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Abstract: Fine-grained recognition has many applications in many fields and aims to identify
targets from subcategories. This is a highly challenging task due to the minor differences between
subcategories. Both modal missing and adversarial sample attacks are easily encountered in fine-
grained recognition tasks based on multimodal data. These situations can easily lead to the model
needing to be fixed. An Enhanced Framework for the Complementarity of Multimodal Features
(EFCMF) is proposed in this study to solve this problem. The model’s learning of multimodal
data complementarity is enhanced by randomly deactivating modal features in the constructed
multimodal fine-grained recognition model. The results show that the model gains the ability to
handle modal missing without additional training of the model and can achieve 91.14% and 99.31%
accuracy on Birds and Flowers datasets. The average accuracy of EFCMF on the two datasets is
52.85%, which is 27.13% higher than that of Bi-modal PMA when facing four adversarial example
attacks, namely FGSM, BIM, PGD and C&W. In the face of missing modal cases, the average accuracy
of EFCMF is 76.33% on both datasets respectively, which is 32.63% higher than that of Bi-modal PMA.
Compared with existing methods, EFCMF is robust in the face of modal missing and adversarial
example attacks in multimodal fine-grained recognition tasks. The source code is available at
https://github.com/RPZ97/EFCMF (accessed on 8 January 2023).

Keywords: fine-grained recognition; multimodal; modal missing; adversarial examples

1. Introduction

The purpose of fine-grained recognition is to distinguish subordinate categories (like
owls, albatrosses, and seagulls in birds) with subtle differences in the same primary category
(such as birds [1], Flowers [2], dogs [3], cars [4], and fruits [5]). These are applied to real-
world scenes in different fields, such as species identification, vehicle identification, product
identification [6,7] and so on. Since subcategories are all similar to each other, different
subcategories can only be distinguished by subtle and subtle differences, which makes
fine-grained identification a challenging problem.

Many fine-grained recognition methods have been proposed, which can be divided
into two categories on a single visual modality. (1) One is a strongly-supervised method
based on a localization and classification subnetwork, and the other is a weakly-supervised
method for end-to-end feature encoding [8]. In intensely supervised methods, techniques
such as object detection [9–11] or segmentation [12,13], can be used to locate parts of
objects with crucial fine-grained features and enhance the effect of recognition, such
as the use of segmentation models for assisted classification of part-stacked [14], and
part-based RCNN [15] with detection models. (2) The other is weakly-supervised meth-
ods. In weakly-supervised methods, most of the classical classification networks such as
ResNet [15], DenseNet [16] and other backbone structures are used as feature extraction
models, among which VggNet [17] is used to construct dual-stream branches and fuse
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them. The BCNN [18] and MOMN [19] methods are based on the BCNN method. These
methods focus on improving the classification accuracy of the visual modality but are easily
limited by a single visual modality.

Recently, some methods for fine-grained recognition based on multimodal data have
been proposed. There are three data fusion methods in the data fusion modalities: vision
and language, vision and speech, and vision and knowledge. Among them, the fusion
method of vision and language is represented by CVL et al. [20–22]. In addition to using
the two modalities of vision and language for fusion, Zhang et al. [23] also conducted
corresponding research on vision and sound and fused the two modalities of vision and
sound. In addition, related works introduce knowledge information [24–26] and fuse it
with visual modalities. These methods effectively improve the accuracy of fine-grained
recognition tasks by fusing data from multiple modalities. But its robustness in the face of
modal missing and adversarial examples attacks is not well considered.

However, in practical fine-grained recognition tasks, modal missing and adversarial
examples are often encountered, leading to the models based on multimodal data needing
to be fixed. The reason for the modal missing is that in the data acquisition process, several
modalities in a small part of the data need to be included due to factors such as instrument
failure. Adversarial examples attacks refer to the unusual noise generated by the adversarial
example method [27–32] that makes the model prone to fatal errors.

