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Abstract: Collaborative robots are revolutionising the manufacturing industry and the way workers
perform their tasks. When designing shared workspaces between robots and humans, human
factors and ergonomics are often overlooked. This study assessed the relationship between cognitive
workload, workstation design, user acceptance and trust in collaborative robots. We combined
subjective and objective data to evaluate the cognitive workload during an assembly task in three
different scenarios in which we manipulated various features of the workstation and interaction
modalities. Our results showed that participants experienced a reduction in cognitive workload in
each of the three trials, indicating an improvement in cognitive performance. Additionally, we found
that user acceptance predicted perceived stress across the trials but did not significantly impact the
cognitive workload. Trust was not found to moderate the relationship between cognitive workload
and perceived stress. This study has the potential to make a significant contribution to the field of
collaborative assembly systems by providing valuable insights and helping to bridge the gap between
researchers and practitioners. This study can potentially impact companies looking to improve safety,
productivity and efficiency.
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1. Introduction

The Fourth Industrial Revolution is characterised by constant interaction between
industrial systems and workers [1]. Many digital technologies are transforming the man-
ufacturing industry by increasing the efficiency and effectiveness of daily collaboration
while blurring the boundaries between the physical world and virtual space [2]. Among
the many technologies, collaborative robots aim to maximise the capabilities of humans
and robots by simultaneously working together towards a shared goal, combining the
accuracy and performance of collaborative robots (e.g., prolonged repetitive tasks) with the
flexibility and dexterity of humans (e.g., problem-solving, creativity) [3,4].

Unlike “traditional” industrial robots or parallel kinematics robots [5], collaborative
robots (cobots) offer the operator the opportunity to interact safely with the robot, either vol-
untarily or not, in a shared and cage-free workspace [6]. Cobots are typically introduced to
reduce physical and cognitive workloads, as well as improve safety and quality, and could
impact various organisational aspects, such as productivity, flexibility and accuracy [7–9].
From a phenomenological perspective, cobots are defined as “quasi-others” or “more-than-
things” that are considered interactive colleagues rather than machines [10,11]. Robots’
appearance and behaviour were found to significantly influence workers’ acceptance of the
collaborative robot [12]. Since this is a young innovation that is rarely implemented practi-
cally in companies, researchers should investigate the role of acceptance in human–robot
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collaboration; together with usability and trust towards the robot, acceptance is highlighted
as fundamental for optimal and reliable interaction [13–15].

Many organisations addressed the importance of human factors and ergonomics
(HFE) in HRC. The role of HFE involves studying the ergonomics of human–robot in-
terfaces, developing guidelines and standards for HRC, and conducting evaluations and
assessments of human–robot systems. By considering the human factors and ergonomic
aspects in the design process, the collaboration between humans and robots could be more
effective, efficient and safe [16–18]. In recent years, there was an increasing number of
studies in HRC that examined how to ensure an adequate level of safety in the shared
workplace by reducing context-related risks, such as distrust towards automation, stress
and cognitive overload [19–21], that could lead to cognitive failures. In addition, these
cognitive ergonomics variables can also influence each other and exponentially increase
safety risks for workers. For instance, low levels of trust are associated with a higher
cognitive workload [22], which increases stress levels [23].

Based on the findings presented in the literature, the authors developed a set of inte-
grative and human-centred design principles for the appropriate integration of cognitive
ergonomics in collaborative assembly systems (CAS) [24]. This study followed on from
the work of [24], which specifically investigated how the main variables of cognitive er-
gonomics (i.e., cognitive workload, acceptance, trust and perceived stress) are influenced
by different features of industrial collaborative workstations and interaction patterns. The
present work focused on cognitive workload and investigated its relationship with work-
station design, user acceptance and trust in collaborative robots. In particular, the present
study aimed to enrich the theoretical models by examining the role of acceptance in pre-
dicting cognitive workload and perceived stress and the role of trust in moderating the
relationship between cognitive workload and stress.

2. Literature Review

In this section, we discuss the scientific literature on cognitive workload, perceived
stress, user acceptance and trust in HRC to help readers to understand their impacts on users
and why it is crucial to focus on these elements when designing and implementing CAS.

