibration are especially significant in on-line inspection cases using
rotating compensator ellipsometry. Specifically, the signals of an ellipsometer captured at
different times may have different errors or distortions due to the varying defocus distances
caused by vibrations, making it difficult to characterize errors of subsequent thin-film
parameter calculation. Therefore, a method to overcome vibration-induced measurement
distortion in on-line inspection of thin films is urgently needed.
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Back focal plane ellipsometry (also known as angle-resolved ellipsometry or microellip-
sometry) [18–21] has advantages in overcoming the challenges of conventional ellipsometry
in defocused measurements under vertical vibrations (vertical vibration defocus is simply
referred to as defocus from hereon) due to its fast measurement characteristics based on
a single-frame BFP imaging and equivalent sensitivity to conventional ellipsometry. This
method can obtain single-frame BFP reflectance and ellipsometric information of different
incident and azimuth angles through a high-NA (numerical aperture) objective lens without
using mechanical moving parts to realize angular or spectral scanning. Moreover, single-
frame BFP images can also easily process defocus effects in real time. Compared to the
inclined structure of conventional ellipsometry, the coaxial structure of BFP ellipsometry
is spatially compact for on-line measurements and suffers from a smaller influence of
defocused structures [22]. Different methods of improvement have been developed for
single-frame BFP ellipsometry, e.g., modeling using the Mueller matrix [23], introducing
compensator modulations [24,25], capturing through a color camera [20], and applying
on-line measurement of oil film gaps [26,27]. However, in BFP ellipsometric measurement,
when vibrational defocus occurs, the captured BFP images may suffer from blur and dis-
tortion, resulting in the distortion of incident angles and incorrect ellipsometric responses.
This issue has not been analyzed and solved. Suppose an incident angle distortion and the
corresponding ellipsometric error are calibrated at each defocus position. In that case, the
BFP accuracy could be improved by compensating the errors related to the defocus effect
in the single-frame measurement model [28–30].

This work proposes an effective calibration and compensation method for sample
vibration-induced defocus effect in BFP ellipsometry. The method begins by calibrating
defocus-induced incident angle distortion using the Brewster angle of a standard material.
Then, the ellipsometric errors are corrected by inserting a calibrated compensation matrix
into a system model using a Jones matrix. During actual measurement, the defocus position
is determined by analyzing the frequency domain and energy characteristics of a BFP
image. Then, the previous calibration results compensate for incident angle distortion
and ellipsometric errors. Several thin-film validation experiments were carried out, which
verified that the method significantly improved the film thickness measurement accuracy
of BFP ellipsometry.

2. Method
2.1. Hardware Configuration

Figure 1a shows the layout and configuration of the BFP ellipsometry measurement
system, which includes four parts: an illumination light source, a measurement probe, a
detection unit, and a motorized positioning unit. The white light generated by a halogen
lamp is collimated, then passes through a band-pass filter and becomes monochromatic
(@632.8 nm). A diaphragm is used to control the beam radius. The monochromatic
light becomes linearly polarized after passing through a polarizer and is reflected by a
beam splitter before becoming incident on the sample through a high-NA objective lens
at different incident angles. Then, the reflected light is recollected by the objective and
focused on the BFP. After passing through the beam splitter and an analyzer, the BFP image
is captured by a CMOS, as shown in Figure 1d. The motorized positioning unit uses a
motorized translation stage to hold the sample and simulates the defocus of the sample
generated by vertical vibration at different positions.
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Figure 1. The measurement principle of BFP ellipsometry: (a) hardware configuration; (b) polariza-
tion change of incident and reflected beams denoted in blue and red, respectively; (c) the relation-
ship between the BFP radius R and incident angle θ; (d) the BFP image of a SiO2 film. 

Figure 1. The measurement principle of BFP ellipsometry: (a) hardware configuration; (b) polariza-
tion change of incident and reflected beams denoted in blue and red, respectively; (c) the relationship
between the BFP radius R and incident angle θ; (d) the BFP image of a SiO2 film.

2.2. BFP Ellipsometry Principle

In a BFP ellipsometry system, the state of polarization of the incident light changes
with the azimuthal angle on a BFP due to the high-NA objective lens. This incident plane
rotating effect plays the role of a rotating polarizer, just like a typical rotating polarizer
ellipsometer. Therefore, the annular intensity for any radius of the back focal plane is a
function of the azimuthal angle. The ellipsometric parameters of the measured sample can
thus be calculated by fitting the measured annular intensity to the optical model.

