
Citation: Fei, J.; Chen, X.; Zhao, X.

MSmart: Smart Contract

Vulnerability Analysis and Improved

Strategies Based on Smartcheck. Appl.

Sci. 2023, 13, 1733. https://doi.org/

10.3390/app13031733

Academic Editors: Hossein Hassani

and Nadejda Komendantova

Received: 19 December 2022

Revised: 17 January 2023

Accepted: 23 January 2023

Published: 29 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

MSmart: Smart Contract Vulnerability Analysis and Improved
Strategies Based on Smartcheck
Jiajia Fei, Xiaohan Chen and Xiangfu Zhao *

School of Computer and Control Engineering, Yantai University, Yantai 264005, China
* Correspondence: xiangfuzhao@ytu.edu.cn

Abstract: As is well known, smart contracts on the blockchain store plenty of digital assets, and these
contracts deployed on the blockchain are difficult to be modified. For this reason, the analysis and
detection of smart contract vulnerabilities have received extensive attention. Smartcheck, a typical
Java-implemented static analysis tool of smart contracts, is capable of converting Solidity source code
into path diagrams based on the lexical and syntactic analysis, and finds smart contract vulnerabilities
by path matching. Although Smartcheck can analyze most of the real-world vulnerabilities, some
imperceptible vulnerabilities may be ignored, causing huge economic losses. In order to address
these issues, we develop a new tool named MSmart to analyze the vulnerabilities of high risk such as
timestamp dependence vulnerabilities, integer overflow vulnerabilities, self-destruct vulnerabilities,
etc. MSmart converts the smart contract source code into an intermediate representation, and looks
for smart contract vulnerabilities based on intermediate representation and XPath rules. We add new
intermediate representation rules of Smartcheck to detect more kinds of vulnerabilities and optimize
existing rules to suit the complexity of smart contract. We also implemented smart contract batch
detection to shorten the time it takes to find vulnerabilities. To analysis the performance of MSmart,
we collect 6000 real-world contracts from Etherscan and design some comparative experiments with
other tools. The results of experiment show that MSmart is able to analyze related vulnerabilities
better, and false positives and false negatives have been reduced due to our improvements.

Keywords: smart contract; security vulnerability; Smartcheck; blockchain

1. Introduction

Blockchain is the core technology of Bitcoin. It first appeared in “Bitcoin: A Peer-to-
Peer Electronic Cash System” [1] published by Satoshi Nakamoto. The essay narrates a new,
decentralized, completely distributed payment system architecture that does not require
a trust foundation. One prominent use of blockchain technology is the smart contract.
As early as the 1990s, the concept of smart contracts was proposed by Nick Szabo [2].
Before the advent of blockchain technology, smart contracts were not commonly used for
technical reasons [3]. Smart contracts are automatically triggered when preset circumstances
are satisfied, unlike traditional contracts which require a reliable third party [4]. Tens
of thousands of smart contracts have been deployed on blockchain platforms and are
continuing to grow rapidly. However, as the quantity of smart contracts rises, there are
already significant challenges with their security. Smart contracts cannot be modified once
they have been deployed because of their immutability and irreversibility. The deployment
of smart contracts is in an open network setting. Therefore, smart contracts are more
easily attacked [5,6]. Anonymous attackers can obtain higher remuneration, easier cash
outs (ether can be traded immediately), and a lower risk of being punished by attacking
smart contracts, which is more likely to result in victims taking huge financial losses. In
2017, the multi-signature wallet Parity lost hundreds and thousands of ether, and the
delegatecall vulnerability caused millions of funds to be frozen. In 2018, USChain BEC
lost about 900 million dollars due to the integer overflow vulnerability. In 2020, many

Appl. Sci. 2023, 13, 1733. https://doi.org/10.3390/app13031733 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13031733
https://doi.org/10.3390/app13031733
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5870-5730
https://doi.org/10.3390/app13031733
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031733?type=check_update&version=2

Appl. Sci. 2023, 13, 1733 2 of 16

hackers attacked smart contract games including FarmEOS, Playgames, LuckBet, and
EOSPlaystation [7–10], which lost a total of around one million dollars. These show that the
smart contract vulnerability has caused the significant financial losses and the significance
of smart contract security. Therefore, before being implemented, smart contracts must be
checked to make sure they are accurate [11].

In order to ensure property safety, a tool that can detect smart contract vulnerabilities
is essential. The current smart contract vulnerability detection technologies mainly include
symbolic execution, intermediate representation, etc. Oyente [12] uses symbolic execution
to detect smart contract vulnerabilities. Oyente has significantly reduced the false positive
by traversing each path and using the Z3 solver [13]. Oyente was successful in limiting
the number of cycles to prevent the space explosion [14], which also leads to a significant
increase in the false negative rate. Another tool for symbolic execution to find vulnerabilities
is Mythril [15], and it detects smart contract vulnerabilities by using conceptual analysis [16],
taint analysis [17], and verification control flow [18]. While Mythril can analyze many types
of smart contract vulnerabilities, it needs to find critical bytecodes (such as “ADD”), which
takes a long time.

Slither [19] uses the intermediate representation to detect smart contracts vulnerabili-
ties. Slither offers syntax checking in addition to supporting contract checking. Slither is
prominent in reentrant vulnerability detection. Another tool for the intermediate repre-
sentation to find vulnerabilities is Smartcheck [20]. Smartcheck is a scalable static smart
contract analysis tool. Although Smartcheck can analyze most of the existing smart contract
vulnerabilities, it also has some false positives and false negatives. In order to better identify
common vulnerabilities such as timestamp dependence vulnerabilities, integer overflow
vulnerabilities, self-destruct vulnerabilities, etc., we improve Smartcheck. The improved
Smartcheck, named MSmart, has carried out detailed comparison experiments on real large
data sets. Compared with other tools such as Oyente via specific vulnerability contracts,
it is concluded that MSmart can better analyze and detect related vulnerabilities. At the
same time, the false positives and false negatives of vulnerabilities have been reduced, thus
providing higher security for smart contracts.

2. Preliminary Knowledge
2.1. Smart Contracts and Vulnerabilities
2.1.1. Integer Overflow

When the size of the value exceeds the top or lower constraint for that data type, there
is an integer overflow vulnerability [21]. Integer overflow is generally divided into overflow
and underflow. Addition overflows, multiplication overflows, and division overflows are
the three most frequent overflows in smart contracts. An integer overflow vulnerability
occurs in smart contracts when the range of values of an integer variable is exceeded by
the arithmetic operation. The unsigned integer uint8 stores the range [0, 255], for instance,
(uint8) 255 + 1 will be incorrectly stored as 0. Similarly, (uint8) 0 − 1 will be incorrectly
stored as 255.

Figure 1 shows a section of code from the USChain BEC contract [22] that has an
integer overflow. The entry “uint amount= uint256 (cnt) * _value” at line 6 has an integer
overflow vulnerability. The data types of “cnt”, “_value,” and “amount” are uint256; if the
incoming value is too high and “amount” exceeds the maximum value, it will be mistakenly
saved as 0, since the storage range of uint256 is [0, 2ˆ256 − 1]. The contract owner lost a
significant amount of ether as a result of this vulnerability.

