
Citation: Liu, S.; Wang, X.; Hui, L.;

Wu, W. Blockchain-Based

Decentralized Federated Learning

Method in Edge Computing

Environment. Appl. Sci. 2023, 13,

1677. https://doi.org/10.3390/

app13031677

Academic Editors: George Drosatos,

Avi Arampatzis and Pavlos S.

Efraimidis

Received: 15 January 2023

Revised: 24 January 2023

Accepted: 26 January 2023

Published: 28 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Blockchain-Based Decentralized Federated Learning Method in
Edge Computing Environment
Song Liu , Xiong Wang, Longshuo Hui and Weiguo Wu *

School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
liusong@xjtu.edu.cn (S.L.); buer_wang@163.com (X.W.); huils20@stu.xjtu.edu.cn (L.H.)
* Correspondence: wgwu@xjtu.edu.cn; Tel.: +86-187-0683-8060

Abstract: In recent years, federated learning has been able to provide an effective solution for data
privacy protection, so it has been widely used in financial, medical, and other fields. However,
traditional federated learning still suffers from single-point server failure, which is a frequent issue
from the centralized server for global model aggregation. Additionally, it also lacks an incentive
mechanism, which leads to the insufficient contribution of local devices to global model training. In
this paper, we propose a blockchain-based decentralized federated learning method, named BD-FL,
to solve these problems. BD-FL combines blockchain and edge computing techniques to build a
decentralized federated learning system. An incentive mechanism is introduced to motivate local
devices to actively participate in federated learning model training. In order to minimize the cost of
model training, BD-FL designs a preference-based stable matching algorithm to bind local devices
with appropriate edge servers, which can reduce communication overhead. In addition, we propose
a reputation-based practical Byzantine fault tolerance (R-PBFT) algorithm to optimize the consensus
process of global model training in the blockchain. Experiment results show that BD-FL effectively
reduces the model training time by up to 34.9% compared with several baseline federated learning
methods. The R-PBFT algorithm can improve the training efficiency of BD-FL by 12.2%.

Keywords: decentralized federated learning; blockchain; edge computing; stable matching; consensus
algorithm

1. Introduction

With the development of new generation information technology such as mobile
internet, the number of mobile services and applications is growing exponentially, resulting
in the generation of massive amounts of data. It has been shown that there are data
security risks in well-known business associations [1]. User data are often stored in the
centralized cloud servers of an organization or enterprise and can be accessed without
privacy protection, which raises the risk of leakage of user-sensitive data [2]. Google took
the lead in proposing a federated learning method [3] to solve the collaborative training
problem of privacy protection so that private data can be safely used in a distributed
environment. Therefore, federated learning has received extensive attention and research
from industry and academia. However, federated learning has its own limitations [4]. It
relies on a single centralized server and is vulnerable to a single point of server failure.
Additionally, it lacks the incentive mechanism for local devices, which leads to the reduction
of the initiative of local devices to participate in the training of federated learning.

Blockchain is a decentralized and auditable ledger technique [5] that has become a
solution to replace vulnerable centralized servers in insecure environments. By combining
with blockchain, the decentralized federated learning method can be realized. However,
in the scenario of combined blockchain and federated learning, distributed servers usually
use cloud computing to transmit model data [4]. Since cloud servers are physically far
from local devices, which will further increase the delay of network data transmission [6],

Appl. Sci. 2023, 13, 1677. https://doi.org/10.3390/app13031677 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13031677
https://doi.org/10.3390/app13031677
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7120-894X
https://orcid.org/0000-0002-1861-4794
https://orcid.org/0000-0002-1179-3435
https://doi.org/10.3390/app13031677
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031677?type=check_update&version=3

Appl. Sci. 2023, 13, 1677 2 of 17

traditional cloud computing techniques will weaken the role of servers in supporting the
training process of federated learning models. Additionally, edge computing has become an
efficient computing paradigm that sinks computing and storage resources to the side close to
local devices [7,8]. Compared to cloud-based servers, edge servers are closer to local devices
and can respond to requests from local devices faster. Applying edge computing to federated
learning can further reduce the latency and energy consumption of model training.

However, when combining blockchain with federated learning in the edge computing
environment, it also faces the challenge of the high cost of network communication [9]. As
the number of local devices is large and keeps growing dramatically, local devices need to
effectively offload data and tasks to the appropriate server close to the edge side of the network,
optimizing the utilization of edge server resources and maximizing the system efficiency.
This requires efficient and stable matching between local devices and edge servers [10]. The
matching problem is affected by many factors, such as distance, network bandwidth, and
computing power [11]. These factors involve new techniques such as node localization [12],
and they need to be considered to reduce the overall system latency and energy consumption
in the edge computing environment. Meanwhile, as the core of blockchain technique, the
consensus algorithm plays a decisive role in the security and efficiency of blockchain [13–16].
In highly decentralized federated learning with blockchain, all local devices participating in
model training will also participate in the consensus process. The communication cost will
increase significantly, which is bound to increase the consensus time of the blockchain, thus
reducing the efficiency of model training.

To address the problems of centralization and lack of incentives in traditional federated
learning, this paper proposes a blockchain-based decentralized federated learning method
for edge computing environments, named BD-FL. By designing a stable matching algorithm
between local devices and edge servers and an optimized consensus algorithm, BD-FL can
effectively reduce the overall system delay and speed up the model training efficiency. This
paper makes the following contributions.

• We propose the BD-FL by combining blockchain with federated learning in the edge
computing environment. BD-FL uses the distributed characteristics of blockchain and
edge computing to solve the problem of a centralized server in that the local device
trains the local model and the edge server aggregates the global model. BD-FT also
introduces an incentive mechanism to encourage local devices to actively participate in
model training, increasing the number of samples and improving the model accuracy.

• We propose a preference-based stable matching algorithm in BD-FT, which binds
local devices to appropriate edge servers, improving the utilization of edge server
resources and reducing the delay of data transmission. We propose the R-PBFT
algorithm, which optimizes the network topology and the consistency protocol and
designs a dynamic reputation mechanism, reducing the communication overhead of
the blockchain consensus process and improving the model training efficiency.