Cognitive workload is a cognitive state described as a proportion between the opera-
tor’s available cognitive resources and the cognitive demands of the task [25]. With limited
cognitive resources, excess demands could be a risk factor that affects workers’ safety [26]
and performance [27]. Previous research on cognitive overload, which is defined as a state
of high cognitive workload [28], showed mixed results, with some studies considering
it desirable [29] and others considering it harmful [30]. According to [30], high levels of
cognitive workload due to mental fatigue or inattention interfere with the assembly task,
resulting in a longer processing time and higher muscle activity. High levels of cognitive
workload can also impact gaze behaviour, as some authors found an association with
longer fixation durations and a lower frequency of fixations [31]. On the other hand, a low
workload occurs when few resources are required to complete the task and many resources
are available. Although less prevalent, it can still affect performance, reducing alertness
and attention [25]. In this scenario, an appropriate level of cognitive workload needs to
be targeted to manage the impact on the operator, especially in terms of performance
and safety. In the present study, we aimed to investigate the effect of workstation and
interaction design features on cognitive workload using subjective and objective metrics
and their relationship with factors such as technology acceptance and perceived stress.

Perceived stress is predicted by cognitive workload [23], with both constructs fun-
damentally influencing both safety and performance, as they lead to human errors. The
transactional model of stress and coping views stress as a mismatch between external
demands and individual resources [32]. This definition emphasises the crucial importance
of the person’s interpretation of an event (i.e., whether it is threatening or not) and whether
the external and internal pressures exceed available resources and the ability to cope with
them. In the HRC context, the robot’s human likeness and proximity are the main stressors
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leading to a biological response. Ref. [33] highlighted that minimum-jerk trajectories (MJTs),
which is a robot-motion-planning system that minimises acceleration changes and human
effort, help to decrease the operator’s levels of perceived stress, as they are considered
familiar and predictable. Arai et al. [34] found that when designing a system, it might
be important to limit the human–robot relative distance and the robot’s speed, which
should report its movements in advance. The efficacy of the robot’s notifications before
conducting a behaviour is useful, as humans are negatively affected by non-predictable
robot movements, scoring lower well-being and performance scores [35–37]. It could be
argued that individuals that are more accepting of technology may be more likely to use it,
resulting in less cognitive workload and stress when engaging with technology. In addition,
individuals are less likely to feel stressed when they believe that technology is helpful and
easy to use. In contrast, individuals who have a negative attitude towards technology are
more likely to reject it and, therefore, find using it stressful. This is because they perceive
the technology as difficult to use or unhelpful.

Acceptance is “the demonstrable willingness within a user group to employ the
technology for the tasks it is designed to support” [38]. The main model addressing this
topic is the technology acceptance model (TAM), theorised by [39], who proposed the key
role of two factors: perceived usefulness and perceived ease of use. The former is defined
as the extent to which the person believes that using a particular system would improve
job performance, while the latter is represented as the extent to which the person believes
that using the system would be free of effort [39]. Both elements have a direct influence
on the user’s attitude, which is an important determinant of the individual acceptance
or rejection of the system. Previous studies in HRC highlighted the importance of robot
motion planning in increasing user acceptance, as the human co-agent is able to predict
the robot’s movements quickly and accurately [40,41]. These properties are reflected in
point-to-point MJTs, which produce psychologically acceptable motions without causing
disturbing or uncomfortable feelings in the operators [42,43]. In addition, previous authors
highlighted the importance of automated notifications that can change the users’ awareness
of the situation [44]. For example, ref. [45] found that installing a visual status indicator
on the robot’s wrist could improve HRI efficiency and effectiveness, which are two key
elements of usability, which is a construct that strongly correlates with acceptability.

Trust was considered an external predictor in many extended versions of TAM over
the last decade, especially as a key factor influencing the perception of usefulness: the
more the worker trusts the innovative tool, the more valuable it is perceived to be and the
more likely it is to be used. An acceptable level of trust must be obtained to avoid failure:
a dysfunctional calibration could turn trust into a risk factor that leads to safety-related
problems for both the organisation and the operator [46]. Over-trust occurs when the
operator trusts the system too much and delegates tasks that exceed the robot’s capabilities,
while under-trust arises when the operator does not count on the robot’s capabilities.
Previous authors emphasised the importance of specific design elements of the robot,
such as size and appearance, and the robot’s performance in influencing the operator’s
trust [47–49]. As highlighted in another study [22], human trust in a robot is determined
by the degree of autonomy of the robot, which affects task efficiency and workload. We
can thus assume that trust might moderate the relationship between cognitive workload
and perceived stress. Trust can, in fact, influence how individuals perceive and respond
to situations. In the case of a disproportion between the operator’s available cognitive
resources and the cognitive demands of the task, individuals who trust a robotic system
may be more likely to believe that the system is competent and able to handle complex
tasks, which could reduce their perceived stress. On the other hand, individuals who do
not trust a robotic system may be more likely to doubt their abilities and may, therefore,
experience higher levels of perceived stress, which could lead to human errors.