2.1.2. Timestamp Dependence

When smart contract execution is dependent on block timestamps, timestamp depen-
dence [23,24] vulnerabilities might arise. The results of the prior run will also change if
the block timestamps are different. The block timestamp in the contract is determined
by the miner’s local time. Theoretically, the local time might be changed by miners. Be-
cause of this, using the block timestamp as a pseudo-random number in the contract to

Appl. Sci. 2023, 13, 1733 3 of 16

carry out certain important operations (such as sending ether) may trigger timestamp
dependence vulnerabilities.

Appl. Sci. 2023, 11, x FOR PEER REVIEW 3 of 16

.

Figure 1. Integer overflow vulnerability case.

2.1.2. Timestamp Dependence
When smart contract execution is dependent on block timestamps, timestamp

dependence [23,24] vulnerabilities might arise. The results of the prior run will also
change if the block timestamps are different. The block timestamp in the contract is
determined by the miner’s local time. Theoretically, the local time might be changed by
miners. Because of this, using the block timestamp as a pseudo-random number in the
contract to carry out certain important operations (such as sending ether) may trigger
timestamp dependence vulnerabilities.

An example of a timestamp dependence vulnerability is shown in Figure 2. The
gambling contract Roulette uses the block timestamp to decide who can obtain all the bets.
Line 5 of the contract determines the stake is 10 ether. The winning condition is established
in lines 8–9 (now% 5 == 0), and the winner will obtain all the bets. The miner has prior
knowledge of whether the win condition will be met since the block timestamp is
generated by the miner. This vulnerability can be found after Smartcheck analysis.
However, Smartcheck generates a lot of false negatives while examining the following
timestamp dependence vulnerabilities.

Figure 2. Timestamp dependence code of contract Roulette.

The TimeFame1 contract in Figure 3 is a block timestamp-related instance. It uses
block timestamps to decide who takes the balance in the contract. Line 5 confirms that the
stake to participate is 1 ether. Who receives the balance is decided by the win condition
(lastBlockTime % 15 == 0) at line 8. In this contract, the block timestamp (block.timestamp)
is assigned to lastBlockTime. Therefore, Smartcheck doesn’t report it as a vulnerability.

Figure 1. Integer overflow vulnerability case.

An example of a timestamp dependence vulnerability is shown in Figure 2. The
gambling contract Roulette uses the block timestamp to decide who can obtain all the
bets. Line 5 of the contract determines the stake is 10 ether. The winning condition is
established in lines 8–9 (now% 5 == 0), and the winner will obtain all the bets. The miner
has prior knowledge of whether the win condition will be met since the block timestamp
is generated by the miner. This vulnerability can be found after Smartcheck analysis.
However, Smartcheck generates a lot of false negatives while examining the following
timestamp dependence vulnerabilities.

Appl. Sci. 2023, 11, x FOR PEER REVIEW 3 of 16

.

Figure 1. Integer overflow vulnerability case.

2.1.2. Timestamp Dependence
When smart contract execution is dependent on block timestamps, timestamp

dependence [23,24] vulnerabilities might arise. The results of the prior run will also
change if the block timestamps are different. The block timestamp in the contract is
determined by the miner’s local time. Theoretically, the local time might be changed by
miners. Because of this, using the block timestamp as a pseudo-random number in the
contract to carry out certain important operations (such as sending ether) may trigger
timestamp dependence vulnerabilities.

An example of a timestamp dependence vulnerability is shown in Figure 2. The
gambling contract Roulette uses the block timestamp to decide who can obtain all the bets.
Line 5 of the contract determines the stake is 10 ether. The winning condition is established
in lines 8–9 (now% 5 == 0), and the winner will obtain all the bets. The miner has prior
knowledge of whether the win condition will be met since the block timestamp is
generated by the miner. This vulnerability can be found after Smartcheck analysis.
However, Smartcheck generates a lot of false negatives while examining the following
timestamp dependence vulnerabilities.

Figure 2. Timestamp dependence code of contract Roulette.

The TimeFame1 contract in Figure 3 is a block timestamp-related instance. It uses
block timestamps to decide who takes the balance in the contract. Line 5 confirms that the
stake to participate is 1 ether. Who receives the balance is decided by the win condition
(lastBlockTime % 15 == 0) at line 8. In this contract, the block timestamp (block.timestamp)
is assigned to lastBlockTime. Therefore, Smartcheck doesn’t report it as a vulnerability.

Figure 2. Timestamp dependence code of contract Roulette.

The TimeFame1 contract in Figure 3 is a block timestamp-related instance. It uses
block timestamps to decide who takes the balance in the contract. Line 5 confirms that the
stake to participate is 1 ether. Who receives the balance is decided by the win condition
(lastBlockTime % 15 == 0) at line 8. In this contract, the block timestamp (block.timestamp)
is assigned to lastBlockTime. Therefore, Smartcheck doesn’t report it as a vulnerability.

Appl. Sci. 2023, 11, x FOR PEER REVIEW 4 of 16

Figure 3. Timestamp dependence code of contract TimeFame1.

2.1.3. Self-Destruct
The self-destruct [25] function can transfer the ether to the target address. Once ether

is involved, the attacker is likely to alter the address in order to transfer the ether from the
contract to his own account. The self-destruct function allows the attacker to transfer ether
to the target contract for his own goal. At the same time, the use of the self-destruct
function will affect the contract status. Tens of millions of dollars were lost as a result of
the parity multi-signature wallet vulnerability [26] in 2017 due to this vulnerability.

We can observe Figure 4 to find: each time, the player sends 1 ether to the EtherGame
contract, which is checked to see whether the balance is less than 8, and only then is the
function able to proceed. The contract will collapse if an attacker uses the self-destruct
function to force ether to be transferred into the EtherGame.

Figure 4. Self-destruct vulnerability code.

2.1.4. Delegatecall
The so-called delegatecall [27,28] means a proxy call. This means that when the

delegatecall function is called, the value of the built-in variable “message” will vary as the
state does. The values of “msg.sender” and “msg.value” remain unchanged when utilizing
the delegatecall function, but the execution environment is altered to that of the caller’s
(proxy) operating environment. As a result, calling a smart contract defined by a “stateful”
library will have an indirect impact on the current smart contract’s state.

The wallet contract is shown in Figure 5, it can be found that if msg.data.length > 0, the
function call of delegatecall will be triggered. It is observed that the wallet library function
can be self-destructed. If the self-destruct function is called, the state will change. This will
cause the fallback function of the wallet contract to permanently return 0 (the target

Figure 3. Timestamp dependence code of contract TimeFame1.

Appl. Sci. 2023, 13, 1733 4 of 16

2.1.3. Self-Destruct

The self-destruct [25] function can transfer the ether to the target address. Once ether
is involved, the attacker is likely to alter the address in order to transfer the ether from
the contract to his own account. The self-destruct function allows the attacker to transfer
ether to the target contract for his own goal. At the same time, the use of the self-destruct
function will affect the contract status. Tens of millions of dollars were lost as a result of the
parity multi-signature wallet vulnerability [26] in 2017 due to this vulnerability.