As shown in Figure 1b,c, every radius of the BFP R is mapped to a unique incident
angle θ. The angular range is determined by the NA of the objective lens, from sin−1 NA to
sin−1 NA. The measurement system can be modeled by the Jones matrix method, e.g.,

Eout = RA(−A)JAR(A)R(−(ϕ +
π

2
))JM JS(θ)R(ϕ)RP(−P)JpEin (1)

where Ein and Eout are the input and output complex electric fields, respectively; JS, JA, and
JP are the Jones matrices of the sample, analyzer, and polarizer, respectively; and R is the
coordinate rotation matrix. JM is the reflection matrix redirected to the reference X-axis,
and ϕ is the azimuth angle. P and A represent the angle of the transmittance axis of the
polarizer and analyzer concerning the X-axis. By setting the polarizer and analyzer at 0 and
45 degrees, respectively, the received intensity of the captured BFP image can be expressed
as follows:

Iout(ϕ, θ) = α1(θ) + α2(θ) sin(2ϕ +
π

4
) + α3(θ) sin(4ϕ) (2)

where the three coefficients α1, α2, and α3 are the zero-, second-, and fourth-order Fourier
coefficients of Iout(ϕ), respectively, and are the intermediate important quantities for solving
subsequent parameters. For these three important intermediate Fourier coefficients, they
can be easily extracted using the traditional Fourier transform. Further, the angle-resolved
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ellipsometric parameters (Ψ(θ) and ∆(θ)) can be calculated from the three coefficients
α1, α2, and α3 using Equations (3) and (4):

tan2 Ψ(θ) =

√
2α1(θ) + α2(θ)

α2(θ)−
√

2α1(θ)
, (3)

cos ∆(θ) =
(α3(θ)− α1(θ))(tan2 Ψ(θ) + 1)

4α1(θ) tan Ψ(θ)
. (4)

Subsequently, the film parameters can be determined by fitting the measured angle-
resolved spectra to the theoretical model with nonlinear multivariate regression using the
Levenberg–Marquardt (LM) algorithm [31]. The merit function is as follows:

LSE =
1

N−1

N

∑
i=1

(∣∣Ψexp(θi)−Ψthe(θi, d)
∣∣2 + ∣∣∆exp(θi)− ∆the(θi, d)

∣∣2) (5)

where the subscripts “exp” and “the” represent the measured and theoretical values,
respectively.

3. Defocus Effect Calibration and Compensation
3.1. Defocused BFP Incident Angle Calibration

In the proposed method, the relationship between BFP image radius R and incident
angle θ must be accurately calibrated at each defocus position. According to Abbe’s sine con-
dition [32], the relationship between θ and R can be expressed as θ = sin−1 (R·NA/Rmax),
NA = sin θmax. Choi [20] built the relationship assisted by the NA of the objective lens and
Rmax of the BFP image. However, Rmax varies with the defocus position for blur and distor-
tion, as shown in Figure 2. Therefore, the angle distortion happens at defocus positions
where Rmax no longer corresponds to NA, and the mapping relationship is distorted.
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transparent plate is normally used, where large-angle light of reflection from the backside 
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Figure 2. Maximum BFP image radii of a 44.34 nm SiO2 film at different defocus positions and its
blurring and distortion: (a) a backward-defocused BFP image near the objective lens; (b) an in-focus
BFP image; (c) a forward-defocused BFP image far from the objective lens.

A full-field Brewster angle method is proposed to deal with the defocused calibration
problem. The method stems from the fact that the position of minimum p-polarized
reflectance corresponds to the Brewster angle. In our previous study [21], the ellipsometric
amplitude ratio Ψ(θ) was demonstrated to be more robust in searching for the position of the
Brewster angles than the reflectance intensities. We begin by calculating the angle-resolved
ellipsometric parameter Ψ(θ) at the BFP of a boundary reflection and then searching for the
Brewster angle θB corresponded BFP radius RB. Here, a local quadratic polynomial fitting
determines the pixel radius RB of Ψ(θ)min. Thus, the relationship between θ and R is built
using Equation (6):

θ = sin−1( f ′ · R), f ′ = sin(θB)/RB , θB = arctan(n1/n0) (6)
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where n0 is the refractive index of air, n1 is the refractive index of the standard sample, and
f ’ is a mapping coefficient in the Brewster angle calibration.

