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Abstract: This study examines Industry 4.0-based technologies, focusing on the barriers to their
implementation in European small- and medium-sized enterprises (SMEs). The purpose of this
research was to determine the most significant obstacles that prevent SMEs from implementing smart
manufacturing, as well as to identify the most important components of such an operationalization
and to evaluate whether only large businesses have access to technological opportunities given
the financial complexities of such an adoption. The study is premised on the notion that, in the
setting of cyber-physical production systems, the gap between massive corporations and SMEs may
result in significant disadvantages for the latter, leading to their market exclusion by the former.
The research aim was achieved by secondary data analysis, where previously gathered data were
assessed and analyzed. The need to investigate this topic originates from the fact that SMEs require
more research than large corporations, which are typically the focus of mainstream debates. The
findings validated Industry 4.0′s critical role in smart process planning provided by deep learning
and virtual simulation algorithms, especially for industrial production. The research also discussed
the connection options for SMEs as a means of enhancing business efficiency through machine
intelligence and autonomous robotic technologies. The interaction between Industry 4.0 and the
economic management of organizations is viewed in this study as a possible source of significant
added value.

Keywords: industry 4.0; SMEs; digitization; financial barriers; financial resources

1. Introduction

We are now living in a technologically advanced era. Compared to previous industrial
revolutions, both the planet and our way of life are undergoing rapid transformations.
In terms of society, education, employment, and notably production, the rate of change
is unprecedented. A quick survey of previous industrial revolutions demonstrates how
they preceded the current scenario [1]. During the first industrial revolution, the notion
of harnessing water and steam for mechanization began to develop. During the second
industrial revolution, which began a century later, electric power was utilized for the first
time in mass production. In the 1970s, the concept of automation was introduced as a result
of the third industrial revolution [2]. After these three turning moments in human history,
data-driven technology was implemented and a new reality, known as the fourth industrial
revolution, which gave rise to Industry 4.0, was established [3]. As a relatively new concept,
this topic may be seen by some as disputed and broad [4]. Due to the uniqueness associated
with these transformations, more research is needed, particularly in terms of computation
task cooperation, virtual modeling and digital twin machining technologies, and wireless
sensor networks throughout automated manufacturing and autonomous robotic systems.
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The primary purpose of this study is to identify the most significant barriers to
implementing Industry 4.0 in European SMEs. The study also identifies the most crucial
ingredient for a successful deployment and investigates whether all organizations have an
equal opportunity to adopt Industry 4.0 in the European context, which may be regarded
its most significant added value. Moreover, the identification of these barriers is the main
research objective, as several authors mostly focus on the identification of strategies and
stimulation of Industry 4.0 implementation (e.g., see [5–7]). The research is undertaken
under the premise that SMEs and massive corporations have diverse implementation needs
in relation to autonomous control systems, intelligent connectivity infrastructures, and
virtual machine interoperability. Consequently, rivalry posed by massive corporations
may outshine SMEs. Finding a viable solution to such an issue is a major objective of the
study. While it is evident that financial resources are required for the implementation of
Industry 4.0, we raise the question of whether heterogeneous businesses of varying sizes
are equally prepared for the change and have equal access to opportunities. This requires
financial resources as well as robust knowledge and awareness of what is required for
putting Industry 4.0 technologies into practice by integrating robotic navigation systems,
mobile sensors and actuators, and context awareness tools in mobile edge computing
environments. During the implementation of data-driven systems based on Industry 4.0,
difficulties may occur [8].

The purpose of this study is to determine whether the standard position, that only
large businesses can adopt Industry 4.0 because it requires significant financial resources,
and the assumption that SMEs will suffer significant disadvantages due to the disparity
between large and small businesses in relation to Industry 4.0, is accurate. The classification
of companies in line with the standard evaluation of enterprises based on the criteria of the
European Union (EU) is explored as it relates to the core issue, since the focus is mostly on
European SMEs in connection to the business climate. The conditions for the deployment
of Industry 4.0 technologies are explored briefly, along with the upsides and disadvan-
tages of adopting industrial artificial intelligence, context-aware robotic networks, and
cyber-physical intelligent manufacturing systems [9]. Moreover, image processing and com-
putational prediction tools, distributed sensing and mobile robot technologies, and visual
cognitive and environment mapping algorithms articulate Industry 5.0-driven sustainable
technologies, operations, and tasks as regards digital twin-based product development.
Cognitive and cloud robotics, machine learning and intelligent control algorithms, and
digital twin simulation and predictive geospatial modeling tools shape the Industry 5.0 en-
vironment. Our research examines the internal obstacles that SMEs must overcome in order
to incorporate big data-driven decision-making processes, computer vision algorithms, and
imaging-based navigation technologies. The research analyzes the most relevant obstacles
to SMEs implementing Industry 4.0, including a concise comparison of SME adoption
of cyber-physical production networks, as well as a discussion of the possible benefits
of overcoming SME implementation challenges. The EU’s financial support for SMEs in
relation to Industry 4.0 is reviewed alongside other potential sources of aid, as the study
focuses primarily on European corporations [10]. Based on the present implementation
of Industry 4.0, it may appear that only major companies have the resources necessary to
configure cyber-physical system-based smart factories, since they can afford considerable
financial and operational resources. Potential concerns associated with this topic include
unfair competition and severe disadvantages for SMEs compared to large businesses [11].

The paper is divided into the sections listed below. First, this article explains the basic
ideas necessary to comprehend Industry 4.0 and gives a summary of its principles in the
literature review section. The subsequent section outlines the topic’s essential sources and
methodologies. Following the preceding section are the outcomes of the SME concentration
on barriers and financial assistance. The research ends with a discussion. In conclusion, the
most essential elements for a successful adoption of Industry 4.0 are enumerated, along
with the greatest obstacles for SMEs.

Key research contributions:
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• Machine intelligence and autonomous robotic technologies in the corporate context
of SMEs develop on distributed intelligence and real-time data simulation tools,
visual perception and situational awareness algorithms, and cyber-physical production
systems.

• Industry 4.0-based manufacturing systems integrate sensor and actuator devices, cog-
nitive data visualization and virtual simulation tools, and cloud and swarm robotics.

• Image recognition and remote sensing technologies, signal processing and big data
management tools, and virtual manufacturing systems are pivotal in smart robotic
environments.

• Sensor data fusion and remote intelligent object detection tools, cognitive decision-
making algorithms, and digital twin modeling configure smart manufacturing execu-
tion and network robot systems.

• Autonomous visual object detection and sensor data fusion tools, operational process
simulation and robot motion control algorithms, and virtual machining systems shape
smart manufacturing processes.

• Deep learning and virtual simulation algorithms, data visualization functionalities, and
digital twin technologies enable autonomous multi-robot systems in smart factories.

• Object tracking and remote sensing algorithms, mobile autonomous robots, and remote
intelligent image detection tools optimize smart process manufacturing and digital
twin-based product development.

• Smart connected objects, autonomous robotic and cyber-physical manufacturing sys-
tems, and virtual process simulation and machine data mining tools articulate Industry
4.0-based networked environments.

2. Literature Review

Cyber-security configurations, cyber-physical production networks, and smart manu-
facturing systems are explored in relation to Industry 4.0. Cyber-physical process monitor-
ing systems and environmentally responsible production related to the Internet of Things
began with the rapid expansion of digital technology around the turn of the 21st century [1].
Industry 4.0, often known as smart manufacturing or industrial internet, aims to opti-
mize global production capacities in terms of visual and spatial intelligence, simulation
modeling and semantic sensor technologies, and mobile autonomous robots [8]. Industry
4.0-based digitization processes related to cyber-physical production networks develop on
autonomous cognitive and digital twin systems, robotic swarm operations, and artificial
intelligence technologies [9]. Due to a self-organizing cyber-physical production system,
mass production becomes more flexible in terms of quantity and may be customized as
a result of process mining techniques, and data modeling and simulation tools [10]. The
fundamental components of Industry 4.0 [11] are automation, the incorporation of cutting-
edge technology into industrial processes, and data exchange, which require the continual
connectivity of machines capable of working without human intervention. This implemen-
tation necessitates the deployment of intelligent networked cyber-physical systems and of
digital twin technology by integrating computer-generated virtual objects, robotic and sen-
sor devices, and contextual data monitoring tools in smart manufacturing enterprises [12].
The primary objective of cyber-physical smart manufacturing systems [13] is to automate
every step of this process, from configuration and production through supply chain and
predictive maintenance. The goal of integrating Industry 4.0 is to transform industrial
manufacturing by harnessing innovative technologies and digitalization according to re-
mote sensing data, machining process monitoring, and interoperable automation systems.
Globalization, which increases data-driven competitiveness, necessitates sufficiently agile
production to satisfy market needs [14]. This objective may be accomplished by integrating
Industry 4.0 technology and autonomous manufacturing systems into organizational value
chains and product design processes [15].

To effectively implement Industry 4.0 and digital twin systems, the integration process
requires the transformation of industrial facilities into smart factories, where connectiv-
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ity and interoperability develop on Internet of Things-enabled monitoring and sensor
fusion-based systems, predictive modeling tools, and augmented reality algorithms [16].
Industry 4.0 is a socioeconomic phenomenon as well as a technical one, characterized by
the utilization of smart manufacturing big data, real-time advanced analytics, and product
decision-making information systems [17]. Technological advances enable the interoper-
ability and interconnectivity of Internet of Things-based real-time production logistics char-
acterizing smart manufacturing facilities, which are the central pillar of Industry 4.0 and
artificial intelligence-driven big data analytics. The initial stage in the establishment of
smart factories [18] was the manufacturing of a single item by employing production lines
comprised of equipment with well-defined functions typified by virtual data analytics,
cognitive digital twins, and cloud computing algorithms. With continued expansion, more
prospects were explored, such as the broad production of a variety of manufactured items
developed on modeling and simulation tools, mobile robotic devices, and interactive data
visualization technologies. Innovative computer numerical control devices now make
flexible manufacturing possible [19]. Manufacturers can adjust the type and amount of
their products to meet the demands of a rapidly changing market by harnessing digital
twin-based industrial data, resource and production scheduling, and cognitive artificial
intelligence across distributed interoperable environments [20]. Cyber-physical production
systems, which are the essential elements of smart factories [21], are characterized primarily
by decentralization and autonomy, integrating data-driven technologies with physical
systems [22]. Cyber-physical production systems deploy Internet of Things-based real-time
production logistics and robotic device capabilities across industrial processes [23] in order
to transfer and gather factory floor data by use of predictive maintenance and computer
vision detection technologies, spatial mapping and reinforcement learning algorithms,
and virtual simulation modeling tools. Data-driven Internet of Things systems powered
by artificial intelligence technologies cover how cyber-physical systems communicate by
integrating autonomous navigation systems, computer vision capabilities, and remote inter-
action sensors [24]. Enhanced connectivity enables the collection and sharing of real-time
data pertaining to all aspects of industrial processes [25].