We can observe Figure 4 to find: each time, the player sends 1 ether to the EtherGame
contract, which is checked to see whether the balance is less than 8, and only then is the
function able to proceed. The contract will collapse if an attacker uses the self-destruct
function to force ether to be transferred into the EtherGame.

Appl. Sci. 2023, 11, x FOR PEER REVIEW 4 of 16

Figure 3. Timestamp dependence code of contract TimeFame1.

2.1.3. Self-Destruct
The self-destruct [25] function can transfer the ether to the target address. Once ether

is involved, the attacker is likely to alter the address in order to transfer the ether from the
contract to his own account. The self-destruct function allows the attacker to transfer ether
to the target contract for his own goal. At the same time, the use of the self-destruct
function will affect the contract status. Tens of millions of dollars were lost as a result of
the parity multi-signature wallet vulnerability [26] in 2017 due to this vulnerability.

We can observe Figure 4 to find: each time, the player sends 1 ether to the EtherGame
contract, which is checked to see whether the balance is less than 8, and only then is the
function able to proceed. The contract will collapse if an attacker uses the self-destruct
function to force ether to be transferred into the EtherGame.

Figure 4. Self-destruct vulnerability code.

2.1.4. Delegatecall
The so-called delegatecall [27,28] means a proxy call. This means that when the

delegatecall function is called, the value of the built-in variable “message” will vary as the
state does. The values of “msg.sender” and “msg.value” remain unchanged when utilizing
the delegatecall function, but the execution environment is altered to that of the caller’s
(proxy) operating environment. As a result, calling a smart contract defined by a “stateful”
library will have an indirect impact on the current smart contract’s state.

The wallet contract is shown in Figure 5, it can be found that if msg.data.length > 0, the
function call of delegatecall will be triggered. It is observed that the wallet library function
can be self-destructed. If the self-destruct function is called, the state will change. This will
cause the fallback function of the wallet contract to permanently return 0 (the target

Figure 4. Self-destruct vulnerability code.

2.1.4. Delegatecall

The so-called delegatecall [27,28] means a proxy call. This means that when the
delegatecall function is called, the value of the built-in variable “message” will vary as the
state does. The values of “msg.sender” and “msg.value” remain unchanged when utilizing
the delegatecall function, but the execution environment is altered to that of the caller’s
(proxy) operating environment. As a result, calling a smart contract defined by a “stateful”
library will have an indirect impact on the current smart contract’s state.

The wallet contract is shown in Figure 5, it can be found that if msg.data.length > 0, the
function call of delegatecall will be triggered. It is observed that the wallet library function
can be self-destructed. If the self-destruct function is called, the state will change. This
will cause the fallback function of the wallet contract to permanently return 0 (the target
address has no associated code), and the balance in it will be permanently locked and no
further operations can be performed.

2.1.5. Denial of Service

Denial of service (also known as DOS) [29–31] describes the excessive use of contract
resources (such as ether or gas) to prevent the contract from achieving the anticipated
execution purpose. The main common attack methods are as follows: (1) The smart contract
will not be carried out when it’s state changes and certain predetermined criteria are not
satisfied. This may result in a DOS attack. (2) The attacker makes the gas consumption
in the contract exceed the gas limit, and (3) the smart contract owner’s account is not
properly protected. Since transactions may be opened and closed by the owner’s account,
the transaction is likely to be frozen if the attacker gains ownership of the smart contract.

Appl. Sci. 2023, 13, 1733 5 of 16

Appl. Sci. 2023, 11, x FOR PEER REVIEW 5 of 16

address has no associated code), and the balance in it will be permanently locked and no
further operations can be performed.

Figure 5. A typical example of delegatecall vulnerability.

2.1.5. Denial of Service
Denial of service (also known as DOS) [29–31] describes the excessive use of contract

resources (such as ether or gas) to prevent the contract from achieving the anticipated
execution purpose. The main common attack methods are as follows: (1) The smart
contract will not be carried out when it’s state changes and certain predetermined criteria
are not satisfied. This may result in a DOS attack. (2) The attacker makes the gas
consumption in the contract exceed the gas limit, and (3) the smart contract owner’s
account is not properly protected. Since transactions may be opened and closed by the
owner’s account, the transaction is likely to be frozen if the attacker gains ownership of
the smart contract.

Figure 6 shows a simplified version of the KotEt contract [32]. The main reason for
vulnerabilities in this contract is in lines 5-6. First, the fifth line is carried out. If a new
bidder offers a higher price than the previous lead bidder, the contract will refund the
amount paid by the previous lead bidder for the bid. The fallback function is triggered at
this time, but if there is an unrealizable function in the attacker’s fallback function.
Therefore, the DOS attack is triggered when the contract becomes stuck returning the bid
amount.

Figure 6. A simplified version of the KotEt contract.

2.2. Symbolic Execution and Intermediate Representation
The main methods of analysis of smart contracts are static analysis and dynamic

detection. Static analysis mainly includes intermediary representation method, symbolic
execution method, and so on. The symbolic execution and intermediate representation
will next be briefly discussed.

Figure 5. A typical example of delegatecall vulnerability.

Figure 6 shows a simplified version of the KotEt contract [32]. The main reason for
vulnerabilities in this contract is in lines 5-6. First, the fifth line is carried out. If a new bidder
offers a higher price than the previous lead bidder, the contract will refund the amount
paid by the previous lead bidder for the bid. The fallback function is triggered at this time,
but if there is an unrealizable function in the attacker’s fallback function. Therefore, the
DOS attack is triggered when the contract becomes stuck returning the bid amount.

Appl. Sci. 2023, 11, x FOR PEER REVIEW 5 of 16

address has no associated code), and the balance in it will be permanently locked and no
further operations can be performed.

Figure 5. A typical example of delegatecall vulnerability.

2.1.5. Denial of Service
Denial of service (also known as DOS) [29–31] describes the excessive use of contract

resources (such as ether or gas) to prevent the contract from achieving the anticipated
execution purpose. The main common attack methods are as follows: (1) The smart
contract will not be carried out when it’s state changes and certain predetermined criteria
are not satisfied. This may result in a DOS attack. (2) The attacker makes the gas
consumption in the contract exceed the gas limit, and (3) the smart contract owner’s
account is not properly protected. Since transactions may be opened and closed by the
owner’s account, the transaction is likely to be frozen if the attacker gains ownership of
the smart contract.

Figure 6 shows a simplified version of the KotEt contract [32]. The main reason for
vulnerabilities in this contract is in lines 5-6. First, the fifth line is carried out. If a new
bidder offers a higher price than the previous lead bidder, the contract will refund the
amount paid by the previous lead bidder for the bid. The fallback function is triggered at
this time, but if there is an unrealizable function in the attacker’s fallback function.
Therefore, the DOS attack is triggered when the contract becomes stuck returning the bid
amount.

Figure 6. A simplified version of the KotEt contract.

2.2. Symbolic Execution and Intermediate Representation
The main methods of analysis of smart contracts are static analysis and dynamic

detection. Static analysis mainly includes intermediary representation method, symbolic
execution method, and so on. The symbolic execution and intermediate representation
will next be briefly discussed.

Figure 6. A simplified version of the KotEt contract.