• We performed extensive simulation experiments to evaluate the proposed BD-FL.
Experimental results show that BD-FL effectively reduces the model training time
by up to 19.7% and 34.9%, respectively, compared with several federated learning
methods with different matching algorithms and a state-of-the-art blockchain-based
federated learning method. The R-PBFT algorithm can reduce the communication
overhead of the consensus process and improve the training efficiency of BD-FL
by 12.2%.

The rest of this paper is organized as follows. Section 2 introduces related work.
Section 3 presents the methodology, including the system architecture, BD-FL, and R-PBFT.
Section 4 gives the experimental evaluation. Section 5 concludes this paper.

2. Related Work

A centralized network topology has more serious system security issues and higher
communication overhead compared with a decentralized distributed network topology.
Traditional federated learning adopts a centralized topology with a single centralized server

Appl. Sci. 2023, 13, 1677 3 of 17

responsible for aggregating the global model. As federated learning takes hold in real-life
production, the shortcomings of the centralized topology model have gradually become
apparent [17]. In practical applications, the centralized server will put huge pressure on
the network bandwidth overhead and also reduce the robustness of the system, which
will affect the model training process of federation learning once the server is maliciously
compromised. Blockchain is a distributed technique with decentralized characteristics and
incentive mechanism [5,18,19], which can effectively solve the above problems of traditional
federated learning. In addition, due to being tamper-proof and anonymous, blockchain can
guarantee data security. Therefore, a lot of work has been done on decentralized federated
learning methods using blockchain.

However, decentralized federated learning with blockchain still faces the challenge of
model training efficiency. Kim et al. [20] proposed a blockchain-based federated learning
architecture. The local device in this architecture updates the local model based on its
available data samples. The architecture uses blockchain to reward updates from local
devices, and the reward is proportional to the number of local data samples. This simple
reward scheme is not able to accurately reflect the magnitude of the contribution made by
the local device to the global model training. Weng et al. [21] designed a federated learning
scheme incorporating blockchain incentives. The scheme ensures system reliability by
rewarding honest local devices and punishing dishonest ones. They also introduced a
consensus protocol based on a committee mechanism, which participates in the consensus
process by randomly selecting nodes to form a committee. However, randomly selecting
committee nodes is almost negligibly close to a completely random scheme and is probably
not optimal. Local devices make significant contributions to the training of the federated
learning model, so it is important to reasonably reward local devices. Existing federated
learning incentive schemes generally agree that local devices should be fairly rewarded
based on the magnitude of their contribution to the model. Jia et al. [22] stated that the most
widely used scheme to evaluate the contribution size of local devices is Shapley values
(SVs). SVs can fairly distribute rewards for model training, and it is widely used in many
fields, such as economics, information theory, and machine learning. However, SV-based
reward schemes usually require exponential time to compute, and the computational cost
is prohibitive.

In the edge computing environment, the matching problem between local devices
and edge servers has an important impact on the data transmission delay and the overall
system efficiency. Hu et al. [23] proposed a matching method for mobile edge computing
and device-to-device communication environments. This method uses a game model to
solve the offloading problem of local devices. Each local device is regarded as a gamer,
and the offloading strategy is obtained through a mutual game to make the system reach
Nash equilibrium. Wu [24] proposed an intelligent scheduling matching scheme based on
a delayed acceptance algorithm. It combines the Hopfield neural network and the decision
tree model and quantifies the assignment scheduling problem into a matching optimization
problem by defining the cost coefficient between tasks and equipment. Lu et al. [25]
proposed an asynchronous greedy matching algorithm, which builds a preference list of
both parties based on the utility value between the cooperative node and the requesting
node, and uses the greedy strategy for stable matching. The existing related research mainly
solves the one-to-one or N-to-N matching problem, and there is less research on stable
matching between M devices and N servers in the edge computing environment.

The consensus algorithm, as one of the core ideas of blockchain, can ensure the proper
operation of the blockchain, but it has an important impact on communication overhead and
model training efficiency. The most commonly used consensus algorithms are proof of stake
(PoS) [13], proof of work (PoW) [14], delegated proof of stake (DPoS) [15], and practical
Byzantine fault tolerance (PBFT) [16]. The PBFT algorithm is widely used in distributed
architectures, but it still suffers from high communication overhead and low reliability of
master nodes. Numerous solutions have emerged to address the shortcomings of PBFT.
Castro et al. [26] improved the transaction throughput of PBFT by caching blocks, but their

Appl. Sci. 2023, 13, 1677 4 of 17

method does not perform well on the delay of the consensus process. Zhang et al. [8] made
the certificate and other information of blocks clear in time without communication between
nodes according to the timestamp in the blockchain, but this method does not consider the
optimization of the PBFT consistency protocol. Zheng et al. [27] combined DPoS and PBFT
to make the algorithm with dynamic authorization, but the limited bandwidth still reduces
the transaction throughput of the algorithm. On the other hand, some studies are dedicated
to reducing the time complexity of PBFT. Ma et al. [28] proposed a scheme to verify the
consistency of asynchronous Byzantine nodes through a stochastic prediction model. This
scheme randomly selects one of the multi-node proposals in each round of consensus and
uses the threshold signature algorithm to reduce the communication cost of each round
of consensus to O

(
n2). However, the random selection method of this scheme may cause

security problems. Gao et al. [29] proposed a scalable Byzantine algorithm (FastBFT)
that introduces a tree data structure to achieve the optimal time complexity of O(nlogn).
However, in the worst case, the time complexity of FastBFT is still O

(
n2). Liu et al. [30]

improved the consensus efficiency by caching blocks and smart contract techniques, but
without reducing the time complexity of PBFT. Wang et al. [31] proposed a PBFT algorithm
based on randomly selected collectors. It can reduce the communication cost to a linear
level, but if the selected collector is malicious, the communication cost of the algorithm will
rise sharply. However, these consensus algorithms are not applicable to real blockchain
and edge computing application scenarios, and still have high computational complexity.