Cyber-physical production systems are self-governing, with the ability to make de-
cisions based on real-time data and virtual simulation algorithms, inspection of prior
actions’ outcomes, and learning from by-products [26,27]. Enterprise resource planning
applications, cyber-physical production networks, artificial intelligence-based decision-
making algorithms, and manufacturing execution systems are software control providers
in decentralized smart factories [28]. Permanent Wi-Fi access is necessary for data-driven
machine-to-machine interactions on the shop floor. Industrial Internet of Things enables
machine interaction and continuous connection by use of virtual simulation algorithms [29],
being developed on cyber-physical system-based real-time monitoring, big data-driven
decision-making processes, and wireless sensor networks [30]. In smart manufacturing,
human-machine interaction is necessary since certain tasks cannot be fully automated [31].
Intelligent factories can produce intelligent items with sensors that aid in localization
and life cycle monitoring in addition to manual manufacturing, considerably simplifying
maintenance [32]. Product lifetime management is the business operation responsible for
managing the manufacturing process in cyber-physical production networks by integrat-
ing intelligent decision-support systems, virtual reality mapping tools, and digital twin
technologies [33]. Data perception and sharing are pivotal in product lifecycle manage-
ment throughout smart factories by use of digital twin simulation modeling, sensing and
actuating devices, and situational awareness and spatial cognition algorithms towards the
Industry 5.0 environment [34] (Table 1).
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Table 1. Summarized findings related to deep learning and virtual simulation algorithms, cyber-
physical production networks, and Industry 4.0-based manufacturing systems.

• 3D convolutional neural networks, computer vision and path planning algorithms, and intelligent data processing and smart
environment modeling tools configure cyber-physical production and virtual manufacturing systems.

• Robotic cooperative behaviors require digital twin-driven product development, enterprise resource planning, and process
performance monitoring.

• Big data analytics, artificial neural networks, and virtual twinning techniques enable autonomous manufacturing processes
throughout industrial cyber-physical systems.

• Virtual machines necessitate blockchain-based data acquisition, intelligent manufacturing equipment, and robotic communication
systems.

• Digital twin simulations, robotic operating systems and agent behaviors, and environment perception sensors configure Internet
of Things-based cloud manufacturing.

• Cloud networked and autonomous mobile robots harness digital twin-based monitoring and intuitive decision-making tools,
sensing and actuation capabilities, and vision and navigation systems.

•Multiple autonomous mobile robots, deep learning-based image processing and context awareness algorithms, and ambient
intelligence and visual analytics tools articulate shop-floor production management.

• Swarm computing and motion control algorithms, visual and spatial intelligence tools, and cloud computing technologies shape
autonomous task allocation and production process modeling in digital twin-driven smart manufacturing.

• Digital twin systems harness object perception and virtual shop floor operations, captured image data, and visual modeling and
multi-machine cooperation tools.

• Autonomous manufacturing control, industrial wireless sensor networks, and predictive maintenance scheduling tools assist
smart manufacturing systems in synthetic simulation environments.

• Spatial data acquisition and context recognition tools, machine perception and simulation modeling technologies, and connected
mobile devices assist manufacturing execution and robotic operating systems.

• Smart manufacturing enterprises necessitate signal and image processing tools, product digital twins, and motion sensing
capabilities.

• Smart manufacturing systems deploy digital twin modeling and intelligent data processing tools, robotic coordination
mechanisms, and cognitive decision-making and augmented reality algorithms.

•Machine vision and cloud computing technologies, spatial data processing and cognitive artificial intelligence tools, and digital
twin modeling assist production planning and scheduling in smart manufacturing environments.

• Autonomous robotic and digital twin-enabled industrial systems deploy data processing and context awareness algorithms, edge
computing technologies, and modeling and simulation tools across smart manufacturing plants.

Source: Authors’ compilation.

Big data analytics and cloud manufacturing are important components of Industry
4.0. In addition to their physical representation, machines operating in smart factories
may learn from and interact with their surroundings in real time [35], having a virtual
identity that is stored in the cloud. By combining cloud-based systems with cyber-physical
systems, it is feasible to provide continuous data exchange with cloud-based data collecting
systems [36]. Internet of Things sensor networks, real-time big data analytics, and industrial
artificial intelligence collaborate to promote the merging of physical and digital worlds.
Data gathering and analysis enable real-time threat identification and decision making by
collaborative operation mechanisms [37]. Shop floor manufacturing processes that reduce
errors by leveraging data mining and context awareness tools, real-time event analytics,
and deep learning-based image classification algorithms may increase production across
synthetic simulation environments [38]. The global availability of geographically varied
data centers facilitates the development and optimization of productivity in enterprises
of varying sizes through fault diagnosis algorithms, visual recognition technologies, and
distributed computing networks. [39]. Industry 4.0 includes product decision-making infor-
mation systems, data-driven real-time analytics, and smart sensor devices across intelligent
simulation environments [40]. Image recognition and crowd navigation algorithms, sound
recognition systems, and ambient intelligence and predictive simulation tools optimize



Appl. Sci. 2023, 13, 1681 6 of 35

smart manufacturing machines in immersive 3D and Industry 5.0 environments. Cognitive
manufacturing and cooperative multi-robot systems deploy sensor–actuator networks,
spatial data analytics, and location identification and natural language processing tools.
Autonomous and collaborative robots require spatial data visualization and assembly
process planning tools, multisensor fusion and cloud-based digital twin technologies, and
motion control and context awareness algorithms throughout augmented operating envi-
ronments. Plant maintenance scheduling and context recognition tools, machine learning
techniques, and fault diagnosis systems shape cloud-networked and collaborative robots.

Additive manufacturing creates physical objects based on digital 3D models [41]
by printing successive layers into a three-dimensional structure. The value of additive
manufacturing lies in its easy customizability. Prior to mass manufacturing, the afore-
mentioned method was commonly utilized to rapidly prototype products [42], as it was a
low-cost alternative for generating high-quality goods in small quantities [43]. Computer-
generated data are part of both real-world environments and advanced manufacturing
technologies [44]. These data can be rendered into graphics that are integrated into the
surroundings of the viewer. Augmented reality assists workers in real-time with hard
tasks in a dynamic workplace [45]. Artificial intelligence technologies enable machines and
computers to carry out operations similar to those performed by personnel throughout
manufacturing processes [46]. Machine intelligence and autonomous robotic technologies
employ synthetic knowledge as sensing device and automated simulation modeling capa-
bilities in product development processes [47]. Internet of Things-based robotic systems
and automated production operations are essential in articulating deep learning-enabled
smart process planning and contextual data monitoring. As different types of robots may
be harnessed in various industrial sectors, their production utilization differs in terms of
context-aware and autonomous cognitive systems, path planning and object recognition
algorithms, and ambient intelligence tools [48]. The capabilities of robotic manufacturing
processes are advancing in tandem with industrial automation devices, optimizing smart
production planning, logistics network, and task administration [49]. By leveraging cogni-
tive decision-making and virtual simulation algorithms, visual perception and performance
prediction tools, and real-time process monitoring, robotized manufacturing systems and
data-driven digital twins shape production time and output. Smart manufacturing system
and virtual twin modeling tools, cognitive cyber-physical production networks, and robotic
coordination mechanisms articulate Industry 4.0. [50].

Heavy robotic arms have a tremendous lifting capability. Nevertheless, human as-
sistance with robotics is still required in numerous areas. Co-bots are robots capable of
collaborating with humans without endangering their health. Team-working robots are
adaptive and capable of learning new abilities [51]. Humanoid robots provide an alternate
method. Employed in large-scale production, autonomous robots function as instruments
for improving output quality, expanding production, and saving labor [52]. However, indus-
trial robots are prohibitively expensive, especially for SMEs. Co-bots that are lightweight
and simple to program are more accessible to SMEs [53]. In order to secure the connectivity
of equipment, commodities, and materials, horizontal and vertical system assimilation of
data is required for effective corporate communication. Vertical integration digitalizes auto-
mated production processes, Internet of Things-based real-time manufacturing logistics,
and product life cycle management. Horizontal digitization refers to the integration of data
with significant partners, suppliers, and customers. By integrating vertical and horizontal
digitization, a digital ecosystem is created in which data flow supports the appropriate
operation [54,55]. The necessity for data-driven enterprises to deploy Industry 4.0 technolo-
gies stems from the crucial role of autonomous manufacturing systems in outperforming
the competition by leveraging vision and navigation tools, fault diagnosis and object recog-
nition algorithms, and mobile robotic devices. Machine intelligence and autonomous
robotic technologies, remote sensing systems, and deep neural networks are pivotal in
manufacturing virtualization and simulation across smart interactive environments and on
digital twin shop floors [56]. Implementing Industry 4.0 entails all activities and services
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along the whole value chain, not just a manufacturing shift. Robotic autonomous systems,
remote sensing algorithms, and digital twin modeling tools shape virtual manufacturing
and product development processes in smart factory environments. Operational process
modeling tools, digital twin data, and object recognition algorithms optimize intelligent
manufacturing equipment and networked robotic systems [57]. Businesses can embrace
Industry 4.0 technologies while utilizing existing resources by integrating networked cloud
robotics, geolocation data intelligence, and simulation-based digital twins. Cloud and
networked robotics integrate product lifecycle data, real-time process monitoring tools,
and digital twin technologies in smart manufacturing management. Real-time sensor data,
robot motion planning and virtual data augmentation tools, and digital twin-driven prod-
uct design algorithms assist cyber-physical production networks and Industry 4.0-based
manufacturing systems [58] (Table 2).