2.2. Symbolic Execution and Intermediate Representation

The main methods of analysis of smart contracts are static analysis and dynamic
detection. Static analysis mainly includes intermediary representation method, symbolic
execution method, and so on. The symbolic execution and intermediate representation will
next be briefly discussed.

The intermediary representation method converts the source code or bytecode of a
smart contract into an intermediary representation (IR) with high semantic expression, and
then analyzes the intermediary representation of the contract to find vulnerabilities. The
symbolic execution approach may also be used to find smart contract vulnerabilities. The
constraint solver is used to solve the constraint and determine the input to the execution,
and finally the constraint solver is used to obtain new test inputs and detect the presence of
vulnerabilities. Smartcheck is a typical static analysis tool.

2.3. Smartcheck’s Detection Method

Of the five vulnerabilities, Smartcheck can detect timestamp dependence vulnerabili-
ties and self-destruct vulnerabilities.

For timestamp dependence: Smartcheck detects the presence of “==” after the block
timestamp (such as “now % 5 == 0”). With this kind of detection, it is clear that there are a
lot of false negatives.

Appl. Sci. 2023, 13, 1733 6 of 16

For self-destruct: Smartcheck detects the presence of the suicide function. With this
kind of detection, it is clear that there are a lot of false positives.

3. MSmart
3.1. MSmart

Smartcheck is a static analysis tool for smart contracts implemented in Java. MSmart
follows Smartcheck’s detection framework. It uses the lexical and syntactic analysis to
convert Solidity [33] source code into path diagrams, as shown in Figure 7. MSmart uses
the ANTLR [34] language parser and Solidity grammar to produce an XML parse tree as
an intermediate representation. Finally, MSmart identifies the vulnerability through XML
Path Language (referred to as Xpath, which is a language for finding information in XML
documents) rule matching [35].

Appl. Sci. 2023, 11, x FOR PEER REVIEW 6 of 16

The intermediary representation method converts the source code or bytecode of a
smart contract into an intermediary representation (IR) with high semantic expression,
and then analyzes the intermediary representation of the contract to find vulnerabilities.
The symbolic execution approach may also be used to find smart contract vulnerabilities.
The constraint solver is used to solve the constraint and determine the input to the
execution, and finally the constraint solver is used to obtain new test inputs and detect the
presence of vulnerabilities. Smartcheck is a typical static analysis tool.

2.3. Smartcheck’s Detection Method
Of the five vulnerabilities, Smartcheck can detect timestamp dependence

vulnerabilities and self-destruct vulnerabilities.
For timestamp dependence: Smartcheck detects the presence of “==” after the block

timestamp (such as “now % 5 == 0”). With this kind of detection, it is clear that there are a
lot of false negatives.

For self-destruct: Smartcheck detects the presence of the suicide function. With this
kind of detection, it is clear that there are a lot of false positives.

3. MSmart
3.1. MSmart

Smartcheck is a static analysis tool for smart contracts implemented in Java. MSmart
follows Smartcheck’s detection framework. It uses the lexical and syntactic analysis to
convert Solidity [33] source code into path diagrams, as shown in Figure 7. MSmart uses
the ANTLR [34] language parser and Solidity grammar to produce an XML parse tree as
an intermediate representation. Finally, MSmart identifies the vulnerability through XML
Path Language (referred to as Xpath, which is a language for finding information in XML
documents) rule matching [35].

Figure 7. MSmart analysis flow chart.

3.2. MSmart’s Batch Test Function
The time it takes to test large data sets is significantly reduced by MSmart’s addition

of a batch testing feature to the original Smartcheck. We created a Ttest class, which is
shown in Figure 8, that just takes the location to the folder containing the smart contracts
as input, and produces a.txt or.csv file as output. This simplifies the manual tagging
process for smart contracts.

Figure 7. MSmart analysis flow chart.

3.2. MSmart’s Batch Test Function

The time it takes to test large data sets is significantly reduced by MSmart’s addition
of a batch testing feature to the original Smartcheck. We created a Ttest class, which is
shown in Figure 8, that just takes the location to the folder containing the smart contracts as
input, and produces a.txt or.csv file as output. This simplifies the manual tagging process
for smart contracts.

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Figure 8. Introduction of Ttest.

Appl. Sci. 2023, 13, 1733 7 of 16

3.3. XML Parse Tree

The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:
we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck

Our summary is shown in Table 1 to help readers better understand the similarities
and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck

integer overflow

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

timestamp dependence

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

self-destruct

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

delegatecall

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

DOS

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

batch detection

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

MSmart adds detection for integer overflow vulnerabilities, delegatecall vulnerabilities
and DOS vulnerabilities, and MSmart also supports batch detection. Both MSmart and
Smartcheck can detect for timestamp dependence vulnerabilities and self-destruction
vulnerabilities, but MSmart adds some rules to reduce false positives and false negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

The integer overflow vulnerability satisfies two basic conditions: (1) an arithmetic
operation occurs, and (2) the arithmetic operation has an uint data type on one side. If both
conditions are met and there is no integer overflow protection, it can be concluded that
there is an integer overflow vulnerability. In the experiment, the integer overflow protection

Appl. Sci. 2023, 13, 1733 8 of 16

is taken into account in order to reduce false positives. Integer overflow vulnerabilities
may presently be protected against in two ways: (1) by using the standard SafeMath [36]
library, and (2) by using the “if” or “require” judgment statements. To guard against integer
overflow vulnerabilities, for instance, use the line “if (uint256 (cnt) * _value 2ˆ256 - 1)” as a
judgment statement.

Based on the above analysis, the basic ideas for improvement are shown in Algorithm 1:
The integer overflow detection algorithm is shown in Algorithm 1.

Algorithm 1: The integer overflow detection algorithm.

Input: a smart contract P
Output: integer overflow vulnerabilities
1: Convert the source code to the corresponding path diagram
2: Match according to the path expression pattern
3: if pattern matching found arithmetic operation then
4: if the data type involved in the arithmetic operation is the uint type then
5: if not using the standard library function SafeMath then
6: if without using if or require statement guards then
7: return integer overflow vulnerability
8: else
9: return 0
10: end if
11: else
12: return 0
13: end if
14: else
15: return 0
16: end if
17: else
18: return 0
19: end if
20: Integrate all discovered vulnerabilities

In the integer overflow detection algorithm, we mainly check the contract in the
following way: (1) The data are examined to determine whether one of the types is uint,
if the contract contains an arithmetic operation. (2) MSmart determines if the contract
makes use of the SafeMath standard library. (3) The presence or absence of an “if” or
“require” judgment statement before an arithmetic operation occurs. MSmart will identify
an integer overflow vulnerability if there is an arithmetic computation that does not utilize
the SafeMath library and an “if” or “require” judgment statement.

4.2. Timestamp Dependence

When mining a block, miners must set a block timestamp for the block. Typically, the
block timestamp is set to the current time on the miner’s local system. However, miners
can change this time by roughly 900 s, and other miners will still accept this block [37].
Specifically, miners verify whether the block timestamp is larger than the block timestamp
of the preceding block and within 900 s of the block timestamp on their local system
after receiving a new block and doing additional validity checks. Therefore, attackers
may alter the execution outcomes of timestamp-dependent contracts by selecting alternate
block timestamps.

The timestamp dependence detection algorithm is shown in Algorithm 2.