In this work, we present BD-FL to solve the single node failure and network communi-
cation overhead problems of centralized federated learning. BD-FL introduces an incentive
mechanism to increase the contribution of local devices to global model training. We also
propose a stable matching algorithm and the R-PBFT algorithm to reduce the number of
nodes participating in communication and consensus, which reduces the system delay and
improves the model training efficiency.

3. Methodology
3.1. System Architecture

To implement blockchain-based decentralized federated learning, we first designed
the system architecture. Figure 1 shows the architecture of BD-FL, which mainly includes
the demand release module, aggregation module, training module, and verification module.
Since the nodes participating in the consensus in BD-FL are only a limited number of edge
servers, the alliance chain is selected as the implementation platform of the architecture.

The demand release module is mainly composed of model demanders, whose main
role is to release the demand task and pay the model training fee and the verification fee.
After the model demander pays the fee and provides the initial model data, the system
will send the relevant information of the initial model to each edge server for download
by local devices. The aggregation module is mainly composed of edge servers that are
close to local devices or data sources, such as base stations with certain computing and
storage capabilities. It will save the gradient parameters of the local model, and other
block data uploaded by local devices, and aggregate the global model on edge servers. It
will also verify the accuracy of the uploaded gradient parameters and prevent dishonest
local devices from maliciously providing wrong information. In the consensus process of
blockchain, the local device will not participate, and the edge servers of the aggregation
module will participate in the consensus to reduce the system communication delay. The
training module is mainly composed of local devices, and its main role is to train local
models using local data samples. In the model training, the system will bind local devices
with edge servers according to our proposed matching algorithm. The local device will
only upload the local model parameters to its bound edge server and only download the
global model from its bound edge server. The verification module is also composed of
some local devices. In each round of global model aggregation, the edge server sends the
received local model gradient parameters uploaded by the local device to the verification

Appl. Sci. 2023, 13, 1677 5 of 17

device, which uses its own dataset to verify the quality of the local model, and returns the
results to its bound edge server.

sever1

sever2 sever5

sever3 sever4

store block data

global model

aggregation

matching

algorithm

consensus

mechanism

Aggregation module

tasks

fees

model

data

Demand release module

device 2 device 1 device 3

device 4

Verification moduleTraining module

sample data
local model

parameters

verification results

Figure 1. Architecture diagram of the decentralized federated learning.

3.2. Incentive Mechanism

In order to effectively promote local devices to participate in model training and
verification, BD-FL has designed an incentive mechanism. During each round of training,
the system will store the verification results returned by the verification device, the number
of samples uploaded by the training device, and the training time of the device in the block.
After a round of global model aggregation, the system will read the data saved on the block,
calculate the reward of each training device according to the incentive mechanism, and
send it to each local device.

The incentive mechanism gives corresponding rewards or punishments according to
the contribution of local devices to model training. During the federated learning process,
in order to ensure that the verification devices can give honest reports, their verification
results can be re-verified by other devices, and dishonest validation behaviors will be
punished. At the same time, in order to improve the fairness of reward distribution, the
system will allocate the training fee according to the size of contribution made by each
training device. The incentive mechanism introduces two metrics to calculate the final
profit of the training device.

The first is the number of data samples owned by the training device. Devices with
more data samples contribute more to global training, take longer time to train local models,
and cost more. The second one is the accuracy of the model corresponding to the gradient
parameters uploaded by the training device. The edge server verifies the model accuracy
of the training device using the dataset of the verification device and returns the results to
the edge server. An accuracy threshold T is introduced as a standard to measure whether
the local model parameters of the training devices are qualified.

The system assigns the training fee S by scoring each training device. The score
is related to the training time of the local device (denoted as trainTime) and the accu-

Appl. Sci. 2023, 13, 1677 6 of 17

racy of the uploaded local model parameters (denoted as accValue). It is calculated by
Equation (1), where α and β are the score coefficients, and the sum of them is 1.

S =

{
α ∗ trainTime + β ∗ accValue

α + β = 1 (0 < α, β < 1)
. (1)

Equation (2) gives the calculation of the training reward Rk
train that an honest training

device (device number is denoted as k) should receive in a training round, where m is the
number of training devices, and PFLM is the total cost of the model, which is paid to the
public account of the system when the demander releases the task.

Rk
train =

0 (accValue < T)

PFLM ∗
(

Sk/
m
∑

i=1
Si

)
(accValue ≥ T) . (2)

3.3. Preference-Based Stable Matching Algorithm

Since local devices need to transmit a large amount of data to edge servers, the network
quality, the transmission distance between nodes, the server throughput, and other factors
will largely affect the overall delay and energy consumption of the system. We design a
preference-based stable matching algorithm in BD-FL, which considers the above factors
that affect data transmission, so as to achieve the optimal matching and binding between
local devices and edge servers.

In the network environment, local devices and edge servers are abstracted into two
sets, which are, respectively, denoted by the set of local devices K = {k1, k2, . . . , km} and the
set of edge servers S = {s1, s2, . . . , sn}. For each k ∈ K, it has a matching request, denoted
as Equation (3),

Qk = (Dk, In f ok), (3)

where Dk represents the data of uplink communication that local device k uploads to the
edge server, mainly including information such as local model parameters, version number,
local iteration time, etc.; In f ok represents the state information of local device k, such as
bandwidth, physical location, etc.

The uplink communication rate vks determines the data transmission delay, which is
expressed as Equation (4) according to [32],

vks = bandk ∗ log2

(
1 +

pk ∗ gks
N0

)
, (4)

where bandk represents the channel bandwidth allocated to the local device k, pk represents
the transmit power of k, gks represents the channel gain between k and the edge server s,
and N0 represents the noise power of s.

According to [32], the network distance between nodes is related to the channel
bandwidth. It reflects the actual distance and network condition between local devices and
edge servers. Assuming that physk and physs are the physical nodes corresponding to the
local device and the edge server, respectively, the network distance distNodeks between
them is defined as Equation (5),

distNodeks =
bandaver

(bandk + bands)/2
∗ distPhysks , (5)

where distPhysks represents the actual distance between physk and physs, which has a
certain influence on the reliability of data transmission and the network latency, bandaver
represents the average bandwidth between them, and bandk and bands represent the actual
bandwidths of physk and physs.