In order to obtain the boundary reflection for searching θB, the light transmitted into
the medium needs to be completely absorbed or filtered away. For this purpose, a thick
transparent plate is normally used, where large-angle light of reflection from the backside
can be spatially eliminated. Considering the limitation of NA (0.9) of the objective lens,
θB of a selected standard sample should be within the limited range of the objective lens.
Therefore, a thick K9 glass plate was chosen as the standard sample to calibrate the incident
angle distortion due to the limited focal depth and because the NA of the used objective
lens and the reflected light from the backside of a thick film reflects away from the detection
unit. During the calibration process, the angle-resolved Ψ of each defocused BFP image was
first calculated with Equation (3). Then, the pixel radius RB corresponding to the Brewster
angle at different defocus positions was fitted. Further, the calibration coefficient f ’ was
calculated at different defocus positions with Equation (6). From a set of Brewster angle
mapping coefficients calibrated at different defocus positions, an R–θ mapping function
could then be built at a specific defocus position. Using this, a defocused BFP ellipsometric
spectrum can be turned to be distortion-free in an incident angle domain.

3.2. Defocused BFP Ellipsometric Error Calibration

Vibrational defocus causes BFP images to blur and distort and results in abnormal
optical ellipsometric responses, e.g., Ψ and ∆. As shown in Figure 3, the errors of Ψ
and ∆ increase as the defocus distance increases regularly. Obviously, it is crucially im-
portant to correct this error once a sample is defocused. The ellipsometric parameter
errors have been investigated by Linke et al. [22,33], following which a Jones matrix of
JC =

[
tan δΨeiδ∆, 0; 0, 1

]
was used to model the ellipsometric parameter errors resulting

from the defocus from an objective lens in this study. In the coaxial path system, the
objective polarization errors are considered twice, corresponding to emission and reflec-
tion through the objective lens. Thus, a complete error model from a measured sample
can be described as JC = JC JS JC =

[
tan2 δΨ tan Ψei(∆+2δ∆), 0; 0, 1

]
, where tan2 δΨ and 2δ∆

are the ellipsometric compensation’s amplitude and phase parameters, respectively. The
calibration of tan2 δΨ and 2δ∆ can be achieved using some reference materials through
Equation (7) based on the least square error fitting:

LSE =
1

N−1

N

∑
i=1

(∣∣∣∣ tan(Ψexp(θi))

tan(Ψthe(θi))
− tan2 δΨ)

∣∣∣∣2 + ∣∣(∆exp(θi)− ∆the(θi))− 2δ∆)
∣∣2). (7)
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Figure 3. Comparison of the standard 44.34 nm SiO2 film measured ellipsometric parameters at
different defocus positions: (a) Ψ and (b) ∆; the black dashed lines represent the ellipsometric
parameter of the theory.

The method of calibration has no special requirement for the standard thin film sample
except isotropy. Any isotropic standard thin film samples can be used in the calibration.



Appl. Sci. 2023, 13, 1738 6 of 12

By observing a reference material at different defocus positions xi and fitting through
Equation (7), a two-dimensional compensation look-up table of Ψ and ∆ could be made on
a xi–θ(R) domain. In the actual measurement, the ellipsometric compensations tan2 δΨ and
2δ∆ are found from the look-up table by determining the defocus position. Film parameters
can then be calculated through LM fitting using the merit function in Equation (7).

3.3. Defocus Position Determination and Defocus Effect Compensation

As mentioned above, both the incident angle calibration and ellipsometric parameter
compensation rely on the accurate determination of defocus distance of a film. A defocus
determination method based on actual BFP image characterization is introduced. The
frequency domain analysis method, generally applied in autofocusing [34,35], stems from
the imaging resolution varying with defocus. The high-frequency signal in the image
spectrum will be lost due to blurring when defocus occurs. In other words, the high-
frequency components of a BFP image reduce when defocusing. This fact can establish the
relationship between the frequency domain evaluation function of a defocused BFP image
and its defocus position xi. The method begins with a discrete Fourier transform (DFT),
and the formula of DFT for M × N digital image is shown in Equation (8):

f (k, l) =
M−1

∑
µ=0

N−1

∑
ν=0

I(µ, ν)e−j2π(
µk
M + νl

N ) (8)

where k and l are frequency domain pixel coordinates, and µ and ν are image pixel coor-
dinates. The spectrum function Ps denoting the pixel intensity of the image is shown in
Equation (9) below:

Ps(k, l) = | f (k, l)|2. (9)

Thus, the frequency domain transform evaluation function F based on DFT is obtained
as shown in Equation (10):

F =
1

MN

M−1

∑
k=0

N−1

∑
l=0

√
k2 + l2Ps(k, l). (10)

The relationship between the evaluation function F and defocus position xi is shown
in Figure 4a. The negative values of xi indicate a defocus direction away from the objective
lens, while the positive values indicate towards the objective lens. The determination
criterion from the F–xi curve shows high resolution and sensitivity in the defocus position
around [–35,45] µm (bold solid red line), which is very suitable for calculating the defocus
position of the defocus sample near the focal point. However, the resolution and sensitivity
of the far focus position are significantly reduced, as shown by the dotted line in Figure 4a.
Moreover, the curve is convex and cannot tell the defocus direction.
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Therefore, considering that the size of the imaging spot on the BFP changes with the
defocus position, the maximum radius method and energy density method are introduced
to overcome the limitation of the frequency domain method in calculating the defocus
position xi. The maximum radius method extracts the Rmax of the BFP image through
edge detection, and the obtained Rmax-xi curve shows high resolution and sensitivity in
the far-end focus positions (less than −35 µm and more than 45 µm), as shown by the
blue line in Figure 4a, where Fp is a threshold used to distinguish the high resolution and
sensitivity of the defocus position curve from the low resolution and sensitivity. Further,
a combination of the maximum radius method and frequency domain method shows
significant improvement in calculating the defocus amount accurately, but the defocus
direction remains to be determined. To address this problem, we introduced an energy
density method. This method calculates the energy density within the Rmax of a BFP image
using NM = ∑ Iij/Smax , where Smax is the pixel area of the circle with a radius of Rmax, and
∑ Iij is the sum of intensity values of image pixels within Rmax. An experimental variation
curve of the energy density regarding defocus positions is shown in Figure 4b. It shows
favorable monotonicity in defocusing direction determination.

To sum up, a high-sensitivity determination algorithm combined using the above three
defocus evaluation indicators is proposed. The working process of the proposed algorithm
is as follows. Firstly, the frequency domain evaluation values F, maximum radii R, and
energy density NM are calculated from a BFP image. Since the F–xi curve is divided into
a high-sensitivity part and a less-sensitive part by the threshold value Fp. When F is less
than Fp, the maximum radius method is used to calculate the defocus position based on the
Rmax–xi curve; otherwise, the frequency domain method is adopted. Two solutions exist:
x1 and x2. The nonmonotonicity is then determined by comparing NM1 and NM2. The
algorithm flow chart is shown in Figure 5. The threshold Fp used to determine the defocus
position calculation can be determined according to the position where the gradient of the
frequency standard curve drops sharply, as shown in Figure 4a. Determining the position
xi of the defocus BFP image according to the above process provides a key link for the
defocus BPF image compensation and a basis for subsequent defocus measurement.
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A complete BFP image undistortion and ellipsometric error compensation example is
shown in Figure 6a using the proposed method. Firstly, the original biased ellipsometric
parameters corresponding to each pixel radius were calculated, as shown in Figure 6b,
using Equations (3) and (4). Then, based on a calculated defocus position, the incident
angle calibration coefficient f ’ and the ellipsometric compensation amounts tan2 δΨ and
2δ∆ were determined from the previous calibration results, using which the R–θ correction
and ellipsometric parameter compensation were completed, as shown in Figure 6c. Finally,
the film thickness was further calculated using LM fitting.
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4. Experiment and Results
4.1. Experimental Setup

By comparing with some existing optical measurement systems, this system’s light
source was a broadband halogen lamp (OSL2 from Thorlabs), and a laser line filter (FL632.8-
1, Thorlabs) created quasi-monochromatic light with a central wavelength of 632.8 nm.
The collimating and the imaging lens used were achromatic. The polarizer and analyzer
were Glan–Taylor polarizers (PGT6315, Joint Optics), and the objective lens of NA 0.9 from
Olympus (semidecolorizer, 100×) were used. As for the detector, an MER-500 CMOS
camera was used. The sample was clamped on an electric displacement table (model
Zolix-CXP15-40) with a minimum step distance of 5 µm.