Appl. Sci. 2023, 13, 1733 9 of 16

Algorithm 2: The timestamp-dependent algorithm.

Input: a smart contract P
Output: timestamp dependence vulnerabilities
1: Convert the source code to the corresponding path diagram
2: Match according to the path expression pattern
3: if pattern matching found timestamp (such as “now”) then
4: if the timestamp is assigned a value and then an arithmetic operation occurs on the value

then
5: return timestamp dependence vulnerability
6: else
7: return 0
8: end if
9: else
10: return 0
11: end if
12: Integrate all discovered vulnerabilities

In the timestamp dependence detection algorithm, MSmart mainly checks the contracts
as follows: (1) MSmart checks whether the block timestamp appears in the contract first.
(2) It is determined if a timestamp has been assigned to the value before determining
whether an arithmetic operation is carried out on this value. If all of the above exist,
MSmart has identified a vulnerability.

4.3. Self-Destruct

Experimental analysis: The self-destruct function can force the balance in the account
to be sent to a specified address. The attacker will steal the ether in the contract if the
address of the input account differs from the address of the contract owner. Therefore, it is
important to confirm that the sending address is the address of the contract owner.

Based on the above analysis, the basic ideas for improvement are shown in Algo-
rithm 3:

The self-destruct vulnerability detection algorithm is shown in Algorithm 3.

Algorithm 3: The self-destruct vulnerability detection algorithm.

Input: a smart contract P
Output: Vulnerability
1: Convert the source code to the corresponding path diagram
2: Match according to the path expression pattern
3: if pattern matching found keyword “suicide” or “self-destruct” then
4: if there is no contract owner judgment or subsequent address are not contract owners

then
5: return self-destruct vulnerability
6: else
7: return 0
8: end if
9: else
10: return 0
11: end if
12: Integrate all discovered vulnerabilities

In the self-destruct detection algorithm, we mainly check the contracts as follows:
(1) MSmart finds whether there is a self-destruct function in the contract. (2) When the
self-destruct function transfers ether, MSmart verifies that the address is the address of
the contract owner. (3) Nowadays, the self-destruct function “suicide” is less used, and
it is necessary to add another “selfdestruct” function to the judgment. If the destination
address of the self-destruct function is not the owner of the contract, MSmart determines
that a vulnerability exists.

Appl. Sci. 2023, 13, 1733 10 of 16

4.4. Delegatecall

If there is “msg.sender” or “msg.value” after the delegatecall, there is a significant
security risk. To avoid this vulnerability is to not use delegatecall functions.

Based on the above analysis, the basic ideas for improvement are shown in Algorithm 4:
The delegatecall detection algorithm is shown in Algorithm 4.

Algorithm 4: delegatecall detection algorithm.

Input: a smart contract P
Output: delegatecall vulnerabilities
1: Convert the source code to the corresponding path diagram
2: Match according to the path expression pattern
3: if pattern matching found keyword “delegatecall” then
4: if the variable msg.sender or msg.value exists after the keyword “delegatecall” then
5: return delegatecall vulnerability
6: else
7: return 0
8: end if
9: else
10: return 0
11: end if
12: Integrate all discovered vulnerabilities

In the delegatecall algorithm, we mainly check the contracts as follows: (1) MSmart
checks the contract for the presence of “delegatecall”. (2) If “delegatecall” is present,
MSmart determines whether “msg.value” or “msg.data” is present after delegatecall. If all of
the above exist, MSmart has identified a vulnerability.

4.5. Denial of Service

The “require” judgment must be met for the contract to continue, as shown by the
analysis above; hence, a possibility must be taken into account. The attacker will finally
attack successfully if the “require” judgment statement keeps failing and producing an
anomalous outcome. Therefore, the attention should be paid to the presence of the transfer
function in the “require” judgment statement.

Based on the above analysis, the basic ideas for improvement are shown in Algorithm 5:
The DOS detection algorithm is shown in Algorithm 5.

Algorithm 5: DOS detection algorithm.

Input: a smart contract P
Output: DOS vulnerabilities
1: Convert the contract P into an intermediate representation (IR)
2: Match according to the path expression pattern
3: if pattern matching found conditional statement (such as “require”) then
4: if there are transfer keywords (such as “send”) within the determine statements then
5: return DOS vulnerability
6: else
7: return 0
8: end if
9: else
10: return 0
11: end if
12: Integrate all discovered vulnerabilities

In the DOS algorithm, we mainly check the contracts as follows: (1) MSmart first
checks if there is a “require” statement in the contract. (2) MSmart determines whether

Appl. Sci. 2023, 13, 1733 11 of 16

a transfer function exists in the statement (such as “call”). If both take place, a DOS
vulnerability is identified.

5. Experiment

We implemented an improved tool called MSmart, tested a large number of smart
contracts, and thoroughly analyzed several common contracts in order to verify the efficacy
of the detection algorithm proposed. This proves that the improved algorithm has better
performance. Through trials, we timed how long it took each tool to find vulnerabilities in
100 and 1000 smart contracts and compared the findings. This proves that it takes less time
for MSmart to detect the same vulnerabilities.

5.1. MSmart vs. Smartcheck on Large Data Sets

As of August 2022, the source codes of 6000 contracts downloaded from Etherscan
were filtered and verified [38], and MSmart runs on this data set. MSmart has lowered
the number of false negatives and false positives when compared to the outcomes of
Smartcheck. Table 2 displays the data after the same outcomes were eliminated:

Table 2. Comparison of MSmart and Smartcheck on large data sets.

Smart Contract Vulnerability
Categories

Number of Smartcheck
Vulnerability Analysis

Smart Contract Vulnerability
Categories

Number of MSmart
Vulnerability Analysis

integer overflow 0 integer overflow 2115
timestamp dependence 44 timestamp dependence 1175

DOS 0 DOS 1102
self-destruct 330 self-destruct 154
delegatecall 0 delegatecall 7

From Table 2, we can find that:
(1) Integer overflow vulnerability: Smartcheck did not protect against this vulnera-

bility, and MSmart reported 2115 vulnerabilities. A total of 72% of the integer overflow
vulnerabilities were discovered to be true positives after manual verification. Because
the protection against integer overflows is building a function, it is difficult to implement
unified protection because the function name is not fixed. This is the main reason why
contracts reporting integer overflow vulnerabilities greater than 4 frequently reported
false positives.

(2) Timestamp dependence: Smartcheck reported 44 vulnerabilities, and MSmart
reported 1175 vulnerabilities. A total of 80% of the timestamp dependence vulnerabilities
were discovered to be true positives after manual verification. It is risky to use the block
timestamp as a pseudo-random number, if it is used as a trigger condition to carry out
certain significant operations, even if it is altered, the result will not be affected, and MSmart
still identifies it as a vulnerability.

It is mentioned in Section 4.2 when miners can obtain results in their favor by freely
manipulating the block timestamps. Therefore, there is a high risk of timestamp-dependent
vulnerabilities. In the timestamp-dependent vulnerability detection, MSmart detected
1175 vulnerabilities in total, and Smartcheck detected only 44 vulnerabilities. For the
relatively large difference between the results of the two tools, we randomly selected six
contracts from the vulnerability detection reports for validation, and the final validation
results are shown in Table 3.