The aims of this study were threefold. First, we investigated the impact of workstation
and interaction design guidelines [24] on users’ cognitive workload by combining subjective
measures with eye-tracker data. As the guidelines are implemented in different scenarios,
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we expected to see a decrease in participants’ cognitive workload, indicating that they
could handle the demands of the tasks more efficiently.

Second, we aimed to understand the relationship between cognitive workload and
perceived stress in collaborative tasks, as well as the association between cognitive work-
load and the acceptance of cobots. We expected that participants with a higher acceptance
of cobots will have improved cognitive workload and lower levels of perceived stress.

Third, we tested a moderation model to investigate the potential moderating effect of
trust on the relationship between cognitive workload and perceived stress. We hypothesised
that higher levels of trust will result in a weaker association between the two variables.

3. Materials and Methods
3.1. Participants

In this study, 14 participants (11 males and 3 females, with an average age of 31.6 years
and a standard deviation of 4) were recruited from the Smart Mini Factory Lab of the
University of Bozen-Bolzano. The Smart Mini Factory Lab is a research facility that focuses
on developing and implementing Industry 4.0 technologies and concepts in a mini factory
setting. The lab aims to provide an environment for researchers, students and industry
partners to explore and test new technologies and methodologies related to the Internet of
things (IoT), big data analytics, artificial intelligence and other advanced technologies in
the context of smart manufacturing.

Recruiting participants during the COVID-19 pandemic presented significant diffi-
culties, as restrictions were imposed on allowing non-academic individuals access to the
laboratory. Only participants with minimal background in DIY activities were eligible to
participate. All participants reported having no prior or limited experience interacting with
robots or other forms of automation. Most participants (13 out of 14, or 92.9%) were Italian,
with one being proficient in Italian but not Italian by origin. Participants were recruited on
a voluntary basis.

3.2. Experimental Setup

A makeshift workstation was developed for the experiment. Figure 1 shows the
workstation structure and components. The workstation consisted of a table with assembly
jigs, commands (button array and virtual button) for HRI, an emergency stop, some boxes
for storing and removing assembly components, an LCD screen for displaying instructions
and other information about the status of the robot systems (graphical user interface),
a vision system for human–robot interaction and safety purposes, and a screwdriver.
Participants were asked to work with a collaborative robot, namely, the Universal Robot
UR3 model, to build a simplified version of a pneumatic cylinder. The robot was equipped
with a collaborative gripper from Robotiq. The application was programmed through the
Polyscope interface using Polyscript, which is a proprietary language of Universal Robot.

The participants’ point of view of the workstation is shown in Figure 2. Further details
about the system components and integration are described in [50].

To begin, a training session (without the robotic system) was conducted at a separate,
designated workstation to minimise the impact of limited knowledge of the process and
the learning effect of different trials. Second, a repeated measure design was implemented
across three distinct and sequential scenarios (scenario 1, scenario 2 and scenario 3). Table 1
illustrates the features of the workstation and robot for each of the three scenarios. The
guidelines were gradually implemented across the scenarios, with increasing levels of
robot speed, autonomy, trajectories, user commands, notifications to the users and safety
training measures.
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Table 1. Workstation and robot features in each scenario.

Feature Scenario 1 Scenario 2 Scenario 3

Robot’s speed Lower than nominal values Higher than nominal values Set by participants (nominal, slower, higher)
Robot’s autonomy Low High Intermediate

Robot’s trajectories Point-to-point trapezoidal
velocity profile trajectories

Point-to-point trapezoidal
velocity profile trajectories Minimum-jerk trajectories

Type of commands Touch button Gesture recognition system Set by participants (touch or gesture
recognition)

Notifications Only instructions Instructions and robot’s status Instructions and robot’s status and speed
Training on safety No info to participants Basic training Full training (including commands and GUI)
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The assignment of the scenarios was non-randomised, as the idea was to gradually
improve the interaction conditions by changing different elements of the context. In each
trial, some features of the collaborative workstation and the robot were manipulated
according to the guidelines presented in [24].