Table 2. Comparison chart covering performance measurement data analysis.

• Virtual reality-based data analytics, cognitive decision-making algorithms, and deep convolutional neural networks further
industrial control and automation systems.

• Shop floor digital twins deploy real-time operational data, smart connected sensors, and 3D spatio-temporal simulations in
virtual manufacturing systems and across collaborative multi-robot environments.

• Big manufacturing data, cyber-physical production systems, and smart interconnected robots are pivotal in Industrial Internet of
Things.

• Virtual twin data, smart interconnected and cognitive robotic devices, and machine learning and context awareness algorithms
are instrumental in Internet of Things-enabled automation and process manufacturing systems.

• Decentralized data analytics, Internet of Things-based decision support systems, and distributed sensor networks optimize
product lifecycle management in smart factories and across collaborative industrial environments.

• Digital twin simulation and real-time remote monitoring tools, wireless sensor technologies, and cognitive data mining
algorithms assist smart industrial systems.

• Digital twin technologies leverage simulation analytics, environment perception sensors, and cognitive data fusion techniques in
smart manufacturing processes.

• Visual tracking and motion planning algorithms, digital twin technologies, and localization and navigation tools optimize
autonomous manufacturing processes on the product assembly shop floor.

• Big data analytical and acoustic environment recognition tools, computer vision and swarm intelligence algorithms, and artificial
neural networks configure multi-agent robotic systems in digital twin environments.

• Digital twin-based product development necessitates automated prognostics and diagnostics tools, computer vision techniques,
and simulation modeling processes in smart factories.

• Industry 5.0-driven sustainable operations necessitate monitoring and sensing technologies, cloud-based production processes,
and virtual mapping and data mining tools.

• Autonomous cyber-physical and robotic operating systems harness industrial wireless sensor networks, interconnected virtual
devices, and product lifecycle data.

• Internet of Things-enabled control systems, data mapping and processing tools, and prognostic and diagnostic algorithms
articulate manufacturing task management in smart networked environments.

• Sensor data fusion, computer vision algorithms, and process simulation and production scheduling tools further develop
autonomous robotic systems and smart manufacturing technologies.

•Wireless sensor networks, space situational awareness and computational intelligence tools, and decision support systems enable
product lifecycle monitoring and autonomous mobile robot navigation across smart shop floors.

Source: Authors’ compilation.

3. Materials and Methods

In order to establish objectives and make decisions on future advancements in prepa-
ration for the implementation of Industry 4.0, a clear understanding of the concept is
needed [59]. A corporation’s common mode of thought and comprehension merges digital
mass production, cyber-physical production networks, and real-time big data analytics [60].
Throughout the shift to Industry 4.0 technologies, businesses place a premium on main-
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taining efficient production by integrating product manufacturing data across digital twin
networks [61]. Given the duration of this process, cyber-physical smart manufacturing and
big data-driven technologies [62] necessitate additional expenditures. Deep learning-based
computer vision algorithms, event modeling and forecasting tools, and big data-driven
decision-making processes are instrumental in product lifecycle management systems. Ma-
chine intelligence and digital twin technologies harness situational awareness and remote
sensing algorithms, cloud-based cyber-physical systems, and image acquisition devices
in Industry 4.0-based networked environments. Production process modeling develops
on predictive maintenance tools, remote sensing algorithms, and data fusion technologies.
Smart interconnected devices, swarm robotic and machine learning algorithms, and pro-
cess simulation and scheduling tools articulate smart manufacturing systems and digital
twin-based virtual factories.

Smart networked factories are configured by computer-assisted technologies merging
cyber-physical production systems and leveraging Internet of Things-based real-time
production logistics. In addition to product decision-making information systems, Industry
4.0 integration depends on organizational structure, IT proficiency, and strategic-minded
management. This research followed the five stages of digital evolution in firms [63] (see
also Figure 1):
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1. The company has a production management information system in place, but its
Internet visibility is limited. The organization is starting to think about putting into
practice autonomous production processes, Internet of Things sensing networks,
and predictive maintenance systems while lacking a coherent digital strategy. It can
partially participate in supplier–customer relationship information flows. Simple
economic software makes communication with other state administration bodies
possible.

2. A company with a software-controlled, dynamic Internet presence begins to recognize
the importance of data. Currently, automation and first integration activities are being
implemented. Consideration is being given to establishing a digital strategy and
engaging in supply and demand chain information flows, including collaborative
virtual archives, real-time big data analytics, semi-automatic ordering, etc.

3. The third level consists of the company’s utilization of online and mobile technology,
smart tablets, and social media. The company has a comprehensive digital strategy
and solid data culture foundations, such as initiatives for integrating data culture,
real-time absorbed automation, and customized products with virtual components.

4. The next stage may be characterized by the organization’s scattered and individual-
ized digital approach, in addition to the multichannel activity that is digitally merged
through digital twin modeling. The data architecture is included into each phase of
the manufacturing process, including contact with customers and subcontractors, and
data exchange. Digital diagnostics forecast system breakdowns and problems.

5. The company is a digitizing platform that integrates the Internet and real worlds into
a single, financially viable entity. By utilizing virtual goods that interact with clients
throughout their life cycles, it offers customers a unique, personalized experience.
The most modern and effective solutions (full automation, real-time sensor networks,
3D printing, etc.) employ a cybernetic system that can independently implement the
product’s physical component.
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After briefly discussing the core components of Industry 4.0, it is essential to address
SMEs in order to comprehend their interactions with Industry 4.0 wireless networks,
cyber-physical system-based smart factories, and cognitive automation. The fundamental
requirement for qualifying SMEs, according to the European Commission, is presented
in Table 3 as the number of employees and revenue. These requirements only apply to
particular firms [64]. Small firms have fewer than 50 employees and annual sales of up
to €10 million, whereas medium-sized enterprises have fewer than 250 employees and
an annual revenue of up to €50 million, or more specifically a balance sheet of up to €43
million.

Table 3. Categorization of SMEs.

Company Category Staff Headcount Turnover Balance Sheet Total

Medium-sized <250 ≤€50 m ≤€43 m
Small <50 ≤€10 m ≤€10 m
Micro <10 ≤€2 m ≤€2 m

Source: Authors’ compilation.

As indicated in Table 3, the readiness of enterprises for this endeavor may be evaluated
on a variety of levels, beginning with strategy and organization, and continuing through
smart factories, big data-driven decision-making processes, and manufactured goods to
human resources [65].

The formation of the research questions is the first stage in the systematic technique of
secondary analysis, which subsequently involves identifying the dataset and thoroughly
evaluating it. Thus, the main research problem was clearly stated to identify the most
significant barriers of implementing Industry 4.0 in European SMEs. To achieve the main
aim of the study, several sources of the secondary data analysis were considered, such
as scholarly articles written by experts in a particular field, books and book chapters,
conference proceedings, government documents, and annual reports of enterprises.

For the analysis, data from the European Commission, OECD, and Statista were
also utilized as well as screening and quality assessment tools (AMSTAR, AXIS, Dedoose,
Distiller SR, MMAT, ROBIS, and SRDR). In addition to research on the added value of the
non-financial sector, the analyses were based on this topic. The research was also conducted
by utilizing secondary data analysis from the SME Alliance. To process the secondary data,
the following scientific methods were used (Figure 2): (i) the method of analysis that examines
a complex research problem by its decomposition into partial sections. In the presented
study, the method of analysis was used to investigate the knowledge available in domestic
and foreign literature in the mapped research area; (ii) the method of synthesis, which is
used in processing and synthesizing acquired knowledge; (iii) the method of comparison,
the result of which is the discovery of a mutual relationship between the researched
knowledge, phenomena, or objects, which makes it possible to gain new knowledge
about the researched issue; (iv) the method of exploration used to better understand the
existing problem. In this study, this method was used in the interpretation of the outputs
of the performed analyses; (v) the method of explanation is aimed at deriving theoretical
conclusions from the examined knowledge, which is organized into logical contexts and
causal dependencies, which is the basis for the creation of theoretical conclusions about the
research problem [66]. The inquiry also included comparative analysis. A total of 56.5%
of German businesses are not entirely compliant with Industry 4.0 deployment criteria,
according to a survey of 268 businesses [18]. A total of 20% of respondents were only
somewhat prepared for the beginner level 1 implementation method. Only 0.3% were
regarded as exceptional, attaining level 5 implementation across all criteria (Table 4).
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Table 4. Levels of implementation.

Level Designation

0 Outsider
1 Beginner
2 Intermediate
3 Experienced
4 Expert
5 Top Performer

Source: Authors’ compilation according to [18].

A survey was conducted to determine how prepared businesses were for Industry
4.0. A total of 1500 C-level executives (CXOs) from 19 countries participated. Only 14%
of respondents stated they were “extremely confident” in their capacity to solve Industry
4.0′s challenges, while 20% of CXOs indicated their organizations were prepared for an
innovative business model. Only 25% of respondents believed their employees had the nec-
essary knowledge to fully integrate Industry 4.0, and 84% were attempting to educate their
employees while acknowledging the need for fundamental changes. Fewer than 15% of
respondents felt appropriately prepared for autonomous and intelligent technologies [67].