Appl. Sci. 2023, 13, 1733 12 of 16

Table 3. Timestamp issue statistics results.

Contract MSmart Smartcheck

Governmental_survey.sol

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Lottopollo.sol

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Roulette.sol

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Time_crowdsale.sol

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Time.sol

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

TimeFame.sol

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

Appl. Sci. 2023, 11, x FOR PEER REVIEW 7 of 16

Figure 8. Introduction of Ttest.

3.3. XML Parse Tree
The XML parse tree of the contract code (uint256 (cnt) * _value) is shown in Figure 3:

we will choose an example to demonstrate how MSmart transforms Solidity source code
into the appropriate path diagram.

Figure 9 shows the tree structure of the (uint256 (cnt) * _value) code expression, in
which the root node is “expression”, each child node is “expression”,”muldivOperator”
and “expression”, and the leaf nodes are “uint256”, “cnt”, “*”, and “_value”. To illustrate
how to find the “uint256 (cnt) * _value” by path matching, the “expression” of the root
node is first determined and then find the leaf nodes “*” and “uint256”.

Figure 9. uint256 (cnt) * _value code analysis tree.

3.4. Differences between MSmart and Smartcheck
Our summary is shown in Table 1 to help readers better understand the similarities

and differences between MSmart and Smartcheck:

Table 1. Differences between MSmart and Smartcheck.

Differences MSmart Smartcheck
integer overflow  

timestamp dependence  
self-destruct  
delegatecall  

DOS  
batch detection  

MSmart adds detection for integer overflow vulnerabilities, delegatecall
vulnerabilities and DOS vulnerabilities, and MSmart also supports batch detection. Both
MSmart and Smartcheck can detect for timestamp dependence vulnerabilities and self-
destruction vulnerabilities, but MSmart adds some rules to reduce false positives and false
negatives.

4. MSmart’s Detection Method
4.1. Integer Overflow

(3) DOS: SmartCheck did not protect against this vulnerability and MSmart reported
1102 vulnerabilities. Analysis of this issue is more challenging since MSmart is a static
smart contract analysis tool. As a result, there are some false positives in detecting this
vulnerability. MSmart will notify users if a smart contract has this vulnerability.

(4) Self-destruct: Smartcheck reported 330 vulnerabilities, and MSmart reported
154 vulnerabilities. In the manual verification of detected self-destruct vulnerabilities,
it was discovered that this vulnerability had a low false positive rate. The self-destruct
vulnerability’s fixed format is the primary cause. MSmart is thus more effective at guarding
against this vulnerability.

(5) Delegatecall: SmartCheck did not protect against this vulnerability and MSmart
reported seven vulnerabilities. These seven vulnerabilities are false positives, but if the
situation changes, they become real vulnerabilities.

It is clear from the data above that MSmart can effectively analyze timestamp and
integer overflow vulnerabilities. Due to the high mistake frequency of timestamp depen-
dencevulnerabilities and integer overflow vulnerabilities, this enhancement may provide
more effective protection. MSmart can also analyze DOS and delegatecall vulnerabili-
ties. If any of these vulnerabilities emerge, they may be reported. As a result, MSmart’s
vulnerability protection is more effective than Smartcheck’s.

5.2. MSmart vs. Smartcheck on Specific Contracts

All vulnerabilities discovered by the tool are manually marked as “true positives” (TP)
or “false positives” (FP) (TP is the actual number of vulnerabilities, FP is the number of
false positives). For each detection tool, the false discovery rate (FDR) was defined as the
number of vulnerabilities for that tool divided by the number of all vulnerabilities reported
by that tool. The false negative rate (FRN) is the number of FNs for the tool divided by the
number of all true discoveries (by any tool or manually), which is the sum of the tool’s TP
and FN (FN is the number of false negatives. The calculation formula is as follows:

FDR = FP/ (TP + FP) (1)

FNR = FN/ (TP + FN) (2)

Due to the fact that Smartcheck does not support delegatecall vulnerabilities, DOS
vulnerabilities, and integer overflow vulnerabilities. Therefore, timestamp-dependent
vulnerabilities and self-destruct vulnerabilities are compared here. There are 20 smart
contracts in Project1, 10 of which are timestamp dependence vulnerabilities, and 10 of
which appear to be timestamp-dependently vulnerable but are not. A total of 20 smart
contracts make up project2, 8 of which have self-destruct vulnerabilities, and 12 of which
appear to have self-destruct vulnerabilities but have no vulnerabilities. The analysis results
are shown in Table 4.

Table 4 shows that the FNR of these three smart contracts has decreased from 83.3%,
and 75.0% to 50.0% and 25.0%, respectively, and that the FDR has increased from 9.1%, and
20.0% to 33.3% and 42.8%. Since the FNR has decreased more noticeably, MSmart has likely
been successful in identifying contract vulnerabilities and reducing false negative. FDR has
been risen compared to Smartcheck, which shows the rise of MSmart’s accuracy rate.

Appl. Sci. 2023, 13, 1733 13 of 16

Table 4. Comparison of MSmart and Smartcheck on specific projects.

Project Indicator Smartcheck MSmart

Project1
TP/FP/FN

FDR (%)
FNR (%)

1/10/5
9.1

83.3

5/10/5
33.3
50.0

Project2
TP/FP/FN

FDR (%)
FNR (%)

2/8/6
20.0
75.0

6/8/2
42.8
25.0

In conclusion, MSmart has significantly decreased the false negative rate when com-
pared to Smartcheck. Considering the security of smart contracts, if the detection tool has
false negatives, it is fatal to the security of smart contracts. Naturally, it cannot reach 100%
detection due to a flaw in its detection technique, so some false positives are unavoidable.

5.3. MSmart vs. Other Tools

Oyente is the first smart contract detection tool that uses contract control flow diagrams
and symbolic execution to find smart vulnerabilities. Transaction order dependencies,
integer overflow vulnerabilities, etc. are all detected by Oyente. Oyente has high false
negatives but few false positives. The official suggested tool for detecting smart contracts in
Ethereum is Mythril, which uses symbolic execution to find smart contract vulnerabilities.
The majority of vulnerabilities can be successfully detected via Mythril. Slither is a smart
contract vulnerability detection tool that uses an intermediate representation and can
identify vulnerabilities from a syntactic standpoint. Therefore, we choose these tools. Next,
the test dataset is the dataset given by smartbugs [39] and a small number of validated
vulnerable smart contracts in order to make the experiment realistic and fair. Finally,
through analysis results, MSmart has made a series of improvements in both false negatives
and false positives. The analysis results are shown in Table 5.

Table 5. Comparison of MSmart and other tools.

Smart Contract Vulnerability
Categories (Number of

Vulnerabilities)
Oyente Mythril Slither Smartcheck MSmart

integer overflow (15) 11 12 0 0 13
timestamp dependence (5) 1 0 1 1 2

DOS (6) 0 0 0 0 2
self-destruct (5) 0 5 5 1 5
Delegatecall (5) 0 5 5 0 5

Note: the numbers in the table all represent the number of vulnerabilities detected by each tool.