A questionnaire was administered to participants to assess the effect of feature manip-
ulation on the selected cognitive variables. Participants were asked to complete the survey
before the experiment began and between each scenario. In addition, gaze behaviour
was measured throughout the whole duration of the experiment using a Pupil Labs eye
tracker [51] to assess the participants’ cognitive workload.

3.3. Measures

Table 2 illustrates the variables and the measures. Appendix A shows the items that
were used.

Table 2. List of variables and measures.

Variable Method

Reference Number of Items

User acceptance
Semantic differential Reduced version of the “System Acceptance Scale” [52] 6 items

Likert scale Adapted version of the “System Usability Scale” [53] 5 items
Cognitive workload Likert-type scale Reduced version of “NASA-TLX” [54] 1 item

Perceived stress Semantic differential “Short Stress Questionnaire” [55] 5 items

Trust Likert scale Adapted version of the “Trust in Industrial
Human-Robot Interaction Questionnaire” [56] 9 items

Measures Unit of Measurement

Gaze behaviour Eye tracker Number of fixations and fixation duration ms (for fixation
duration)

3.3.1. Cognitive Workload

Users’ cognitive workload was measured using subjective (i.e., NASA-TLX) and
objective measurement tools (i.e., eye tracker). The former required participants to answer
a single item (i.e., “How mentally demanding was the task?”) on a 5-point Likert-type
scale (1 = “Very Low”; 5 = “Very High”) derived from the NASA-TLX [54]. An eye-
tracking system was also used to record the gaze behaviour, specifically the number of
fixations and fixation duration in milliseconds. Eye-tracking systems are commonly used
to measure cognitive workload, as a high cognitive workload is associated with longer
fixation durations and fewer fixations [30].

3.3.2. User Acceptance

User acceptance of the robot was assessed by combining two scales. The first was the
Acceptance Scale [52]. Participants were asked to rate what level of these adjective continu-
ums (e.g., “Effective/Superfluous”, “Pleasant/Unpleasant”) they ascribed to the robotic
system on a five-point semantic differential scale (from 1 to 5). A different response scale
identifies the original version of the scale (−2; +2), which was modified to correspond to the
System Usability Scales ratings. In the present sample, item number three (“Bad”—“Good”),
number seven (“Assisting”—“Worthless”) and number eight (“Undesirable”—“Desirable”)
were eliminated as they misled participants in their evaluation of the interaction.

The second scale was the System Usability Scale [53], which was slightly modified to
address the robotic system. Participants were asked to express their level of agreement
rated (from “1 = Strongly Disagree” to “5 = Strongly Agree”) with the following statements:
(1) “I think I would like to use the robot frequently”, (2) “I found the robot’s behaviour to be
mostly predictable”, (3) “I found the various functions in the robot were well-integrated”,
(4) “I found the robot to work appropriately.” and (5) “I found that the robot could be
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operated and managed intuitively”. Cronbach’s alpha reliability coefficient was assessed
for each scenario, scoring α = 0.909 in scenario 1, α = 0.852 in scenario 2 and α = 0.873 in
the last scenario.

3.3.3. Perceived Stress

Participants were asked to reflect on how they felt while performing the task and
answer the Short Stress Questionnaire (SSSQ) [55], rating items on a 5-point semantic
differential scale. Participants were asked to rate how they felt according to the follow-
ing statements: (1) “Irritated/Calm”, (2) “Concerned/Quiet”, (3) “Motivated to finish
the task/Demotivated to finish the task”, (4) “Skilled/Unqualified” and (5) “At ease/
Discomfort”. Cronbach’s alpha reliability was measured in scenario 1 (α = 0.671), scenario 2
(α = 0.278) and scenario 3 (α = 0.448), highlighting poor reliability in the present sample.