Figure 3 depicts the number of SMEs in the EU during a 15-year period. One can
witness a growing number of these firms. In 2022, their population reached around
23 million. SMEs should begin by digitizing their marketing and administrative tasks. For
many businesses, the initial step presents the greatest challenge. Once an initial transition to
digital technologies has been made, strong technological complementarities can stimulate
further acceptance. In order to take this step, and as they identify and embrace further
digital technologies, SMEs frequently rely on external systems, support, and advice. This
is partially to compensate for a lack of internal capacity, but also for economic reasons.
For instance, digital platforms (e.g., social networks and e-commerce marketplaces) offer a
substantial opportunity to optimize specific activities at minimal expense (e.g., business
intelligence and data analytics services). Similarly, SMEs rely on external consultants or
the security-by-design aspects of the digital products and services they employ to manage
digital security concerns. In addition, they obtain artificial intelligence (AI) solutions from
knowledge marketplaces and can leapfrog to new AI systems using software as a service
based on cloud computing. Mobile autonomous robots integrate real-time monitoring and
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smart manufacturing technologies, cloud computing machines, and image recognition
processes. Digital twin-driven smart manufacturing integrates immersive virtual reality
simulations, imaging and sensing tools, and data analytics technologies. Collaborative
autonomous systems leverage image acquisition and processing tools, mobile robotic
devices, and cloud computing analytics in smart manufacturing environments.
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However, technology complementarities can also exacerbate digital disparities, since
larger and more digitally aware businesses can more easily adopt more advanced digi-
tal practices. Therefore, the chasm between SMEs and larger businesses is particularly
obvious in the adoption of more advanced technologies (e.g., data analytics) or when im-
plementation scale is crucial (e.g., enterprise resource planning for back-office integration,
and supply-chain and customer relationship management software for front office and
production process integration). Digital twin technology, cloud manufacturing processes,
and virtual reality modeling tools are pivotal in industrial product lifecycle management.
Cyber-physical production and autonomous manufacturing systems integrate sensor fu-
sion capabilities, robotic navigation processes, and smart process planning. Condition
monitoring data, plant equipment diagnosis, and digital twin capabilities are pivotal in
autonomous production and virtual manufacturing systems. Real-time data visualization
and cognitive artificial intelligence tools, virtual equipment and robotic cooperation sys-
tems, and predictive modeling and deep learning algorithms are instrumental in visual
simulation environments. Networked robots, machine data fusion, and predictive ana-
lytics algorithms articulate digital twin-based intelligent manufacturing in the Industrial
Metaverse.

The digital shift begins for the majority of SMEs in general administration or mar-
keting functions, where the digital gap between SMEs and larger enterprises in online
interactions with the government, electronic invoicing, social media use, and e-commerce is
lower. Sensory data acquisition and deep reinforcement learning tools, autonomous robotic
and digital twin technologies, and computer vision and predictive maintenance algorithms
shape machining process performance. Digital twin-driven smart manufacturing develops
on sensor-based data analysis, object recognition processes, and mobile context awareness
systems. Virtual machine and ambient intelligence tools, obstacle detection and immersive
visualization technologies, and computational prediction and image enhancement algo-
rithms are instrumental in synthetic simulation environments. Smart production systems
leverage granular manufacturing data, computation-enabled robotic devices, and simula-
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tion and scheduling tools across digital twin shop floors. Digital twin and cloud computing
technologies, navigation management tools, and convolutional neural networks further
autonomous swarm robots in smart manufacturing environments. Sensing and computing
technologies, autonomous visual object detection tools, and mobile robotic systems enable
reconfigurable manufacturing processes.

Before implementation obstacles can be evaluated, the advantages and disadvantages
of Industry 4.0 technologies must be taken into account. It is vital to properly describe and
characterize the implementation inconsistencies of Industry 4.0. There are unquestionably
challenges and barriers that must be overcome in order to fully enjoy the benefits of big
data-driven technologies, but utilizing industrial artificial intelligence shapes production
capacities and productivity, resulting in increased profits. The greatest advantage of adopt-
ing Industry 4.0 is a cost-effective and high-quality mass production with 10–30% lower
costs due to rapid and customizable procedures, including storage cost reductions. The
potential 10–30% cost reduction in logistics and quality control is another benefit [68]. Be-
havior pattern clustering and virtual simulation tools, data mining and intelligent process
planning algorithms, and predictive and prescriptive analytics optimize planning and
scheduling data in cyber-physical production and swarm robotic systems on digital twin
shop floor. Multi-robot control systems require decision and control algorithms, compu-
tational intelligence and smart manufacturing scheduling tools, and sensor-based data
acquisition. Job shop scheduling, deep learning-enabled smart process planning, and data
processing capabilities develop on autonomous robotized devices in dynamic industrial
environments. Autonomous swarm and cognitive robots leverage real-time decision sup-
port and immersive visualization systems, industrial automation and 3D virtual simulation
technologies, and image recognition and deep reinforcement learning tools in dynamic
manufacturing environments.

Utilizing energy and natural resources efficiently increases labor productivity, lowers
environmental damage, and increases efficiency by 15–20% [69]. As a result, the man-
ufactured items may be produced and made accessible to customers more swiftly. By
emphasizing cutting-edge industrial production practices, Industry 4.0 promotes consis-
tent economic growth [70]. While implementing Industry 4.0, SMEs encounter dynamic
hurdles. As barriers and impulses to the adoption of new technologies are connected,
possible advantages of overcoming implementation challenges for SMEs will also be ad-
dressed [71]. Smart manufacturing tools, automated assembly machines, and computer
vision algorithms configure digital twin-based product development. Digital twin-based
manufacturing processes, smart factory data, and collaborative localization techniques
configure Industry 5.0 technologies and tasks. Robotic manufacturing processes integrate
cloud-based remote operations, computer vision control techniques, and modeling and
simulation algorithms. Multisensor fusion technologies, cloud computing machines, and
cognitive data analytics further develop autonomous operational decisions.

4. Results
4.1. Obstacles of SMEs

The contribution of SMEs to the gross value of the European economy [72] exceeds
50%. SME implementation of Industry 4.0 would likely be the most difficult process due to
a lack of resources. Integration of Industry 4.0-based production systems is challenging for
SMEs due to the high cost of big data analytics in real-time, which is another factor in favor
of this hypothesis [73]. Insufficient financing, a less-than-competent workforce, and poor
cybersecurity are the primary barriers to implementing Industry 4.0 technology. SMEs are
frequently less prepared to utilize cyber-physical intelligent manufacturing [9].

Figure 4 shows the large SMEs gaps in adoption of digital technologies in many areas
by diffusion rate, based on country average percentages of enterprises using the technology
over the period during 2015–22.
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However, there are substantial variances amongst industries in terms of tool intensity
and kind. In knowledge-intensive industries, such as information and communication
services, adoption rates were far higher: the OECD median share of employees having
access to devices with internet connectivity was about 90%, compared to 50% across all
industries [72]. Adoption of a handful of essential technologies in each industry is crucial.
In the lodging and food services industry, a high-speed internet connection, a website,
and cloud computing to store data were the technologies most strongly related with better
added value and bigger digital gaps. In wholesale commerce, the primary technologies that
was found to drive gaps in adoption and value added were e-sales, cloud computing to
host databases, and the training of ICT professionals, whereas in the retail trade, the most
important technologies were e-sales and cloud computing to manage client interactions [73].
Consequently, governments should enable the access of small businesses to fundamental
digital tools as an entry point to digital transformation. However, this approach must be
reinforced by a sector and function-specific strategy that promotes the most relevant tools
for companies.

There are six basic types of barriers to Industry 4.0 adoption [74]. Furthermore, the
COVID-19 crisis has been a game-changer. Lockdowns and social alienation necessitated a
radical rethinking of business models, with companies rapidly relocating operations online
or developing smart working solutions in order to remain in business and overcome supply
chain interruptions [65]. Initial findings from global business surveys indicated that up to
70% of SMEs increased their usage of digital technology in response to COVID-19. Given
the investments made and commercial advantages of the new models, it is likely that many
of these transformations will endure. Global business polls carried out lately corroborate
the shift: 75% of the firms surveyed in the United Kingdom moved to remote working,
and around 30% invested in new digital capabilities [63]. A total of 55% of SMEs surveyed
in Brazil cited improvements in customer relationships, as well as process agility and
customer acquisition, as key benefits of digitalization during the COVID-19 pandemic [70],
and 72% of online small business owners surveyed in Canada believed that ecommerce is
now in an incipient phase [72].

However, many organizations lack the time and guidance required to properly manage
this shift—to pick the appropriate digital systems, to update digital skills, to build the
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appropriate safeguards and security, and to completely personalize and comprehend the
potential of these new tools. For these businesses, the transformation is incomplete and
fraught with danger. The increasing ability for hackers to exploit the unpreparedness of
SME is a big issue. The costs associated with a data breach can be substantial and frequently
exceed the ordinary SME’s financial reserves. It is crucial to stress, then, that while the
rapid use of digital technologies may be a silver lining to the crisis, there is an ongoing need
for counsel, assistance, and direction from reputable sources to solidify changes, mitigate
risks, and maximize the potential of cutting-edge tools.

The majority of 37 SMEs from various economies that participated in a study cited
inadequate capital as the greatest barrier to adopting Industry 4.0. In addition, businesses
highlighted a variety of obstacles that fall under this category, including a lengthy imple-
mentation process that might force production to cease, excessive costs, and questionable
returns on investment. Among the obstacles are also cultural barriers associated with
difficulties in departmental teamwork. Focus groups claimed that employees’ limited grasp
of production systems based on Industry 4.0, as well as their lack of skill and education,
contributed to their fear of losing their employment. Consideration was given to the ob-
stacles posed by an implementation method as well as to legal and technological barriers.
In a study conducted in Germany, involving 68 SMEs with less than 500 employees and
annual revenues of less than 50 million euros, it was determined that digitalization in SMEs
was still in its infancy, and that the nature of Industry 4.0 was dependent on the size of
the firm adopting it. As impediments, implementation-related organizational difficulties
and significant expenditures on equipment, IT infrastructure, technical training, and IT
personnel were identified. Interviewees also raised the issue of costly implementation ne-
cessitating additional costs. However, the customers’ willingness to pay does not increase
proportionally. The installation technique is overly difficult, the amount of automation
of the machines varies, and if a single unit breaks down, the entire production might be
affected. The SMEs admitted their lack of experience and the need for government or busi-
ness community assistance. Respondents stated that if Industry 4.0 was not implemented,
they would be driven off the market by technologically advanced competitors and would
lose their customers and partners [72]. To implement Industry 4.0 in terms of sustainable
product lifecycle management, SMEs require more assistance than large firms [62].