Appl. Sci. 2023, 13, 1677 7 of 17

Equations (6) and (7) express the upload time and the upload energy consumption,
respectively, after local device k and edge server s are bound.

Tks =
Dk
vks

, (6)

Eks = pk ∗ Tks = pk ∗
Dk
vks

. (7)

We use the sum of weighted energy consumption and weighted delay, denoted as wk,
as the cost function of k, which is expressed by Equation (8),

ωk = µe
k ∗ Ek + µt

k ∗ Tk , (8)

where µe
k, µt

k ∈ [0, 1], µe
k + µt

k = 1, µe
k and µt

k, represent the energy consumption weight
and the delay weight of k, respectively. A larger µe

k indicates a higher priority of energy
consumption, and a larger µt

k indicates a higher priority of latency, and vice versa. The
priority of energy consumption and delay of the local device can be adjusted by modifying
the value of µ.

We define a coefficient matrix W to represent the cost relationship between local
devices and edge servers. It is expressed by Equation (9), where wks denotes the cost when
device k is bound to server s, and its value can be calculated by Equation (8).

W = (ωks)m∗n =

ω11 ω12 . . . ω1n
ω21 ω22 . . . ω2n
.

ωm1 ωm2 . . . ωmn

 . (9)

We also define an assignment matrix X to represent the matching relationship between
local devices and edge servers. It is expressed by Equation (10), where xks denotes the
matching relationship between device k and server s, and xks = 1 means k is bound to s,
otherwise, k is not bound to s.

X = (xks)m∗n =

x11 x12 . . . x1n
x21 x22 . . . x2n
.
xm1 xm2 . . . xmn

 . (10)

The goal of the matching algorithm is to minimize of the total cost of model training,
while also satisfying the constraint that the total number of local devices bound to edge
server s cannot exceed its maximum number of device bindings. Therefore, we derive the
optimization objective function, which is expressed by Equation (11).

min obj =
m

∑
k=1

n

∑
s=1

ωks∗xks , (xks = 0 or 1) . (11)

We propose a preference-based stable matching algorithm to solve the optimization
objective function of cost minimization. Each local device k will establish a preference list of
matching degrees for all edge servers. We use a binary (k, s) to represent a match between
device k and edge server s. Equation (12) gives the preference function of k for s, and P(k,s)
represents the matching degree of (k, s). Equation (13) is the preference list of k, i.e., Γk. The
matches are sorted in descending order of matching degree, that is, the higher the match in
the list, the higher the preference.

P(k,s) = ηEks + (1− η)Tks , (12)

Appl. Sci. 2023, 13, 1677 8 of 17

Γk = [P(k,s), ∀s ∈ S]. (13)

Similarly, each edge server s will establish a matching preference list for all local
devices, i.e., Γs, according to the preference function P(s,k). We only consider the strict
partial order, that is, a local device will not have the same matching degree with two
edge servers.

The local device tends to match the edge server with the highest matching degree,
and the edge server also tends to bind to the local device with the highest matching degree.
However, in the matching process, we can only pay more attention to the needs of one
side. In order to make the local device have a better experience in the training process, the
matching algorithm should meet the needs of the local device as much as possible, that is,
the local device has priority to match.

Algorithm 1 describes the preference-based stable matching algorithm. All local
devices and edge servers are initialized as unmatched. Then, all devices and servers
broadcast their status information to each other, and each device and server establishes
its preference lists. Each local device k sends a matching request to the edge server with
the highest matching degree according to its Γk. If the request is rejected, it sends the
matching request to other edge servers again according to their preference lists. Each edge
server first places all devices that it receives the matching request into its match list. If
the number of devices in the match list is greater than its maximum binding number, the
edge server will pre-enroll devices according to its preference list from front to back, and
reject the devices with low matching degrees in its Γs until the number of devices in the
match list equals its maximum binding number. If the number of local devices in the match
list is less than the maximum binding number, all devices are reserved. Each edge server
repeats updating its match list until all local devices are in the match lists of edge servers.
The output matches of the algorithm are Pareto optimal [33]. The time complexity of the
algorithm is O(nm) + O(n + m).

Algorithm 1 Preference-based stable matching algorithm.

Input: local device set K, edge server set S, maximum binding number of the server Ls.
Output: match list of edge servers Ns.

1: All items in K and S are initialized as unmatched;
2: All devices and servers broadcast their status information to each other;
3: Each k and s establish the preference lists Γk and Γs;
4: i = 0, Ns = ∅, Nk = K; //Nk is an unmatched device list
5: while | Nk |> 0 do
6: for k ∈ Nk do
7: i = i + 1; //k sends a matching request to the edge server with the highest

matching degree in its Γk
8: k sends Qk to si in its Γk;
9: Ns = Ns

⋃
k;

10: Nk = Nk − k;
11: end for
12: for s ∈ Ns do
13: while Ns > Ls do
14: //k′ is the device with lowest matching degree in its Γs
15: k′ = argmink∈Ns Γs;
16: Ns = Ns − k′;
17: Nk = Nk

⋃
k′;

18: end while
19: end for
20: end while
21: return Ns;

Appl. Sci. 2023, 13, 1677 9 of 17

3.4. R-PBFT Consensus Algorithm

To improve the model training efficiency of BD-FL, we propose a reputation-based
practical Byzantine fault tolerance (R-PBFT) consensus algorithm. In the BD-FL environ-
ment, due to the large number of nodes, the traditional PBFT algorithm will lead to a sharp
increase in communication cost and network bandwidth consumption in the consensus
process, which is easy to cause network congestion and increase the delay of model train-
ing. In addition, the master node election in PBFT adopts the modulus calculation, which
cannot guarantee the optimal master node of the election, thus affecting the consistency
and reducing the reliability and security of the system.

The R-PBFT consensus algorithm combines the characteristics of BD-FL and designs
the following improvements to solve the shortcomings of traditional PBFT for BD-FL.