3.3.4. Trust

Participants’ trust was assessed using a slightly adapted version of the Trust in Indus-
trial Human–Robot Interaction questionnaire [56]. The scale consisted of a total of 9 items
(e.g., “The speed with which the gripper picked up and released the components made
me uneasy”) rated on a 5-point Likert scale (from “1 = Strongly Disagree” to “5 = Strongly
Agree”). It is a self-reported measure that is used to understand how and when trust de-
velops in a human–robot collaboration. In scenarios one, two and three, Cronbach’s alpha
reliability was measured, giving coefficients of α = 0.73, α = 0.56 and α = 0.48, respectively.

3.4. Data Analysis

Considering that one of the aims was to compare the cognitive workload mean scores
across three different trials, Friedman’s test was conducted for each scenario due to the
relatively low research sample and the non-normal data distribution. As previously men-
tioned, three surveys were administered, one after each trial, to evaluate the operator’s
cognitive experience. Moreover, a post hoc analysis was conducted on the eye-tracker data
to verify the effects of feature manipulation on the objective workload assessment. The
two parameters examined were the number of fixations and fixation duration during each
scenario. The post hoc analysis was conducted with Wilcoxon signed-rank tests, and a
Bonferroni correction was applied to examine where the differences occurred.

To test for the positive association between NASA-TLX’s results and eye-tracker data,
Spearman correlation analysis was conducted to quantify the intensity and meaning of the
relationship between the cognitive workload objective and subjective measures.

A simple linear regression analysis was performed to test for the role of acceptance in
decreasing risk factors, such as cognitive workload and perceived stress. First, a simple
linear regression was used to test whether acceptance significantly predicted cognitive
workload, whereas a simple linear regression was used to test whether acceptance signifi-
cantly predicted perceived stress.

To test for the role of trust in decreasing risk factors, such as cognitive workload and
perceived stress, a moderated regression analysis was computed using PROCESS, which
is a computational tool provided by [57]. In particular, model 1 for simple moderation
was selected.

In all of the statistical computations, the results were evaluated in terms of statistical
significance (p < 0.05), as well as effect size with Cohen’s d values of 0.2, 0.5 and 0.8, as
well as Pearson’s r values of 0.10, 0.30 and 0.50, corresponding to small, moderate and
large effects, respectively [58]. Statistical analyses were performed with IBM SPSS Statistics
Subscription (Version 26).

4. Results

Our results show that implementing guidelines had a significant effect on partici-
pants’ cognitive workload, as indicated by the NASA-TLX scores in different scenarios
(χ2 (2) = 8.24, p < 0.05). The median perceived effort levels were 1 (0 to 1.3), 1 (0 to 2) and 0
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(0 to 1) for trials 1, 2 and 3, respectively. Post hoc analysis with Wilcoxon signed-rank tests
and Bonferroni correction showed a significant reduction in cognitive workload between
scenarios 2 and 3 (Z = −2.646, p = 0.008), but no significant differences between scenarios 1
and 2 (Z = −0.816, p = 0.414) or between scenarios 1 and 3 (Z = −1.890, p = 0.059). However,
there was a statistically significant reduction between scenario 2 and scenario 3 (Z = −2.646,
p = 0.008).

The number of fixations was significantly different between the scenarios (χ2 (2) = 20.33,
p < 0.05). The Bonferroni correction applied for the Wilcoxon signed-rank post hoc analysis
was 0.036. The results showed that the number of fixations significantly decreased between
scenario 1 and scenario 2 (Z = 55.8, p < 0.05). However, no statistical difference was reported
between scenarios 2 and 3 (Z = −30.1, p > 0.05) nor between scenarios 1 and 3 (Z = 25.7,
p > 0.05). The fixations duration did not statistically change across the three different
scenarios (χ2 (2) = 20.33, p > 0.05). Figure 3 shows the cognitive workload levels across the
three different trials.
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Figure 4 shows the gaze behaviour in relation to the mean number of fixations and the
mean duration of fixations for each scenario. Spearman correlation analysis was performed
to assess the relationship between NASA-TLX and the eye-tracker data, and both measures
were used to assess the cognitive workload in each scenario. In terms of the number of
fixations, a strong and negative correlation was found between the objective and subjective
measures in the first trial, which was statistically significant (r = −0.797, n = 11, p = 0.003).
However, no correlation was found between the objective and subjective measures in
trials 2 and 3. Similarly, no correlation was found between the objective and subjective
measures for the fixation durations in the three trials.