By having higher financial resources, multinational firms have greater opportunities
to adopt and invest in Industry 4.0-based manufacturing systems, outperforming SMEs in
terms of productivity and competitiveness. In addition to lacking financial resources, SMEs
face capacity challenges that significantly limit their ability to capitalize on development
opportunities. A shortage of funds has an influence on both the capacity to conduct research
efforts and experience. SMEs have fewer vendors and worse networks [74]. Due to a lack
of current, trustworthy, and precise information, it is difficult for SMEs to evaluate their
performance and preparation for Industry 4.0. SMEs are aware of the potential long-term
benefits of adopting cyber-physical manufacturing systems, but they are apprehensive
of the related costs, which include the purchase of new machines, the integration of
cyber-physical systems, sensors, and software, and the upgrading of existing equipment.
Small- and medium-sized enterprises seek to minimize the risk of investing in the wrong
technology, and they may also fear the future. Finding the most applicable technology is
complex and requires managers and employees with extensive knowledge. In this aspect,
SMEs require government support [75].

Due to digitalization, businesses demand leaders with the knowledge and skills
necessary to oversee Industry 4.0 activities. Most small businesses struggle to locate such
specialists. Detailing a project involves understanding and should include resource use
and well-defined objectives. Industry 4.0 implementation involves great organization and
structure. The adoption of robotic wireless sensor networks may fail if administrative
and organizational procedures are not sufficiently streamlined and adaptable [76]. Data
visualization and visual perception tools, blockchain and remote sensing technologies,
and robotic navigation systems shape production process modeling in digital twin-based
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smart manufacturing. Smart product development requires modeling and simulation tools,
vision sensing technology, and object recognition algorithms on the digital twin shop floor.
Prescriptive and predictive analytics, edge and fog computing technologies, and image
recognition and steering control algorithms enable manufacturing operations management
in cyber-physical production systems.

Figure 5 demonstrates that the greatest difficulty for SMEs across all industries is not a
lack of financial resources, but rather insufficient educated labor.
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As business collaboration was described briefly, the social context must be analyzed.
Social capital may be divided into internal and external components. Internal social
capital is a measure of collaboration and a depiction of the bonds between employees
inside a particular organization. External social capital is characterized by connectivity
and collaboration with other external companies and institutions. Social environment is
necessary for the implementation of Industry 4.0. Successful implementation of Industry
4.0 demands strong management and a dedication to establishing social connections.
Collaboration with other market participants, technology and infrastructure suppliers,
technological specialists, etc., as well as the social environment and new organizational
structure of work, are crucial [62].

Financial support is pointless without the willingness and effort to integrate digital
twin-based product creation, immersive visualization tools, and deep learning-based
computer vision and virtual simulation algorithms. The social environment is also a
factor in another difficulty, as investments are related to insufficient absorption capacity.
Representing the ability to build a communicative foundation and integrate information for
advancement, absorption capacity entails both the ability to gather and utilize information
and the enhanced application of data-driven technologies and industrial processes [78]. The
adoption of robotic wireless sensor networks, artificial intelligence-driven big data analytics,
and Internet of Things-based decision support systems is dependent on managerial backing
towards the Industry 5.0 environment. The management staff is also responsible for
maximizing the utilization of obtained grants and financial aid. A lack of financial resources
may hinder the success of the technique described above. Thus, SMEs must make prudent
decisions on financial investments and teamwork [62].

Cybersecurity [72] is a significant obstacle to the integration of Industry 4.0-based
production systems, robotic wireless sensor networks, and Internet of Things smart devices.
Since 2021, 6 trillion dollars have been spent on cyberattacks yearly [79]. Both quantitative
and qualitative methods can be used to determine the loss’s magnitude. Quantitative
indicators are comprised of formulas that assess the impact of a cybersecurity event on
the organization, including the costs associated with replacing damaged parts, testing new
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parts, and installing them, as well as the necessary time to perform such tasks. Other formu-
las incorporate production waste and profit loss in the calculation prior to the addition of
monetary penalties for the causes already mentioned. The amount of a company’s impact
is determined by three qualitative indicators: low, medium, and high [80]. Cybersecurity is
related to financial resources, and a lack of cash might have a negative effect on it, given
that a breach of cybersecurity can result in costly fines and maintaining its sufficiency
requires substantial investments.

The introduction of Industry 4.0 among SMEs generates several uncertainties and
threats. Due to the employment of varied approaches, technologies, and languages to
integrate numerous components and tools, the success of the aforementioned process
requires a flexible interface. Enterprise stability ensures the reliability of systems, and
collaboration across all organizational components is required when adopting big data-
driven decision-making processes, artificial intelligence data-driven Internet of Things
systems, and cognitive automation tools towards the Industry 5.0 environment. Neural
network and deep learning algorithms, digital twin modeling and predictive maintenance
tools, and environment mapping and data stream clustering algorithms assist virtual
manufacturing technologies and cyber-physical production systems. Machine monitoring
and intelligence technologies, data acquisition tools, and computer vision algorithms
articulate cyber-physical production systems. Data fusion mechanisms, machine control
systems, and distributed sensor networks are pivotal in digital twin-based virtual factories
and industrial cloud robotics. Smart product innovation develops on digital twin and
industrial automation technologies, data processing and context awareness algorithms,
and image processing and mobile swarm tools.

A lengthy integration procedure of Internet of Things sensing networks in SMEs
may result in production delays, high costs, and an uncertain rate of return. Again, the
mentioned hindrances are associated with a lack of financial resources, which might result
in substantial complications during the installation of cyber-physical process monitoring
systems and standard organizational operations [73]. An efficient business model controls
the configuration and utilization of artificial intelligence data-driven Internet of Things
and product decision-making information systems, as well as the operation planning and
administration of a firm. SMEs may analyze all of the challenges that adopting Industry 4.0
will provide, but they also seek to comprehend how to profit from the shift. Technological
breakthroughs in business models are one of the aforementioned advances. The purpose of
an innovation in a company strategy is to reduce consumer expenditures while boosting
product value and customer loyalty. Utilizing autonomous production systems and spatial
data visualization tools, innovations may be implemented. On the one hand, SMEs claim
that it is a pricey operation. On the other hand, it may have long-term benefits. When
a business strategy is more demand-driven, customers’ willingness to pay may increase.
Therefore, everything that originally appears to be a difficulty may ultimately become
useful [72].

4.2. Financial Backing for SMEs

The expansion of SMEs is fostered by a number of organizations, as they are crucial
for social progress and a vibrant economy. The primarily EU-provided financial aid for
SMEs is discussed in the following sections. The difficulties of collecting financial resources
are next emphasized, followed by a discussion of the government’s involvement [81]. The
EU provides SMEs with a range of financial support options, including grants and loans,
guarantees, assistance, and financing for particular projects or new businesses. EU grants
are financial instruments meant to enhance a nation’s performance, aid varied industries,
and advance economic development. Indirectly or directly, the EU supports state funds that
subsidize several activities inside Europe. SMEs benefit from European Investment Fund-
administered grants. The number of EU investments demonstrates that SMEs are among
the top recipients of financial assistance. From 2014 to 2020, the EU invested one trillion
euros on a range of initiatives within the EU [82]. The implementation of Industry 4.0
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might be extremely useful for SMEs, but at a high cost [62]. The European Investment Bank
(EIB) and the European Investment Fund (EIF) comprise the EIB Group, which is largely
responsible for SME finance and digitalization. Figure 3 illustrates how the European
Commission decides on the allocation of financial resources and how it communicates with
the EIB Group and the management bodies of member states [64]. The EIB makes loans via
intermediaries such as commercial banks. These loans are designed for SME investments
in tangible and intangible assets and serve as the cornerstone for SME access to sustainable
operational capital and long-term financing needs [82]. Due to their significance for the
European economy, SMEs are the principal focus of financial support efforts. Funding
comes from financial institutions in European member states. There are several types of
financial assistance, including loans, guarantees, microfinance, and equity funding. One
way to allocate cash is through organizations that establish the conditions and criteria
of financing (e.g., social investors, business angels, crowdfunding partners, and venture
capital funds) [64]. The EIF’s major objective is to facilitate access to funding for SMEs
(Figure 6).
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The following are brief descriptions of the approaches employed by the EU to promote
innovation, digitization, and SME growth in Europe. Whether SME adoption of Industry
4.0 is hampered by a shortage of capital or not, it is crucial to examine the ease of access to
external funding for such companies to see if certain impediments may be removed.

The Programme for the Competitiveness of Enterprises and Small and Medium-
Sized Enterprises (COSME) and the European Fund for Strategic Investment collaborate
to promote the digital transformation of SMEs. By subsidizing financial instruments,
budgetary resources are used to facilitate access to loans and finance. The leverage effect
is also utilized with regard to budget. Approximately 35 billion euros can be raised
via financial intermediaries [83]. COSME is dependent on the Loan Guarantee Facility,
which focuses mostly on digitalization (LGF). In 2019, the European Commission and EIF
launched the COSME LGF. This COSME digitalization experiment focuses primarily on the
digital transformation of SMEs, since the EU is aware that a lack of financial resources is
a key impediment to digitalization. Loans backed by COSME guarantees will aid about
500,000 SMEs [84]. More than thirty billion euros has been lent thus far. COSME also
includes the Equity Facility for Development (EFG), which is administered by the EIF and
promotes the growth and expansion of SMEs. According to [85], 300 enterprises will benefit
from the EFG’s 2.54 billion euro investment.

Horizon Europe’s predecessor was Horizon 2020, a research and innovation project
with a 77-billion-euro budget that ran from 2014 to 2020. The suggested program placed
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a heavy emphasis on assisting SMEs and eradicating barriers to innovation. Horizon
Europe now manages a total budget of 95.5 billion euros for the years 2021 to 2027. Prin-
cipal investment areas will include digital transformations, the growth of research and
technology, industrial competitiveness, innovation, and teamwork. The objective of this
initiative is to reduce the administrative burden on applicants [82]. Horizon Europe, with
a €10 billion budget for 2021–2027, comprises the European Innovation Council (EIC). Its
grants and investments mostly target SMEs. During the EIC trial period of 2018–2020,
more than 5700 new businesses and SMEs received about 5 billion euros in benefits and
more than doubled their workforce. It is projected that 372 billion euros will be raised for
Europe’s investment plan for 2021–2027. Among the plan’s primary areas of emphasis are
research, innovation, and the digitization of EU industry. The financial aid focuses mostly
on facilitating and enhancing the finance process for SMEs [86].