The experimental analysis shows the following:
(1) For integer overflow vulnerabilities: Oyente, Mythril and MSmart can detect most

of the integer overflow vulnerabilities. On the other hand, this kind of smart contract
vulnerability detection is not supported by Slither and Smartcheck. MSmart detects 13
out of 15 vulnerable smart contracts (note: MSmart has more detected vulnerabilities than
other tools). This demonstrates that MSmart is superior to other mitigation techniques for
integer overflow vulnerabilities.

(2) For timestamp dependence vulnerabilities: Oyente, Slither, Smartcheck, and MS-
mart can detect this type of vulnerability. This kind of smart contract vulnerability detection
is not supported by Mythril. Oyente detects if a money flow depends on the timestamp.
Therefore, some of the timestamp vulnerabilities that are not related to money flow cannot
be detected. Smartcheck and Slither’s detection algorithms are not flawless. MSmart offers
a more thorough defense against timestamp dependence vulnerabilities.

(3) For DOS vulnerabilities: MSmart can detect this type of vulnerability. On the
other hand, this kind of smart contract vulnerability detection is not supported by Oyente,

Appl. Sci. 2023, 13, 1733 14 of 16

Mythril, Slither, and Smartcheck. Based on the analysis’s findings, MSmart has been able to
guard against this kind of vulnerability.

(4) For self-destruct vulnerabilities: Mythril, Slither, Smartcheck, and MSmart can
detect this type of vulnerability. This kind of smart contract vulnerability detection is not
supported by Oyente. Smartcheck’s detection rules for such vulnerabilities are not perfect.
Therefore, only one can be detected. Mythril, Slither, and Smartcheck can detect all of them.

(5) For delegatecall vulnerabilities: Mythril, Slither and Smartcheck can detect this
type of vulnerability. This kind of smart contract vulnerability detection is not supported
by Oyente and Smartcheck.

In conclusion, MSmart effectively protects against the aforementioned five categories
of vulnerabilities. MSmart cannot analyze all the vulnerabilities in time, but it has been
able to defend most of them.

5.4. Time Efficiency Comparison and Analysis

Along with false positive and false positive rates, the time efficiency in smart contract
detection is also crucial for detecting smart contract vulnerabilities. Testing the time
consumption of Oyente, Slither, and MSmart allowed for the analysis of the time efficiency
of MSmart, as shown in Table 6.

Table 6. Comparison of MSmart and other tools for time efficiency.

Smart Contract Detection Tool
Time Consumption/s

100 Contracts 1000 Contracts

Oyente 21,045.3 223,056.7
Slither 54.0 567.3

Smartcheck 36.4 400.1
MSmart 10.3 80.0

The experiment defines a variable Rt representing the ratio, which is used to denote
the ratio of the time consumed by each tool and MSmart in the case of executing the same
number of contracts. The calculation formula is as follows:

Rt(tool) = T(tool) / T(MSmart) (3)

The results are shown in Table 7.

Table 7. The value of Rt(tool).

Tool Oyente Slither Smartcheck

Rt(tool) (100 contracts)
Rt(tool) (1000 contracts)

2043.2
2788.2

5.2
7.1

3.5
5.0

Table 7 shows that the value of Rt(Oyente), Rt(Slither), Rt(Smartcheck) decreases sequentially
(note: Rt(Smartcheck) > Rt(MSmart) = 1). To facilitate MSmart batch detection for smart contracts,
we used six threads to implement parallel batch processing between each Solidity file,
so MSmart is faster than Smartcheck. Oyente leverages symbolic execution to detect
vulnerabilities. By translating the source code into bytecode and then detecting smart
contract vulnerabilities based on the contract flowchart. Due to the use of constraint solver,
the time consumption is much higher than MSmart. Slither not only detects smart contract
vulnerabilities but also analyzes the syntax. Therefore, Slither takes slightly longer to detect
than MSmart and Smartcheck. These show that MSmart has substantially greater analytical
efficiency than Oyente Slither and Smartcheck, and that their ratio rises as the number of
contracts increases.

Appl. Sci. 2023, 13, 1733 15 of 16

6. Conclusions

We investigate the fundamentals of vulnerabilities such as integer overflow and, based
on the research, create a new smart contract detection tool called MSmart. When defending
against particular vulnerabilities, MSmart has shown to be more effective. MSmart has
good protection against timestamp vulnerabilities and integer overflow vulnerabilities,
according to a comparison of MSmart with other tools. MSmart can also report these
kinds of vulnerabilities whenever they occur, such as DOS vulnerabilities, delegatecall
vulnerabilities, and self-destruct vulnerabilities.

MSmart mostly depends on the vulnerability criteria developed for analysis, yet
attackers are able to go around the defense and launch an assault. It is challenging for
MSmart to rely only on current rules in order to achieve more accurate protection. Therefore,
dynamic execution and static analysis may be integrated in future studies. For instance, it
is possible to completely fulfill the static analysis of integer overflow vulnerabilities and to
use dynamic execution to confirm the delegatecall vulnerabilities.

Author Contributions: Conceptualization, J.F., X.Z.; investigation and methodology, J.F., X.Z.; writing
of the original draft, J.F.; writing of the review and editing, J.F., X.Z.; validation, X.C.; software, J.F.;
data curation, J.F., X.Z. All authors have read and agreed to the published version of the manuscript.

Funding: The National Natural Science Foundation of China: (61972360, 62072392).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nakamoto, S. Bitcoin: A peer-to-Peer Electronic Cash System. Available online: https://bitcoin.org/bitcoin.pdf (accessed on

10 December 2022).
2. Szabo, N. Smart contracts: Building blocks for digital markets. J. Transhumanist Thought 1996, 18, 2.
3. Lauslahti, K.; Juri, M.; Timo, S. Smart contracts–How will blockchain technology affect contractual practices? Etla Rep. 2017, 68.

[CrossRef]
4. Wang, S.; Ouyang, L.; Yuan, Y.; Ni, X.; Han, X.; Wang, F.Y. Blockchain-enabled smart contracts: Architecture, applications, and

future trends. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2266–2277. [CrossRef]
5. Thwin, T.T.; Vasupongayya, S. Blockchain-Based Access Control Model to Preserve Privacy for Personal Health Record Systems.

Secur. Commun. Netw. 2019, 2019, 8315614. [CrossRef]
6. Chen, J.; Xia, X.; Lo, D.; Yang, X. Maintaining smart contracts on Ethereum: Issues, techniques, and future challenges. arXiv 2020,

arXiv:200700286.
7. FarmEOS. Available online: https://bcsec.org/indec/detail/id/456/ (accessed on 10 December 2022).
8. Playgames. Available online: https://bcesc.org/index/detail/id/459/ (accessed on 10 December 2022).
9. LuckBet. Available online: https://bcsec.org/index/detail/id/461/ (accessed on 10 December 2022).
10. EOSlots. Available online: https//bcsec.org/index/detail/id/477/ (accessed on 10 December 2022).
11. Torres, C.F.; Schütte, J.; State, R. Osiris: Hunting for integer bugs in ethereum smart contracts. In Proceedings of the 34th Annual

Computer Security Applications Conference, New York, NY, USA, 3–7 December 2018; pp. 664–676.
12. Luu, L.; Chu, D.H.; Olickel, H.; Olickel, H.; Saxena, P.; Hobor, A. Making smart contracts smarter. In Proceedings of the 2016

ACM SIGSAC conference on computer and communications security, Vienna, Austria, 24–26 October 2016; pp. 254–269.
13. Moura, L.; Bjørner, N. Z3: An efficient SMT solver. In Proceedings of the International conference on Tools and Algorithms for the

Construction and Analysis of Systems, Budapest, Hungary, 29 March–6 April 2008; pp. 337–340.
14. Fu, M.; Wu, L.; Hong, Z.; Sun, H.; Feng, W. A critical-path-coverage-based vulnerability detection method for smart contracts.