• Remove the client node. In the traditional PBFT algorithm, the request phase and the
reply phase occur between the client and the master nodes. However, in the blockchain
structure, information is broadcast between nodes in the form of P2P, without the
participation of the client. Therefore, we remove the request and reply phases of
the client node in the consistency protocol, modify the C/S structure of PBFT to a
distributed topology, and divide all nodes into master and slave nodes.

• Optimize the consistency protocol. The five phases of consensus in PBFT are changed
to three phases, including the pre-preparation phase, preparation phase, and confirma-
tion phase. In the pre-preparation phase, the master node broadcasts blocks to other
slave nodes. In the preparation phase, the slave node broadcasts the block verification
results to other slave nodes and master nodes. In the confirmation phase, traditional
PBFT requires mutual interaction between nodes. We simplify it as all slave nodes
send verification results to the master node, and the master node makes a decision on
the consensus results, thus reducing the communication overhead of consensus.

• Introduce reputation mechanism. The main purpose of the reputation mechanism is to
make the nodes with high reliability easier to be elected as the master node. Each node
will be divided into different reputation levels according to the reputation value, and
then each node will be rewarded or punished based on its performance in each round
of consensus. According to a preset reputation threshold, nodes can be dynamically
transformed in different reputation levels.

When the current round of consensus is completed, the system performs the reputation
mechanism to assign each node to different reputation levels according to the reputation
value and then selects the node with the highest score among the trusted nodes as the
master node for the next round of consensus. Figure 2 shows the execution flow of a round
of consensus, where P denotes the master node and S denotes the slave node.

According to the reputation value R of each node, the reputation mechanism divides
it into three different reputation levels, namely trusted node, normal node, and unreliable
node. R is a real number between 0 and 1, and its size reflects the reliability of the node.
For the trusted node, the range of R is (0.8,1], and the node of this level generated valid
blocks multiple times. For the normal node, the range of R is (0.3,0.8], and the node of
this level generated unqualified blocks, but less often. For the unreliable nodes, the range
of R is [0,0.3], and the node of this level generated unqualified blocks many times. The
unreliable node will not participate in the election of the master node and the consensus
process of the blockchain and only saves block data.

Each node updates its R according to the following rules after a consensus, so as to
dynamically transform in different reputation levels. (1) The R of the node will be increased
by 0.01 for each successful consensus participation. (2) If the master node successfully
generates a valid block, its R will be increased by 0.02. However, if the master node fails or
is identified as a malicious node, its R will be deducted by 0.2, and it will be immediately
removed from the trusted node. (3) The slave node that correctly overthrows the malicious
master node will increase its R by 0.02.

Appl. Sci. 2023, 13, 1677 10 of 17

R-PRE-PREPARE R-PREPARE R-COMMIT

P

S1

S2

S4

Fault

node

S3

Figure 2. Execution flow of a round of consensus.

The initialization of reputation value is mainly divided into two cases. For the initial
nodes of the system, the comprehensive strength of these nodes, such as computing power
and network bandwidth, is used as the basis for initializing their reputation values. For
the newly added node, other nodes vote to get its initial reputation value according to the
comprehensive strength of the new node. Figure 3 shows the dynamic reputation level
transformation of nodes.

Initial node

New

node

Unreliable node

Reputation reward

0.3<R≤0.8

Reputation reward

0.8<R≤1

Reputation penalty

0≤R≤0.3

Reputation penalty

0.3<R≤0.8

initialization

Normal node Trusted node

Figure 3. Dynamic reputation level transformation diagram of nodes.

On the one hand, the reputation mechanism can ensure the fairness of R-PBFT. Honest
nodes will be rewarded, while malicious nodes will be punished for dishonesty. On the
other hand, it can ensure the reliability of R-PBFT and remove malicious nodes in the
blockchain network to avoid affecting the security of the system.

3.5. Training of BD-FL

Algorithm 2 describes the training process of the BD-FL. Assuming that the model
needs r times of iterative training to reach convergence, the total time complexity of BD-FL
is O(n2) + O(nm) + O(n + m) + O(1).

Appl. Sci. 2023, 13, 1677 11 of 17

Algorithm 2 BD-FL training.

Input: local device set K, edge server set S, model demander MQ.
Output: global aggregation model M.

1: Initialization of K and MQ;
2: MQ releases task;
3: for k ∈ K do
4: calculate the matching degree with all edge servers;
5: bind with a edge server according to the proposed matching algorithm;
6: end for
7: while the cost of global model is greater than the set threshold do
8: for k ∈ K do
9: download global model M;

10: train M using local data set;
11: upload local model parameters, training time, and other information to its bound

server after training;
12: end for
13: for s ∈ S do
14: use verification device to verify the authenticity of uploaded data and the accuracy

of local model parameters;
15: calculate the scores of local devices according to the incentive mechanism;
16: if it is a master node then
17: participate in the consensus process;
18: aggregate all local model parameters and update M;
19: store the global aggregation information, transaction information, scores, and

etc. into blocks and broadcast in the blockchain;
20: update the reputation value according to R-PBFT;
21: else
22: participate in the consensus process or not according to R-PBFT;
23: receive M from the master node;
24: notify local devices to download M after consensus;
25: update the reputation value;
26: end if
27: end for
28: end while
29: return M;

4. Experiments and Results
4.1. Experiment Setting

We built a simulation experiment environment on an Intel(R) Xeon(R) server with two
Gold 6248 processors @ 2.50 GHz (Intel Corporation, Santa Clara, CA, USA). We used Java
version 1.8 to implement edge servers and the blockchain system, and Python version 3.7
to implement the local device environment. The local device communicates with the edge
server through Socket. In the simulation environment, local devices are distributed within
the coverage range of a 250 m radius of each edge server. The channel gain between them
is modeled as 30.6 + 36.7log10(distNodeks) dB using the block fading model. Table 1 shows
the simulation parameter settings.

Table 1. Simulation parameter settings.