The principal objectives of the DIGITALEUROPE organization are the digitaliza-
tion of all European industries and the establishment of a society that can leverage deep
learning-assisted smart process planning, cyber-physical system-based real-time monitor-
ing, and artificial intelligence-based decision-making and virtual simulation algorithms.
DIGITALEUROPE’s activities include legislation, the establishment of industrial policy per-
spectives, and the implementation of digitalization policies throughout Europe. To ensure
a sustainable and competitive production, the EU pioneered the concept of “Factories of
the Future” and encouraged enterprises to join public–private partnerships. In addition,
enterprises with complementary competences might be amalgamated as part of govern-
ment and industry initiatives [72]. Industry 4.0 wireless networks and the establishment of
Factories 4.0 are the primary issues of the EU’s public–private partnership for innovation
and cutting-edge production research, which also involves SMEs and other organizations.
By 2030, the EU intends to transform itself into a digital economy. This perspective’s goals
cover the digital transformation of businesses, which will enable more than 90% of SMEs to
achieve a minimum level of digitization. Additionally, emphasis will be made on worker
education and the development of Industry 4.0-related laws. From this initiative, it is
reasonable to conclude that the EU is dedicated to aiding SMEs and digitalization [64].

4.3. Barriers to Acquiring Financial Support

The difficulty of obtaining financing has an effect on the operation of SMEs. Nonethe-
less, the euro area’s financial access is improving. Access to external resources is only a
significant issue for 8% of SMEs. Nevertheless, as shown in Figure 7, larger firms have
better access to external financing than smaller ones [77].

Businesses may have difficulty receiving external financing due to their reluctance
to seek for it out of fear of rejection, or because they would receive an unacceptable loan
amount or one with a high interest rate. The documentation needed in submitting a request
for financial help may be time-consuming and onerous, representing a potential barrier.
Other factors, such as the company’s age and amount of innovation, may influence the ease
with which SMEs can get external financing [77]. As seen in Figure 8, small and developing
enterprises have the most difficulties in acquiring external finance. As a result of more
uncertainty, the possibility of receiving financing is diminished for enterprises whose major
focus is on creative operations, despite the fact that mature SMEs have better possibilities.
Due to the fact that many SMEs rely solely on a single source of capital, financing strategies
should be diversified.
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Figure 8. Financially limited firms according to age and size (weighted percentage of surveyed).
Source: Adapted from Ref. [77].

SMEs have limited access to financial resources, and acquiring funding is an expensive
procedure. Investors will only fund SMEs if it is possible for them to purchase a piece of
the firm. The majority of investors wish to work in management. However, they may leave
after selling their share to a subsequent investment or to the original owner. Due to their
opposition to the future sale of shares, SMEs may have a negative attitude toward new
shareholders. Another challenge is that it may be difficult for SMEs to utilize instruments
for risky investments [87].

Governments are in the process of enacting legislation and launching programs to
financially support the digitization of enterprises. This assistance is provided by financial
resources and institutional activities to promote the external partnerships of firms with
universities, middlemen, other businesses, and technology suppliers, among others. More-
over, support for educational and training activities is a desired outcome. These activities
are geared toward SMEs because they are the ones suffering mostly with Industry 4.0. As
a result of current government efforts [62], some SMEs have invested in manufacturing
technologies powered by big data and enhanced their partnerships with external partners.
Direct and indirect forms of financial assistance can be divided into two distinct groups.
Included in direct forms are grants from European funds, export premiums, extra fees,
etc. Indirect financial support includes tax rebates, reduced interest rates, and financial
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assurances, among other things. There is a huge network of organizations trying to assist
SMEs at the state, regional, and local levels within nations.

Finding methods for government and industry to collaborate is vital, since this affects
both intrastate and international connections [15]. Inadequate finance and cost-cutting
measures may have an influence on national affairs; thus, the government should aid
businesses in their transition to Industry 4.0. Cybersecurity, for instance, impacts state-
to-state relations as well as international security, while unemployment leads to social
imbalance [85].

4.4. Persistent, Long-Term Structural Obstacles

In addition to the requirement for access to the correct guidance and motivation, there
are additional structural impediments to digital adoption, including: (i) an internal skills
gap that prevents managers and workers from identifying the digital solutions they need,
and to adapt business models and processes; (ii) a financing gap, as SMEs face difficulties in
accessing finance for intangible digital investments that cannot be easily used as collateral
to secure a loan; and (iii) an infrastructure gap. Access to high-speed broadband is a
prerequisite for the digital transformation of SMEs [67]. Penetration rates of high-speed
broadband have been increasing in all OECD countries since 2011, but the leading countries
and firms have been pulling away from the rest (Figures 9 and 10), and gaps between firms
in lagging countries have widened significantly. Access to high-speed broadband is still
uneven, and development for small businesses has halted.

These disparities have made it difficult for some businesses and locations to change
their business models and continue operations over lengthy periods of social estrangement,
hence aggravating existing disparities. The SME Digital initiative in Denmark and the
Australian Small Business Advisory Service offer financial and consulting assistance, while
Chile, Israel, Latvia, and Spain provide SMEs with skill training. There are infrastructure
improvement strategies in Iceland and Costa Rica, as well as networking programs in
Belgium and Germany. These efforts will play a significant role in addressing the digital
gap, but they must be well-coordinated through multilevel governance and processes that
link thematic expenditures (for example, ensuring that the provision of infrastructure is
supported by training and advice to enable their use) [78].
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Figure 9. Differences in penetration rates across nations, 2011 to 2022. Source: Adapted from Ref. [77].
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4.5. Government Support for Digitalization

The government’s backing and style of administration are the foundation for the
digital age’s good functioning and support. Available funds should be invested for the
advancement of science and technology. Businesses are also encouraged in this direction,
since they hold the key to the future of company and the education of future digital
era employees. This section of the work includes proposals and activities that national
governments should undertake on the path to digitalization.

Table 5 shows four measures taken by the government to promote the digital trans-
formation of SMEs. This section of the text examines these four processes from several
perspectives for a more comprehensive examination.

Table 5. Government boost for digitization.

4 Steps from Government to Boost the SME’s Digital Transformation:

1. Scaling up SME internal capacity
2. Easing SME access to strategic resources
3. Creating the right business environment for SME transformation
4. Promoting a whole-of-government approach

Source: Authors’ compilation.

Increasing the internal capacity of SMEs: (1) Providing technological support and assis-
tance to SMEs through targeted financial support (consultancy vouchers, grants), technol-
ogy extension programs (diagnostic, self-assessment tools, e-business solutions, advice
and a bundle of learning materials), or a combination of the two. (2) Encouraging SME
training and upskilling [27], by reducing training costs (e.g., tax incentives and subsi-
dies) and promoting workplace training (e.g., via employer networks and associations,
intermediary brokers, apprenticeships programs, etc.) or by pooling training investments.
(3) Strengthening management skills in SMEs (e.g., through training, workshops, and
coaching programs). (4) Building a data culture in SMEs, by increasing awareness of the
benefits of data analytics.

Easing SME access to strategic resources: (1) Leveraging fintech and alternative sources
of finance for SMEs, by promoting the use of new technologies (such as blockchain and AI)
to lower transaction costs on finance markets; encouraging the deployment of financing
and matching marketplaces, as well as the use of mobile banking [14], or alternative
data for credit risk assessment. (2) Encouraging business innovation and the supply of



Appl. Sci. 2023, 13, 1681 22 of 35

new digital solutions, through a range of research and innovation policies (e.g., research
and development, and research and development tax credits). (3) Connecting SMEs with
knowledge networks, through cooperation programs (e.g., with large firms or online
platforms) or SME-led public procurement (e.g., Small Business Innovation Research-type
of program) or networking interfaces (e.g., digital innovation hubs, centers of excellence,
clusters, and co-working spaces). (4) Providing SMEs with access to data and technology,
via testbeds and experimentation labs, data centers, digital innovation hubs, university
transfer offices, and university transfer offices.

Creating the appropriate business environment for small business transformation: (1) Estab-
lishing a supportive regulatory framework by: reinforcing efforts to harmonize legislations
on trade secrecy and intellectual property rights protection across jurisdictions; enforc-
ing data protection regulations; developing digital security legislations and establishing
industry standards; addressing regulatory uncertainties surrounding distributed ledger
technologies; and ensuring the smooth operation of knowledge markets where SMEs
can access digital solutions [69]. (2) Promoting e-government and e-services for SMEs
through one-stop shops and digital portals (e.g., for information provision, or assistance,
certification, or simulation online, the “only once principle”); e-invoicing, e-signature, and
electronic submissions (e.g., tax administration and compliance by default); adoption of
new digital technologies in public services (e.g., blockchain and artificial intelligence);
through open government data, etc. (3) Deploying high-quality digital infrastructure
via development plans and roadmaps (e.g., high-speed broadband and connectivity in
remote areas) or other platforms (e.g., computer emergency response teams) or public-
sector-backed blockchain service infrastructure with interoperability with private sector
platforms [88].

Promoting a whole-of-government approach: (1) Creating governance arrangements in
emerging policy areas through artificial intelligence or blockchain (e.g., coordination bodies
and structures). (2) Establishing consultation instances and advisory groups at national
and subnational levels, with the participation of experts, entrepreneurs, industry and
academics, and local governments, in order to promote ethical and more responsible
digitization policies [89].

This section concludes by discussing the research and development investment of EU
governments (government budget allocations for R&D (2021) € per person) (Figure 11),
which is definitely tied to digitization and the preparedness of working people for this
change. The subsequent graph illustrates the resolved issue and highlights the need for a
stronger emphasis on R&D in nearly all EU nations.

Comparing 2011 (€184 per person) to 2021 (€244 per person), government budget
allocations for R&D in the EU increased by 33%. The greatest allocations were reported
in Luxembourg (689 euros per person), followed by Denmark (530 euros) and Germany
(471) by a considerable margin. Romania (19 euros per person), Bulgaria (24 euros per
person), Latvia (45 euros per person), and Hungary (60 euros per person) had the smallest
R&D budget allocations per capita. Latvia (from €14 in 2011 to €45 in 2021), Greece (from
€58 to €152), and Hungary (from €30 to €60) have had the biggest percentage growth in
government budget expenditures for R&D per person during the past decade. In contrast,
in Spain, these allocations declined from €155 in 2011 to €152 in 2022. R&D is important to
several European and state programs that aim to boost the competitiveness of EU economies
and the well-being of EU inhabitants. In the Political Guidelines for the next European
Commission for the period of 2019 to 2024, R&D was identified as a driving topic.
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Figure 11. Government budget allocations for R&D (2021, € per person). Source: Adapted from
Ref. [77].