A linear regression was performed to determine whether acceptance significantly
predicted cognitive workload. However, no statistically significant evidence was found for
trials 1, 2 and 3.
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Likewise, a linear regression was performed to determine whether acceptance sig-
nificantly predicted perceived stress in the three trials. In the first scenario, acceptance
accounted for 72.5% of the explained variability in the perceived stress (F (1,12) = 31.651,
p < 0.001). The final predictive model was as follows: perceived stress = 4.578 + (−0.696 * ac-
ceptance). In the second scenario, acceptance explained 40.1% of the variability in the
perceived stress (F (1,12) = 8.032, p < 0.05). The final predictive model was as follows:
perceived stress = 2.886 + (−0.349 * acceptance). In the third scenario, acceptance accounted
for 40.3% of the explained variability in perceived stress (F (1,12) = 8.113, p > 0.05). The
final predictive model was as follows: perceived stress = 2.669 + (−0.219 * acceptance).

A moderated regression analysis was used to investigate whether trust negatively
moderated the relationship between cognitive workload and perceived stress. However,
no significant evidence was found in the three different trials, meaning that we found no
support that trust towards robots could influence how cognitive workload and perceived
stress were related to each other.

5. Discussion

The results showed that perceived cognitive workload increased slightly from the
first trial to the second one. However, it decreased significantly from scenario 2 to the last
one, which was consistent with previous research [40,41] and highlighted the importance
of minimal jerk, interaction types and feedback given to the users in minimising mental
effort. The increase in cognitive workload in the second trial could have been due to the
high number of changes and manipulations compared with trial number 1. In the third
and final scenario, the cognitive workload decreased significantly, as the subject was able
to adjust many different functions of the workstation, such as the robot’s speed and the
type of commands. Perceived autonomy is one of the most important factors that affect
intrinsic motivation and lead to a better cognitive experience and well-being [59,60].

These findings appeared to be consistent with the results of the eye-tacker data, which
demonstrated a statistically significant difference in the number of fixations across the three
different scenarios; the duration of fixations was not significant. The number of fixations
decreased sharply from scenario 1 to scenario 2. It increased significantly from scenario 2
to scenario 3, which was consistent with previous results from [29]; a high cognitive load is
associated with fewer fixations. One of the most important results showed a strong and
negatively significant correlation between NASA-TLX scores and the number of fixations in
scenario 1. This could be due to the particular HRC conditions of the workstation for trial 1.
Nevertheless, the absence of correlation between the objective and subjective metrics in
trials 2 and 3 was quite relevant, and it could have been due to the different content activity
and the input–output modality affecting eye movements. The way each individual engages
with an interactive system is different and is influenced by the system design, as the content
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influences the users’ fixations [61]. Visual representations of content can influence the
location, duration and speed of fixation without cognitive engagement present.

According to our results, acceptance did not significantly predict the cognitive work-
load. As the literature suggests, higher acceptance of the collaborative robot should reduce
the use of the cognitive resources used to work with the cobot. However, these results
could have been due to other factors present in the scenarios, such as the way the status
of the robot was communicated to the user. During the three trials, notifications were
displayed on an LCD screen. Visual animations are often used to help users notice changes
or to shift their attention [62]. In the present study, the visual alarm may have negatively
impacted the user’s awareness of the situation. Future studies should integrate auditory
notification to create a multi-modal interaction (i.e., conveying information across two
or more modalities) [63]. Indeed, auditory cues alert the user to an item that requires
immediate attention, regardless of where the user is currently directing their gaze. The
possible combination of auditory and visual alerts would improve situational awareness of
change, thus somehow reducing the demands of the collaborative task [64].