Simulation Parameters Value

Network Bandwidth 20 MHz
Shooting Power pk 200 mW

Power Spectral Density −95 dbm/Hz
Uplink Data Size Dk [3000, 4000] kb

µ, η 0.5,0.5

Appl. Sci. 2023, 13, 1677 12 of 17

We use the ResNet18 implemented by PyTorch as the federated learning network
model, and the dataset is CIFAR-10. In experiments, the CIFAR-10 dataset will be randomly
divided into multiple copies with different sizes. The local device will randomly obtain
one copy as the local data sample.

4.2. Evaluation of BD-FL

Since the proposed preference-based stable matching algorithm plays an important
role in BD-FL to minimize the model cost and reduce the system delay, we first conducted a
set of experiments to evaluate the stable matching algorithm. We designed three matching
algorithms as the baseline, i.e., the local device first greedy algorithm (DFG), the edge server
first greedy algorithm (SFG), and the random matching algorithm (RMA), and applied
them to BD-FL for comparison experiments.

For DFG, each local device sends a matching request to the edge server according
to its preference list. If the candidate list of the edge server does not reach the maximum
number of bindings, the device binds with the server directly, otherwise, it continues to
send requests to other servers. For SFG, each edge server sends a matching request to the
local device according to its preference list. If the local device is unbound, the server binds
with the device directly, otherwise, it continues to send requests to other local devices.
For RMA, the local device and the edge server randomly send matching requests to each
other. If both parties are unbound, they can bind directly, otherwise, they continue to send
requests to other unbound devices or servers.

Figure 4 shows the total system costs of the four matching algorithms with different
numbers of nodes. As RMA is a pure random matching algorithm without considering
any factors that affect the matching result, it has the highest system cost. The costs of DFG
and SFG are also higher than that of the stable matching algorithm. Because they only
consider the one-side cost function of the local device or the edge server as the minimization
objective, they cannot achieve the overall optimization of the system cost. In contrast, the
preference-based stable matching algorithm designs the corresponding preference functions
of local devices and edge servers by considering various influencing factors, therefore, both
parties are able to match and bind efficiently. The stable matching algorithm achieves the
minimum system cost, which reduces the cost by 34.9%, 43.6%, and 69.9% compared to
DFG, SFG, and RMA, respectively, on average.

Figure 4. System costs of 4 matching algorithms with different numbers of nodes.

We also counted the number of unstable matches of DFG, SFG, and RMA, which is
shown in Figure 5. It can be seen that the number of unstable matches in these algorithms
increases with the number of nodes. Due to the randomness of RMA, the number of
unstable matches is the largest. DFG and SFG also have multiple unstable matches. The
result of unstable matches is consistent with the result of system costs in Figure 4, and the
reason is the same. For the stable matching algorithm, the number of unstable matches is
always 0, even if the number of nodes in BD-FL increases.

Appl. Sci. 2023, 13, 1677 13 of 17

Figure 5. Number of unstable matches of DFG, SFG, and RMA.

To evaluate the model training time of BD-FL with the four matching algorithms, we
set the number of edge servers to 4 and the number of local devices to 20 to build the
simulation environment. In order to eliminate the influence of the consensus algorithm, all
BD-FL models adopt traditional PBFT for blockchain consensus. Figure 6 shows the results
of model training time. It can be seen that the training time of BD-FL models with DFG,
SFG, and RMA is longer than that of the stable matching algorithm. This is because DFG
and SFG only consider the single-side matching on local devices or edge servers, and RMA
binds devices to servers in a random way, they cannot achieve the optimal stable matching.
According to Figure 5, there are unstable matches in DFG, SFG, and RMA, which will
increase the communication delay, and thus lead to a longer total time of model training.
On the contrary, BD-FL uses the stable matching algorithm on both sides of the device and
the server to utilize the computing resources and minimize the system communication cost.
Compared with DFG, SFG, and RMA, the stable matching algorithm reduces the training
time of BD-FL by 10.0%, 12.5%, and 19.7%, respectively, for 15 rounds of training. The
result of model training is consistent with that of system cost and unstable matches.

Figure 6. Model training time with different algorithms.

In order to better evaluate the performance of BD-FL, we chose a state-of-the-art
blockchain-based federated learning method [17], named FLChain, for comparison. FLChain
also applies blockchain techniques to federated learning. However, the nodes in the
blockchain are composed of entities registered in FLChain, and all local devices participate
in the consensus process of the blockchain.

In the comparison experiments, we set two configurations for BD-FL. In the first
configuration, 20 local devices are bound to 4 edge servers in the BD-FL with the stable
matching algorithm, denoted as BD-FL1. Additionally, in the second configuration, 20 local
devices are bound to 10 edge servers, denoted as BD-FL2. For the network environment of

Appl. Sci. 2023, 13, 1677 14 of 17

FLChain, we set 20 local devices and 4 edge servers. The 10 local devices are not bound to
edge servers in FlChain for consensus. Figure 7 shows the comparison results of model
training time. It can be seen that as the number of global training rounds increases, the
training time of all methods grows, but the training time of FLChain grows significantly and
is the longest. This is because the more nodes participating in the blockchain consensus, the
longer the communication time, and ultimately the longer the model training time. FLChain
does not optimize the blockchain consensus process, and all nodes need to participate
in consensus, causing a higher communication cost and thus a longer training time. All
20 local devices in FLChain participate in the consensus process, while the numbers of nodes
participating in the consensus in BD-FL1 and BD-FL2 are 4 and 10. Therefore, BD-FL1 is the
most efficient in the consensus process among these three methods. Experimental results
show that BD-FL1 and BD-FL2 reduce the training time by 34.9% and 27.0%, respectively,
over FLChain for 150 rounds of global model training.

BD-FL1
BD-FL2
FLChain

Number of training rounds
Figure 7. Model training time with different methods.