4.2. Calibration and Compensation Results

The following steps were carried out: incident angle distortion calibration, ellipsomet-
ric compensation amount calibration, and defocus position curve calibration.

Firstly, the defocused incident angle distortion was calibrated based on the Brewster
angle calibration method described in Section 3.1. A thick K9 glass plate sample with
a refractive index of 1.1515 (with a Brewster angle of θB = 56.57◦) was selected as the
calibration material. We used an electric positioning stage to obtain defocused BFP images
with a 10 µm interval at different defocus positions xi. The corresponding pixel radii of
the Brewster angle RB at different defocus positions were then extracted. After that, the
mapping function of the Brewster angle radii of defocus positions was obtained using a
polynomial fitting, as shown in Figure 7b. With the calibrated Brewster angle radius curve,
defocus-resulted incident angle distortion could be corrected using Equation (6).
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Figure 7. Incident angle calibration experiment with a standard thick K9 glass plate: (a) the calculated
angle-resolved Ψ and Ψmin corresponding to pixel radius RB; (b) the relationship between Brewster
angle corresponding to pixel radius RB of defocus position xi.
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Secondly, the defocused ellipsometric parameter errors, including tan2 δΨ and 2δ∆,
were calibrated. A SiO2 film sample with a thickness of 45 nm (nominal thickness) grown on
a Si substrate was used for the calibration. An electric stage was used to simulate the defocus
behaviors for BFP image acquisition within a ± 85 µm defocus range with an interval of
5 µm (the range in the actual film manufacturing process was within ±50 µm near a roller).
After calculating the experimental angular ellipsometric spectra at a defocus position using
Equations (3) and (4), the ellipsometric compensation amount of tan2 δΨ and 2δ∆ at each
incident angle was estimated through Equation (7). Repeating the compensation calibration
at each defocus position resulted in a two-dimensional compensation map on a domain
of xi–θ(R), which was finally interpolated for subsequent compensation measurement.
Figure 8 shows the interpolated compensation maps of the ellipsometric parameters.
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Finally, the maximum radius R, the frequency domain function value F, and the energy
density NM of the 37 defocused BFP images were calculated for real-time defocus position
determination, as shown in Figure 4.

4.3. Experimental Results

In the verification experiments, three SiO2 films (Si substrate) with different thicknesses
(25, 45, and 100 nm) were measured by acquiring BFP images at 20 defocus positions using
a positioning stage with an interval of 10 µm. Multiple images were collected at the
same defocus position for repeatability analysis. The ellipsometric parameters Ψexp and
∆exp of the defocus image were calculated according to an estimated defocus position
using the method shown in Section 3.3. Then, the ellipsometric compensation amounts
tan2 δΨ and 2δ∆ were obtained by referring to the compensation maps at the corresponding
defocus position. Film thickness was finally calculated by fitting using the LM algorithm.
Simultaneously, film thickness was also calculated from the original BFP images without
vibrational compensation. All the obtained film thickness results are presented in Figure 9.

The experimental results showed that the measurement accuracy was significantly
improved by correcting the defocused BFP images using the proposed method. Compared
to the case without vibration defocus compensation, this method significantly improved
the measurement accuracy of thin film, from more than 30 nm to less than 1 nm.
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5. Conclusions

This paper proposes a cost-effective method for correcting vibration-induced BFP
ellipsometric spectral errors. The method first calibrates the defocused incident angle
distortion using the Brewster angle of reference material. Then, an ellipsometric compen-
sation amount is inserted into the system model as a Jones matrix to correct the error of
the ellipsometric parameters at different defocus positions. Moreover, the defocus posi-
tion of an actual BFP image is determined by analyzing its frequency domain and energy
characteristics. Once the defocus position of a BFP image is calculated, the corresponding
incident angle distortion can be corrected, and the ellipsometric errors can be compensated
using the previous calibration results. Our experiments showed that the absolute error of
the measurement reduced from over 30 nm down to less than 1 nm, within a defocused
range of ±85 µm. As the compensation completes every single frame of the BFP image, the
method is expected to be applied for on-line BFP ellipsometry under vibration conditions.

In the future, the defocus measurement method can be improved from three aspects.
Firstly, the method needs to be demonstrated in real-time vibrational environments. Sec-
ondly, a monotonic defocus position determination method with better resolution and
sensitivity needs to be developed. Third, antivibrational methods for general spectral
ellipsometry, such as wavelength scanning BFP ellipsometry, need to be developed.
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