5. Discussion

The initial part of the study focused on deciphering the nomenclature around Industry
4.0 and the underlying technologies. These new ideas were briefly reviewed in order to
better comprehend the meaning of Industry 4.0, which is crucial for the implementation
process. The evaluation of the advantages and disadvantages of implementing Industry
4.0 followed this section. Among the upsides, optimized environment, efficiency, quality,
competitive prices, and economic growth can be mentioned [89]. One downside [90] is
the need to overcome difficulties such as massive data storage, human training, a lack
of finance, etc. Additionally, the preparedness of businesses was analyzed, and it was
determined that the majority of enterprises of varying sizes were not equipped to install
production systems based on Industry 4.0. The research’s major focus was on barriers to
the adoption of cyber-physical production networks, deep learning-assisted smart process
planning, and industrial big data analytics [91]. The most often stated obstacles were a lack
of finance and qualified employees. The competitiveness and a lack of willingness to accept
new technology were also mentioned [92].

The two primary hurdles, social environment and financial resources, are intertwined.
The partnership of firms, which was recommended to businesses as a strategy to combat
possible vulnerabilities, such as a shortage of qualified labor, may be utilized to explain how
interconnectivity works [93]. But for collaboration to be effective, financial resources for
digitalization are necessary [94–97]. The benefits of collaborating with other businesses and
creating new business models were then discussed. SMEs and large corporations do not
have equal opportunities to embrace Industry 4.0 technologies. Moreover, they have diverse
purposes and foci, the combination of which might be useful [98,99]. Large corporations
can benefit from the flexible production and competitive edge of SMEs. Nevertheless,
many difficulties and goals are shared by firms of all sizes, such as the need for skilled
labor and the pursuit of high productivity [100–102]. Numerous SME owners cited a lack
of financial resources as their principal difficulty; hence, it was essential to explore the
veracity of this assertion and possible alternatives. It was determined that the EU helps
SMEs because it benefits from their success. To support this claim, a list of EU programs
that assist SMEs was provided. There are several alternatives for financial help, but their
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acquisition might be difficult by a number of factors, including age, size, and subject of
study. The limitations of the study are discussed at the conclusion of the report since its
accuracy required verification. In the first place, there are insufficient scholarly resources
addressing the study’s specific concerns. Although it appears that sufficient sources were
employed to generate this research, it is still hard to draw certain findings [103–105]. As
was previously stated, while considering Industry 4.0, researchers are more inclined to
focus on large corporations.

There is insufficient evidence to support the dynamics of SMEs in the cyber-physical
production environment in connection to the aforementioned difficulties performed and
utilized in this study. In addition, not all European economies have been considered or
examined. Therefore, the findings should not be used to describe the status of SMEs across
Europe. Since studies usually focus on big economies such as China, the United States, or
India, a portion of the information on the benefits and downsides of implementing Industry
4.0 was derived from U.S. research. As technology evolves at an extraordinary rate, a new
source-related problem emerges. Due to the rapid evolution of technology and Industry
4.0, academic materials from only a few years ago may now be obsolete [106]. Since the
situation of the COVID-19 pandemic was not considered when conducting this inquiry, it
is difficult to predict the future of Industry 4.0. Due to the unfavorable economic climate,
businesses may be compelled to embrace Internet of Things-based real-time production
logistics as soon as possible in order to minimize the number of operational staff, or it may
become a substantial barrier.

On the basis of the observation of successful collaboration between large organizations,
it is recommended that SMEs collaborate [107]. Since there is little evidence of effective
collaboration between SMEs and large businesses, this explanation for hypothetical sit-
uations based on the available data is extremely rational. It was found that EU support
may help alleviate the lack of financial resources [61]. However, there are no affirma-
tive comments from SMEs on whether the financial assistance is sufficient [45]. Again,
this can only be extrapolated from the facts currently known, such as the quantity of the
funding dedicated to aid and the EU’s strong desire to help SMEs. Due to the scarcity
of considerable amounts of data, the partnership of SMEs and major corporations, the
distribution of financial resources received via grants, and the costs involved with the
recruitment of talented personnel, all require more research [108]. 3D convolutional neural
networks, computer vision and path planning algorithms, and intelligent data processing
and smart environment modeling tools configure cyber-physical production and virtual
manufacturing systems. Multiple autonomous mobile robots, deep learning-based image
processing and context awareness algorithms, and ambient intelligence and visual analytics
tools articulate shop-floor production management [109,110]. Spatial data acquisition and
context recognition tools, machine perception and simulation modeling technologies, and
connected mobile devices assist manufacturing execution and robotic operating systems.
Wireless sensor networks, space situational awareness and computational intelligence
tools, and decision support systems enable product lifecycle monitoring and autonomous
mobile robot navigation across smart shop floors [111–114]. Virtual reality-based data
analytics, cognitive decision-making algorithms, and deep convolutional neural networks
increase industrial control and automation systems. Image recognition and crowd nav-
igation algorithms, sound recognition systems, and ambient intelligence and predictive
simulation tools optimize smart manufacturing machines in immersive 3D and Industry
5.0 environments [115–118]. Machine intelligence and digital twin technologies harness
situational awareness and remote sensing algorithms, cloud-based cyber-physical systems,
and image acquisition devices in Industry 4.0-based networked environments. Digital twin
technologies leverage simulation analytics, environment perception sensors, and cognitive
data fusion techniques in smart manufacturing processes [119–122].

Cyber-physical production and autonomous manufacturing systems integrate sensor
fusion capabilities, robotic navigation processes, and smart process planning. Robotic co-
operative behaviors require digital twin-driven product development, enterprise resource
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planning, and process performance monitoring [123–128]. Real-time data visualization and
cognitive artificial intelligence tools, virtual equipment and robotic cooperation systems,
and predictive modeling and deep learning algorithms are instrumental in visual simu-
lation environments. Industry 5.0-driven sustainable operations necessitate monitoring
and sensing technologies, cloud-based production processes, and virtual mapping and
data mining tools [129–132]. Data fusion mechanisms, machine control systems, and dis-
tributed sensor networks are pivotal in digital twin-based virtual factories and industrial
cloud robotics. Job shop scheduling, deep learning-enabled smart process planning, and
data processing capabilities develop on autonomous robotized devices in dynamic indus-
trial environments. Swarm computing and motion control algorithms, visual and spatial
intelligence tools, and cloud computing technologies shape autonomous task allocation
and production process modeling in digital twin-driven smart manufacturing [133–136].
Shop floor digital twins deploy real-time operational data, smart connected sensors, and
3D spatio-temporal simulations in virtual manufacturing systems and across collaborative
multi-robot environments. Digital twin-based manufacturing processes, smart factory data,
and collaborative localization techniques configure Industry 5.0 technologies and tasks.
Networked robots, machine data fusion, and predictive analytics algorithms articulate
digital twin-based intelligent manufacturing in the Industrial Metaverse [137–140] (Table 6).

Table 6. Main research findings.

• Interoperable production and dynamic operating systems, data virtualization technology, and
digital twin modeling and virtual simulation tools configure smart shop floors and manufacturing
environments in the corporate context of SMEs.

• Virtual data modeling and process mining tools, big data sensing systems, and image
recognition and robotic behavior algorithms articulate cyber-physical production networks and
digital twin-based manufacturing systems.

• Data modeling technologies, visual perception and spatial mapping algorithms, and digital twin
and decision support tools shape Industry 4.0-based manufacturing systems and virtual robotic
environments.

•Machine intelligence and autonomous robotic technologies optimize smart manufacturing
plants and virtual enterprises by use of context modeling and data mining tools, collision
avoidance and coordinated motion planning algorithms, and digital twin processes.

• Digital twin-based smart production develops on virtual process modeling and visual
navigation tools, deep learning-enabled process planning technologies, and perception and
cognition algorithms.

• Smart manufacturing systems integrate deep learning and virtual simulation algorithms,
real-time machine and shop floor data, and intelligent sensing devices across dynamic
unstructured environments.

Source: Authors’ compilation.

6. Conclusions

Regarding artificial intelligence-driven decision-making and virtual simulation al-
gorithms, cyber-physical production networks, and Industry 4.0-based manufacturing
systems, the two largest impediments to the adoption of Industry 4.0-based manufacturing
systems are a lack of financial resources and a skilled labor force, according to the comments
of various SME leaders in Europe.

Because all the barriers highlighted in this study are interconnected and certain extra
obstacles that SMEs may face are closely related to them, it does not appear possible to
choose one as the most significant. Cybersecurity faces these challenges adequately and
these challenges may be precisely addressed by combining a trained workforce with suffi-
cient financial resources. To embrace Industry 4.0, organizations require dedicated owners
and adaptable managerial support, as well as the willingness to seek external financing if
necessary. The SME sector is a top priority for the EU, and there are several alternatives for
financial assistance. After receiving this advice, the management staff will be in a better
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position to design a clear strategy, select the subsequent digitalization approaches, and
incur more costs. The management staff, which is comprised of educated and competent
individuals, may also provide people assistance, which includes monitoring the growth
of their training and abilities. The management staff may also assist internal and external
cooperation inside organizations that can handle a range of problems encountered by SMEs
including artificial intelligence-based decision-making and virtual simulation algorithms,
real-time sensor networks, and cyber-physical system-based manufacturing [141–144].

Even if SMEs had the financial means, the implementation of Industry 4.0 would
fail without a solid plan and comprehension. The necessity for a highly educated and
skilled workforce or the cost of their training may result in an increase in labor expenses,
making the social environment crucial but also demanding substantial financial resources.
The most important factors for a company’s adoption of Industry 4.0 are a proper grasp
of the concept and its subsequent incorporation into the organization via an appropriate
management structure and sufficient support from skilled executives. Because Internet of
Things-based decision support systems require significant financial resources, the initial
assumption that only large businesses can adopt Industry 4.0-based manufacturing systems
is only partially accurate, as SMEs can request additional financial resources.