4.3. Evaluation of R-PBFT

To evaluate the performance of BD-FL with R-PBFT, we compared this method to the
BD-FL with PBFT that applies the traditional PBFT algorithm to the consensus process of
blockchain. In the experiments, BD-FL uses 20 local devices to bind with 4 edge servers
according to the stable matching algorithm for both methods. Figure 8 shows the global
model training time of these two methods over different numbers of training rounds. It
can be seen that as the number of training rounds increases, the training time of the two
methods grows, and the BD-FL with R-PBFT consumes significantly less time than the BD-
FL with PBFT. This is due to the fact that R-PBFT streamlines the consistency protocol and
eliminates the client nodes to optimize the traditional PBFT for the decentralized federated
learning system in the edge computing environment. Thus, R-PBFT can effectively reduce
the communication overhead of consensus and improve the global model training efficiency
compared to the traditional PBFT. Meanwhile, R-PBFT can better guarantee the security
of the system by introducing the reputation mechanism. In the experiments, BD-FL with
R-PBFT reduces the training time by 12.2% compared with BD-FL with PBFT for 150 rounds
of global model training.

Appl. Sci. 2023, 13, 1677 15 of 17

BD-FL with R-PBFT
BD-FL with PBFT

Number of training rounds
Figure 8. Model training time with different consensus algorithms.

5. Conclusions

In this paper, we mainly proposed a blockchain-based decentralized federated learning
method for the edge computing environment. The proposed method joins all edge servers
into the blockchain system, and the edge server nodes that obtain bookkeeping rights
aggregate the global model to solve the centralization problem of federated learning caused
by a single point of failure. In this method, we introduced an incentive mechanism to
promote local devices to contribute data samples for model training. To further enhance
the system efficiency, we proposed a preference-based stable matching algorithm to bind
local devices with appropriate edge servers. For the consensus process of blockchain, we
optimized the PBFT algorithm to reduce the communication overhead and enhance the
system security, which improves the model training efficiency. Experimental results verified
the effectiveness of the proposed method in communication overhead, system delay, and
model training efficiency.

In the blockchain consensus process of the proposed method, the information broad-
cast between edge server nodes is not encrypted, which may lead to the disclosure of
local model parameter information of the local models. Avoiding information leak-
age and improving system security in the consensus process will be one of our future
research directions.

Author Contributions: Conceptualization, S.L. and X.W.; formal analysis, S.L.; experiment, S.L.
and X.W. and L.H.; writing—original draft preparation, X.W.; writing—review and editing, S.L.;
visualization, L.H.; supervision, W.W.; project administration, W.W. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
62002279 and No. 61972311), Natural Science Basic Research Program of Shaanxi (Program No.
2020JQ-077), and Shandong Provincial Natural Science Foundation (No. ZR2021LZH009).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vinod, D.; Bharathiraja, N.; Anand, M.; Antonidoss, A. An improved security assurance model for collaborating small material

business processes. Mater. Today Proc. 2021, 46, 4077–4081. [CrossRef]
2. Zhang, Q.; Ding, Q.; Zhu, J.; Li, D. Blockchain empowered reliable federated learning by worker selection: A trustworthy

reputation evaluation method. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference Workshops
(WCNCW), Nanjing, China, 29 March–1 April 2021; pp. 1–6.

http://doi.org/10.1016/j.matpr.2021.02.611

Appl. Sci. 2023, 13, 1677 16 of 17

3. Tomovic, S.; Yoshigoe, K.; Maljevic, I.; Radusinovic, I. Software-defined fog network architecture for IoT. Wirel. Pers. Commun.
2017, 92, 181–196. [CrossRef]

4. Hu, Y.; Niu, D.; Yang, J.; Zhou, S. FDML: A collaborative machine learning framework for distributed features. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August
2019; pp. 2232–2240.

5. Nakamoto, S.; Bitcoin, A. A peer-to-peer electronic cash system. Bitcoin 2008, 4, 2. Available online: https://bitcoin.org/bitcoin.
pdf (accessed on 1 January 2023)

6. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646.
[CrossRef]

7. Liu, Z.; Cao, Y.; Gao, P.; Hua, X.; Zhang, D.; Jiang, T. Multi-UAV network assisted intelligent edge computing: Challenges and
opportunities. China Commun. 2022, 19, 258–278. [CrossRef]

8. Zhang, X.; Wu, W.; Yang, S.; Wang, X. Falcon: A blockchain-based edge service migration framework in MEC. Mobile Inf. Syst.
2020, 2020, 8820507. [CrossRef]

9. Guo, F.; Yu, F.R.; Zhang, H.; Ji, H.; Liu, M.; Leung, V.C. Adaptive resource allocation in future wireless networks with blockchain
and mobile edge computing. IEEE Trans. Wirel. Commun. 2019, 19, 1689–1703. [CrossRef]

10. Shahryari, O.K.; Pedram, H.; Khajehvand, V.; TakhtFooladi, M.D. Energy and task completion time trade-off for task offloading
in fog-enabled IoT networks. Pervasive Mob. Comput. 2021, 74, 101395. [CrossRef]

11. Yang, S.; Han, K.; Zheng, Z.; Tang, S.; Wu, F. Towards personalized task matching in mobile crowdsensing via fine-grained user
profiling. In Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA,
15–19 April 2018; pp. 2411–2419.

12. Bharathiraja, N.; Padmaja, P.; Rajeshwari, S.; Kallimani, J.S.; Buttar, A.M.; Lingaiah, T.B. Elite Oppositional Farmland Fertility
Optimization Based Node Localization Technique for Wireless Networks. In Proceedings of the Wireless Communications and
Mobile Computing, Dubrovnik, Croatia, 30 May–3 June 2022; Volume 2022.

13. Vasin, P. Blackcoin’s Proof-of-Stake Protocol v2. 2014. Volume 71. Available online: https://blackcoin.co/blackcoin-pos-protocol-
v2-whitepaper.pdf (accessed on 1 January 2023).

14. Liu, D.; Camp, L.J. Proof of Work can Work. In Proceedings of the 5th Annual Workshop on the Economics of Information
Security, Robinson College, University of Cambridge, England, UK, 26–28 June 2006. Available online: https://econinfosec.org/
archive/weis2006/docs/50.pdf (accessed on 1 January 2023).