IEEE Access 2019, 7, 147327–147344. [CrossRef]
15. Mythril. Available online: https://github.com/ConsenSys/mythril/ (accessed on 10 December 2022).
16. Altman, I. A conceptual analysis. Environ. Behav. 1976, 8, 7–29. [CrossRef]
17. Newsome, J.; Dawn, X.S. Dynamic taint analysis for automatic detection, analysis, and signature generation of exploits on

commodity software. Chin. J. Eng. Math. 2005, 29, 29720–29724.
18. Jensen, T.; Le, M.D.; Thorn, T. Verification of control flow based security properties. In Proceedings of 1999 IEEE Symposium on

Security and Privacy (Cat. No. 99CB36344), Oakland, CA, USA, 9–12 May 1999; pp. 89–103.

https://bitcoin.org/bitcoin.pdf
http://doi.org/10.2139/ssrn.3154043
http://doi.org/10.1109/TSMC.2019.2895123
http://doi.org/10.1155/2019/8315614
https://bcsec.org/indec/detail/id/456/
https://bcesc.org/index/detail/id/459/
https://bcsec.org/index/detail/id/461/
https//bcsec.org/index/detail/id/477/
http://doi.org/10.1109/ACCESS.2019.2947146
https://github.com/ConsenSys/mythril/
http://doi.org/10.1177/001391657600800102

Appl. Sci. 2023, 13, 1733 16 of 16

19. Feist, J.; Grieco, G.; Groce, A. Slither: A static analysis framework for smart contracts. In Proceedings of the 2019 IEEE/ACM
2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), Montreal, QC, Canada,
27 May 2019; pp. 8–15.

20. Tikhomirov, S.; Voskresenskaya, E.; Ivanitskiy, I. Smartcheck: Static analysis of ethereum smart contracts. In Proceedings of the 1st
International Workshop on Emerging Trends in Software Engineering for Blockchain, New York, NY, USA, 27 May 2018; pp. 9–16.

21. Lhee, K.S.; Chapin, S.J. Buffer overflow and format string overflow vulnerabilities. Softw. Pract. Exp. 2003, 33, 423–460. [CrossRef]
22. BeautyChain. Available online: https://etherscan.io/token/0xc5d105e63711398af9bbff092d4b6769c82f793d/ (accessed on

10 December 2022).
23. Wang, H.; Zhang, F.; Li, T.; Gao, M.; Du, X. Security and privacy-protection technologies in smart contract. J. Nanjing Univ. Posts

Telecommun. Nat. Sci. 2019, 39, 63–71.
24. Atzei, N.; Bartoletti, M.; Cimoli, T. A survey of attacks on ethereum smart contracts (sok). In Proceedings of the 2019 International

Conference on Principles of Security and Trust, Uppsala, Sweden, 24–25 April 2017; pp. 164–186.
25. Chen, J.; Xia, X.; Lo, D.; Grundy, J. Why do smart contracts self-destruct? investigating the selfdestruct function on ethereum.

ACM Trans. Softw. Eng. Methodol. (TOSEM) 2021, 31, 1–37. [CrossRef]
26. Parity multisig bug. Available online: https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug (accessed on

10 December 2022).
27. Wang, A.; Wang, H.; Jiang, B.; Chen, W.K. Artemis: An improved smart contract verification tool for vulnerability detection.

In Proceedings of 2020 7th International Conference on Dependable Systems and Their Applications (DSA), Xi’an, China,
28–29 November 2020; pp. 173–181.

28. Kaleem, M.; Mavridou, A.; Laszka, A. Vyper: A security comparison with solidity based on common vulnerabilities. In
Proceedings of the 2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS),
Paris, France, 28–30 September 2020; pp. 107–111.

29. Fu, M.; Wu, L.; Hong, Z.; Feng, W. Research on vulnerability mining technique for smart contracts. J. Comput. Appl. 2019, 39, 1959.
30. Ni, Y.; Zhang, C.; Yin, T. A survey of smart contract vulnerability research. J. Cyber Secur. 2020, 5, 78–99.
31. Gasti, P.; Tsudik, G.; Uzun, E.; Zhang, L. DoS and DDoS in named data networking. In Proceedings of the 2013 22nd International

Conference on Computer Communication and Networks (ICCCN), Nassau, Bahamas, 30 July –2 August 2013; pp. 1–7.
32. KotET. Available online: https://www.kingoftheether.com/thrones/kingoftheether/index.html/ (accessed on 10 December 2022).
33. Solidity. Available online: http://solidity.readthedocs.org/ (accessed on 10 December 2022).
34. ANTLR. Available online: http://www.antlr.org/ (accessed on 10 December 2022).
35. XML Path Language. Available online: https://www.w3.org/TR/xpath-3/ (accessed on 10 December 2022).
36. SafeMath. Available online: https://zeppelin.tryblockchain.org/SafeMath.html/ (accessed on 10 December 2022).
37. Yaish, A.; Tochner, S.; Zohar, A. Blockchain stretching & squeezing: Manipulating time for your best interest. In Proceedings of

the 23rd ACM Conference on Economics and Computation, New York, NY, USA, 11–15 July 2022; pp. 65–88.
38. Etherscan. Available online: https://etherscan.io/ (accessed on 10 December 2022).
39. Smartbugs. Available online: https://github.com/smartbugs/ (accessed on 10 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1002/spe.515
https://etherscan.io/token/0xc5d105e63711398af9bbff092d4b6769c82f793d/
http://doi.org/10.1145/3488245
https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug
https://www.kingoftheether.com/thrones/kingoftheether/index.html/
http://solidity.readthedocs.org/
http://www.antlr.org/
https://www.w3.org/TR/xpath-3/
https://zeppelin.tryblockchain.org/SafeMath.html/
https://etherscan.io/
https://github.com/smartbugs/

	Introduction
	Preliminary Knowledge
	Smart Contracts and Vulnerabilities
	Integer Overflow
	Timestamp Dependence
	Self-Destruct
	Delegatecall
	Denial of Service

	Symbolic Execution and Intermediate Representation
	Smartcheck’s Detection Method

	MSmart
	MSmart
	MSmart’s Batch Test Function
	XML Parse Tree
	Differences between MSmart and Smartcheck

	MSmart’s Detection Method
	Integer Overflow
	Timestamp Dependence
	Self-Destruct
	Delegatecall
	Denial of Service

	Experiment
	MSmart vs. Smartcheck on Large Data Sets
	MSmart vs. Smartcheck on Specific Contracts
	MSmart vs. Other Tools
	Time Efficiency Comparison and Analysis

	Conclusions
	References