Additionally, the deployment of sustainable manufacturing Internet of Things and
robotic wireless sensor networks need further development. In order to evaluate the reality
of the assertion that, in the context of Industry 4.0, the gap between large enterprises and
SMEs will severely hurt the latter, it is legitimate to conclude that some inequality exists.
Consequently, SMEs must exert greater effort to compensate. Industry 4.0 implementation
is essential if a company aspires to surpass its market competitors. Despite the fact that
SMEs and large organizations may not have equal opportunities, SMEs are not always
driven off the market by large corporations. Collaboration between businesses is crucial,
and SMEs may develop links with large firms by using their adaptability and competitive
edge. The potential benefits are sufficient to motivate firms to embrace cyber-physical pro-
duction networks and artificial intelligence-based decision-making and virtual simulation
algorithms notwithstanding the presence of certain barriers [145–148]. Ahead-of-the-curve
businesses that have already successfully integrated deep learning-assisted smart process
planning, big data-driven decision-making processes, and Internet of Things smart devices
may demonstrate the real benefits and advancements that can be realized by adopting
Internet of Things-based real-time production logistics [149–151].

Companies are uncertain about the outcome of this endeavor since the difficulties
associated with Industry 4.0 adaptation are usually too complex for an outsider to know
in full. As a result, more research must be conducted in several fields. As is the case
with the use of big data, for instance, what is initially perceived as a gain may turn out
to be a drawback. Real-time access to information is a big advantage. The requirement
to deal with voluminous data that necessitates storage, cybersecurity, etc., is also taxing
on staff. Another example that should be seen favorably is automation. The acceptance
of this tendency might, however, be accompanied with automation bias or the paradox
of automation. Based on a few incidents, every organization aiming to implement all the
technologies presently in development should take caution. Despite the effort to conduct
a detailed analysis, it is possible to claim that the study has a number of flaws, such as
secondary and insufficient data.

In addition, conducting the analysis with more European states would be desirable.
On the other hand, the research emphasizes the most recent industry trend and draws
attention to the associated economic concerns, which may be viewed as an added advantage.
Industry 4.0 is evolving on a global scale; thus, it will take some time to determine the
exact effect and potential obstacles. In addition, the COVID-19 pandemic may push firms
to refocus their attention on more pressing issues, which will hinder their willingness to
adopt new technology. Political, social, and economic institutions must adapt to a vast
array of new technological advances in all industrial sectors, not just manufacturing. If
stakeholders and managers of large-scale industrial companies desire sustainable economic
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growth for the future of mankind, they are obligated to collaborate and work together to
get a deeper understanding of the opportunities and challenges of Industry 4.0.

7. Specific Contributions to the Literature

Our article puts forwards machine intelligence and autonomous robotic technologies in
the corporate context of SMEs in terms of deep learning and virtual simulation algorithms,
cyber-physical production networks, and Industry 4.0-based manufacturing systems, a
hot emerging topic that has not been analyzed so far. Our analyses prove that machine
vision and cloud computing technologies, spatial data processing and cognitive artificial
intelligence tools, and digital twin modeling assist production planning and scheduling
in smart manufacturing environments. Big data analytics, artificial neural networks, and
virtual twinning techniques enable autonomous manufacturing processes throughout
industrial cyber-physical systems. Multisensor fusion technologies, cloud computing
machines, and cognitive data analytics further autonomous operational decisions. Data
visualization and visual perception tools, blockchain and remote sensing technologies, and
robotic navigation systems shape production process modeling in digital twin-based smart
manufacturing. Visual tracking and motion planning algorithms, digital twin technologies,
and localization and navigation tools optimize autonomous manufacturing processes on
the product assembly shop floor. Smart manufacturing enterprises necessitate signal and
image processing tools, product digital twins, and motion sensing capabilities.

Virtual machine and ambient intelligence tools, obstacle detection and immersive visu-
alization technologies, and computational prediction and image enhancement algorithms
are instrumental in synthetic simulation environments. Cognitive manufacturing and coop-
erative multi-robot systems deploy sensor–actuator networks, spatial data analytics, and
location identification and natural language processing tools. Collaborative autonomous
systems leverage image acquisition and processing tools, mobile robotic devices, and cloud
computing analytics in smart manufacturing environments. Production process modeling
develops on predictive maintenance tools, remote sensing algorithms, and data fusion
technologies. Digital twin-driven smart manufacturing integrates immersive virtual reality
simulations, imaging and sensing tools, and data analytics technologies. Smart product
development requires modeling and simulation tools, vision sensing technology, and object
recognition algorithms on the digital twin shop floor. Autonomous cyber-physical and
robotic operating systems harness industrial wireless sensor networks, interconnected vir-
tual devices, and product lifecycle data. Big manufacturing data, cyber-physical production
systems, and smart interconnected robots are pivotal in Industrial Internet of Things.

Digital twin systems harness object perception and virtual shop floor operations, cap-
tured image data, and visual modeling and multi-machine cooperation tools. Autonomous
robotic and digital twin-enabled industrial systems deploy data processing and context
awareness algorithms, edge computing technologies, and modeling and simulation tools
across smart manufacturing plants. Autonomous swarm and cognitive robots leverage
real-time decision support and immersive visualization systems, industrial automation and
3D virtual simulation technologies, and image recognition and deep reinforcement learning
tools in dynamic manufacturing environments. Smart product innovation develops on
digital twin and industrial automation technologies, data processing and context awareness
algorithms, and image processing and mobile swarm tools. Robotic manufacturing pro-
cesses integrate cloud-based remote operations, computer vision control techniques, and
modeling and simulation algorithms. Autonomous and collaborative robots require spatial
data visualization and assembly process planning tools, multisensor fusion and cloud-
based digital twin technologies, and motion control and context awareness algorithms
throughout augmented operating environments. Virtual machines necessitate blockchain-
based data acquisition, intelligent manufacturing equipment, and robotic communication
systems.
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8. Limitations and Further Directions of Research

The scope of this research does not advance object perception and path planning algo-
rithms, predictive simulation and image processing tools, and mobile sensors and actuators
in digital twin-driven manufacturing systems. Big data analytical and acoustic environment
recognition tools, computer vision and swarm intelligence algorithms, and artificial neural
networks configure multi-agent robotic systems in digital twin environments. Condition
monitoring data, plant equipment diagnosis, and digital twin capabilities are pivotal in
autonomous production and virtual manufacturing systems. Additional research should
address how Internet of Things-enabled control systems, data mapping and processing
tools, and prognostic and diagnostic algorithms articulate manufacturing task manage-
ment in smart networked environments. Sensory data acquisition and deep reinforcement
learning tools, autonomous robotic and digital twin technologies, and computer vision
and predictive maintenance algorithms shape machining process performance. Virtual
twin data, smart interconnected and cognitive robotic devices, and machine learning and
context awareness algorithms are instrumental in Internet of Things-enabled automation
and process manufacturing systems.

Future research should investigate how sensing and computing technologies, au-
tonomous visual object detection tools, and mobile robotic systems enable reconfigurable
manufacturing processes. Neural network and deep learning algorithms, digital twin
modeling and predictive maintenance tools, and environment mapping and data stream
clustering algorithms assist virtual manufacturing technologies and cyber-physical pro-
duction systems. Smart interconnected devices, swarm robotic and machine learning
algorithms, and process simulation and scheduling tools articulate smart manufacturing
systems and digital twin-based virtual factories. Attention should be directed to how
digital twin and cloud computing technologies, navigation management tools, and con-
volutional neural networks further autonomous swarm robots in smart manufacturing
environments. Behavior pattern clustering and virtual simulation tools, data mining and
intelligent process planning algorithms, and predictive and prescriptive analytics optimize
planning and scheduling data in cyber-physical production and swarm robotic systems
on digital twin shop floor. Digital twin simulations, robotic operating systems and agent
behaviors, and environment perception sensors configure Internet of Things-based cloud
manufacturing.

9. Practical Implications

Autonomous manufacturing control, industrial wireless sensor networks, and pre-
dictive maintenance scheduling tools assist smart manufacturing systems in synthetic
simulation environments. Plant maintenance scheduling and context recognition tools,
machine learning techniques, and fault diagnosis systems shape cloud networked and
collaborative robots. Smart manufacturing systems deploy digital twin modeling and
intelligent data processing tools, robotic coordination mechanisms, and cognitive decision-
making and augmented reality algorithms. Mobile autonomous robots integrate real-time
monitoring and smart manufacturing technologies, cloud computing machines, and image
recognition processes. Digital twin technology, cloud manufacturing processes, and virtual
reality modeling tools are pivotal in industrial product lifecycle management. Smart manu-
facturing tools, automated assembly machines, and computer vision algorithms configure
digital twin-based product development.

Prescriptive and predictive analytics, edge and fog computing technologies, and image
recognition and steering control algorithms enable manufacturing operations management
in cyber-physical production systems. Decentralized data analytics, Internet of Things-
based decision support systems, and distributed sensor networks optimize product lifecycle
management in smart factories and across collaborative industrial environments. Smart
production systems leverage granular manufacturing data, computation-enabled robotic
devices, and simulation and scheduling tools across digital twin shop floors. Multi-robot
control systems require decision and control algorithms, computational intelligence and
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smart manufacturing scheduling tools, sensor-based data acquisition. Machine monitoring
and intelligence technologies, data acquisition tools, and computer vision algorithms
articulate cyber-physical production systems.

Digital twin-based product development necessitates automated prognostics and
diagnostics tools, computer vision techniques, and simulation modeling processes in smart
factories. Sensor data fusion, computer vision algorithms, and process simulation and
production scheduling tools further autonomous robotic systems and smart manufacturing
technologies. Cloud networked and autonomous mobile robots harness digital twin-based
monitoring and intuitive decision-making tools, sensing and actuation capabilities, and
vision and navigation systems. Digital twin-driven smart manufacturing develops on
sensor-based data analysis, object recognition processes, and mobile context awareness
systems. Deep learning-based computer vision algorithms, event modeling and forecasting
tools, and big data-driven decision-making processes are instrumental in product lifecycle
management systems. Digital twin simulation and real-time remote monitoring tools,
wireless sensor technologies, and cognitive data mining algorithms assist smart industrial
systems.
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