15. Yang, F.; Zhou, W.; Wu, Q.; Long, R.; Xiong, N.N.; Zhou, M. Delegated proof of stake with downgrade: A secure and efficient
blockchain consensus algorithm with downgrade mechanism. IEEE Access 2019, 7, 118541–118555. [CrossRef]

16. Castro, M.; Liskov, B. Practical Byzantine Fault Tolerance. ACM Trans. Comput. Syst. (TOCS) 2002, 20, 398–461 . [CrossRef]
17. Bao, X.; Su, C.; Xiong, Y.; Huang, W.; Hu, Y. FLChain: A blockchain for auditable federated learning with trust and incentive. In

Proceedings of the 2019 5th International Conference on Big Data Computing and Communications (BIGCOM), Qingdao, China,
9–11 August 2019; pp. 151–159.

18. Nofer, M.; Gomber, P.; Hinz, O.; Schiereck, D. Blockchain. Bus. Inf. Syst. Eng. 2017, 59, 183–187. [CrossRef]
19. Zheng, Z.; Xie, S.; Dai, H.N.; Chen, X.; Wang, H. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018,

14, 352–375. [CrossRef]
20. Kim, H.; Park, J.; Bennis, M.; Kim, S.L. Blockchained on-device federated learning. IEEE Commun. Lett. 2019, 24, 1279–1283.

[CrossRef]
21. Weng, J.; Weng, J.; Zhang, J.; Li, M.; Zhang, Y.; Luo, W. Deepchain: Auditable and privacy-preserving deep learning with

blockchain-based incentive. IEEE Trans. Dependable Secur. Comput. 2019, 18, 2438–2455. [CrossRef]
22. Jia, R.; Dao, D.; Wang, B.; Hubis, F.A.; Hynes, N.; Gürel, N.M.; Li, B.; Zhang, C.; Song, D.; Spanos, C.J. Towards efficient data

valuation based on the shapley value. In Proceedings of the The 22nd International Conference on Artificial Intelligence and
Statistics, PMLR, Naha, Okinawa, Japan, 16–18 April 2019; pp. 1167–1176.

23. Hu, G.; Jia, Y.; Chen, Z. Multi-user computation offloading with d2d for mobile edge computing. In Proceedings of the 2018 IEEE
Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6.

24. Wu, D. Research on multi-task multi-device matching algorithm based on machine learning. Master’s Thesis, Zhe Jiang
University, Hangzhou, China, 2019.

25. Lu, X.; Liao, Y.; Lio, P.; Hui, P. Privacy-preserving asynchronous federated learning mechanism for edge network computing.
IEEE Access 2020, 8, 48970–48981. [CrossRef]

26. Zheng, H.; Guo, W.; Xiong, N. A kernel-based compressive sensing approach for mobile data gathering in wireless sensor
network systems. IEEE Trans. Syst. Man, Cybern. Syst. 2017, 48, 2315–2327. [CrossRef]

27. Ma, S.; Cao, Y.; Xiong, L. Transparent contribution evaluation for secure federated learning on blockchain. In Proceedings of the
2021 IEEE 37th International Conference on Data Engineering Workshops (ICDEW), Chania, Greece, 19–22 April 2021; pp. 88–91.

28. Gao, S.; Yu, T.; Zhu, J.; Cai, W. T-PBFT: An EigenTrust-based practical Byzantine fault tolerance consensus algorithm. China
Commun. 2019, 16, 111–123. [CrossRef]

29. Liu, J.; Li, W.; Karame, G.O.; Asokan, N. Scalable byzantine consensus via hardware-assisted secret sharing. IEEE Trans. Comput.
2018, 68, 139–151. [CrossRef]

http://dx.doi.org/10.1007/s11277-016-3845-0
https://bitcoin.org/bitcoin. pdf
https://bitcoin.org/bitcoin. pdf
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.23919/JCC.2022.03.019
http://dx.doi.org/10.1155/2020/8820507
http://dx.doi.org/10.1109/TWC.2019.2956519
http://dx.doi.org/10.1016/j.pmcj.2021.101395
https://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper. pdf
https://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper. pdf
https://econinfosec.org/archive/weis2006/docs/50.pdf
https://econinfosec.org/archive/weis2006/docs/50.pdf
http://dx.doi.org/10.1109/ACCESS.2019.2935149
http://dx.doi.org/10.1145/571637.571640
http://dx.doi.org/10.1007/s12599-017-0467-3
http://dx.doi.org/10.1504/IJWGS.2018.095647
http://dx.doi.org/10.1109/LCOMM.2019.2921755
http://dx.doi.org/10.1109/TDSC.2019.2952332
http://dx.doi.org/10.1109/ACCESS.2020.2978082
http://dx.doi.org/10.1109/TSMC.2017.2734886
http://dx.doi.org/10.23919/JCC.2019.12.008
http://dx.doi.org/10.1109/TC.2018.2860009

Appl. Sci. 2023, 13, 1677 17 of 17

30. Wang, Y.; Song, Z.; Cheng, T. Improvement research of PBFT consensus algorithm based on credit. In International Conference on
Blockchain and Trustworthy Systems; Springer: Berlin/Heidelberg, Germany, 2020; pp. 47–59.

31. Yu, G.; Wu, B.; Niu, X. Improved blockchain consensus mechanism based on PBFT algorithm. In Proceedings of the 2020 2nd
International Conference on Advances in Computer Technology, Information Science and Communications (CTISC), Suzhou,
China, 10–12 July 2020; pp. 14–21.

32. Nithya, G.; Engels, R.; Das, H.R.; Jayapratha, G. A Novel-Based Multi-agent Brokering Approach for Job Scheduling in a Cloud
Environment. In Informatics and Communication Technologies for Societal Development; Springer: Berlin/Heidelberg, Germany, 2015;
pp. 71–84.

33. Hochman, H.M.; Rodgers, J.D. Pareto optimal redistribution. Am. Econ. Rev. 1969, 59, 542–557.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Methodology
	System Architecture
	Incentive Mechanism
	Preference-Based Stable Matching Algorithm
	R-PBFT Consensus Algorithm
	Training of BD-FL

	Experiments and Results
	Experiment Setting
	Evaluation of BD-FL
	Evaluation of R-PBFT

	Conclusions
	References