The results showed that acceptance predicted perceived stress across the three tri-
als. While the results of the third scenario were consistent with previous research [33]—
namely, that the introduction of MJTs increased participants’ feelings of predictability and
familiarity—the results of the first and second scenarios were unexpected. These results
suggested that the robot’s non-human-like movements did not negatively affect user accep-
tance. One explanation could be related to the fact that humans were not focused on the
robot’s movements because they were busy with their work. Furthermore, the low payload
(and reduced workspace) collaborative robot moving “relatively slowly” did not emphasise
the movements too much, and thus, movement patterns were subtle and relatively difficult
to detect. Other studies specifically focused on having the users look at different types of
trajectories. In our case, however, the users were engaged with multiple aspects of the task.
Another possible explanation for this result could be the Technology Readiness Index (TRI)
of the present sample, which is defined as “the propensity of people to adopt and use new
technologies to achieve goals in the home, life and work” [65]. It seems logical to assume
that most of the participants in this study were motivated to adopt new technological
tools because they were engineering students, researchers and members of the academic
staff of the Department of Industrial Engineering. They could have also been optimistic
about technology—which is a positive attitude towards technology and the belief that
it gives people more control, flexibility and efficiency in their lives—and desired to be
technological pioneers. In this scenario, previous authors [66] combined TR and TAM into
a unique model (TRAM) that assesses how consumers’ prior experiences and knowledge
of technology in general influence the perceived usefulness and perceived ease of use of a
technological tool, which ultimately affects intention to use.

Regarding the moderating effect of trust on the relationship between cognitive work-
load and perceived stress, no significant results were found. This could be related to the
absence of significant differences in participants’ trust towards the cobot in the three trials.
In this study, the participants’ trust in technology was already at an optimal level, given
that they were aware of the tools and the possibility of facing faulty behaviours of the
collaborative robot. People build their trust based on their previous experiences—both
direct and vicarious—with a system and their expectations of its future performance; the
more users trust a system, the more likely they are to develop positive beliefs about the
positive outcomes of using that technology [67,68].

One of the main limitations of this study regards the relatively small sample size.
A larger sample would have provided more reliable statistical results and increased the
generalisability of the findings. However, recruiting participants was challenging due
to the COVID-19 pandemic and restrictions imposed by national and local authorities,
which prohibited non-academic individuals from accessing the laboratory. Additionally,
the requirement for participants to have a background in DIY activities likely contributed
to a sample with a larger proportion of males. Furthermore, self-selection bias may have
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played a role as participants were involved on a voluntary basis, potentially leading to
a higher proportion of males being interested in the study due to the topic being more
appealing to them.

6. Conclusions

The present study evaluated cognitive workload in a human–robot collaboration
setting that assessed the relationship with workstation design, acceptance and trust. Our
findings suggest that manipulating various features of the workstation and robot can lead
to a reduction in cognitive workload and that user acceptance is associated with perceived
stress in collaborative tasks. Additionally, our results provide evidence for the importance
of considering human factors and cognitive ergonomics in the design of collaborative
workstations. The study provides valuable insights into the effects of workstation design,
user acceptance and trust on cognitive workload in a human–robot collaboration setting.

These findings have several implications for practitioners and researchers alike. For
organisations, our results highlight the need to prioritise the ergonomic design of collab-
orative workstations to improve psychological well-being and performance. In addition,
our findings suggest that promoting a positive attitude towards collaborative tasks may
be beneficial for managing cognitive workload. For researchers, our study provides a
starting point for further investigating the relationships between cognitive workload, ac-
ceptance and trust in HRC settings to improve the efficiency, productivity and safety of
human–robot collaboration.
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Appendix A

Items of the scales
System Acceptance Scale

1. Useful—Unuseful
2. Pleasant—Unpleasant
3. Nice—Annoying
4. Effective—Superfluous
5. Irritating—Likable
6. Raising alertness—Sleep-inducing

System Usability Scale

1. I think that I would like to use the robot frequently.
2. I found the robot unnecessarily complex.
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3. I found that the robot was performing its tasks in a good way.
4. I found that the robot was not functioning according to the task to be performed.
5. I found that the robot was difficult to be used.

NASA-TLX

1. How mentally demanding was the task?

Short Stress Questionnaire

1. Irritated—Serene
2. Worried—Carefree
3. Motivated to complete the task—Unmotivated
4. Competent—Unskilled
5. Comfortable—Uncomfortable

Trust in Industrial Human–Robot Interaction Questionnaire

1. The way in which the robot moved made me feel uncomfortable.
2. The speed with which the robot picked and released the components made me feel uneasy.
3. I trusted that the robot was safe to cooperate with.
4. I was comfortable the robot would not hurt me.
5. I felt safe interacting with the robot.
6. I knew the gripper would not drop the components.
7. The robot gripper did not look reliable.
8. The gripper seemed like it could be trusted.
9. I felt I could rely on the robot to do what it was supposed to do.
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