There are many application scenarios in which visual and language modalities exist
in the actual usage process. For example, a product or a movie introduction often has
visual modal information, such as pictures and videos, and language modality information,
such as keywords and brief descriptions. The scenarios mentioned above are often prone
to missing modalities. The standard solution is to train multiple models to cope with
scenarios with only one modality, which is often more expensive. The EFCMF framework
is proposed in this paper to utilize multimodal data better and reduce the cost.

This paper builds a multimodal fine-grained recognition framework EFCMF of visual
language fusion with the same accuracy as the existing methods to solve the above prob-
lems. The framework adopts the technique of random modality deactivation for training
while ensuring that original fusion accuracy remains unchanged. In this way, the model
acquires the ability to cope with the modal missing and adversarial examples attacks, and
dramatically improves its accuracy when attacked by adversarial examples.

The proposed framework’s contributions are as follows: (1) The framework can deal
with the modal missing problem without training additional single-modal fine-grained
recognition models. (2) The framework can take advantage of multimodal data without
adversarial training. The model accuracy is guaranteed to stay the same by using the
modality that has not suffered from adversarial examples attacks. (3) Through a large
number of experiments, hyperparameters to guide the use of random deactivation training
methods are given.

2. Method

To address the problem of modal missing and adversarial example attacks in the
multimodal fine-grained recognition task of vision and language fusion. The framework
adopted in this study is shown in Figure 1, which consists of three parts: a visual feature
extraction module, a language feature extraction module, and a feature fusion module.
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Figure 1. Structure of Enhanced Framework for Multimodal Feature Complementarity Based on the
Modal Feature Random Deactivation Training Method.

2.1. Visual Feature Extraction Module

In the visual feature extraction module, the backbone network for feature extraction [33]
is composed of four transformer layers. The input image is subjected to high-dimensional
mapping of four feature extraction modules, and a high-dimensional vector Iv that can
express the image features is obtained. The the input of the visual modality is represented
as Img

3×384×384
. The i-th layer of the network is denoted as Layeri, and the number of channels

of the output feature Feati
c×h×w

is c, and the size is h × w. Then, the entire visual feature

extraction module can be expressed as:

Layer1−4(X) = Layer4(Layer3(Layer2(Layer1(X)))) (1)

Its forward propagation process can be expressed as follows:

Feat4
1536×144×1

= Layer1−4

(
Img

3×384×384

)
(2)

After the image is subjected to high-dimensional mapping through four feature layers,
a feature matrix with 1536 channels is obtained, and then the output features are globally
pooled, and the pooled features are deformed to obtain a feature vector Iv with a length
of 1536.

The backbone network of language modalities consists of several convolutional
layers [34] (denoted as Conv). Its forward propagation process can be expressed as follows:

2.2. Language Feature Extraction Module

The input text (denoted as Text = [Word1, . . . , Wordn]) is a sequence of n words, and
encodes words by constructing a dictionary to map words to the integer domain:

[num1, . . . , numn] = [Encode(Word1), . . . , Encode(Wordn)] (3)

Then, the one-hot encoding method is used to map from the integer domain to the
sparse vector space, and the process is as follows:[

Vec1
n×1

, . . . , Vecn
n×1

]
= [OneHot(num1), . . . , OneHot(numn)] (4)
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After that, take an embedding layer with weight WE
50×n

, map the sparse vector to a dense

vector of 50 dimensions, and reshape it into a 3D embedding matrix Mat
1×n×50

:

Mat
1×n×50

= reshape
([

WE
50×n
×Vec1

n×1
, . . . , WE

50×n
×Vecn

n×1

])
(5)

Next, feature extraction (represented as Feat ) is performed by k convolution kernels
with m convolutional layers of size h×w (the i-th convolutional layer is denoted as Convi

ki×wi×hi

),

and the obtained features are pooled:

Feati
ki×1×1

= Pool

(
Convi

ki×wi×hi

(
Mat

1×n×50

))
(6)

2.3. Feature Fusion Module

Finally, all the features of the output are concatenated (represented as cat) and reshaped
to obtain the features Il for fusion:

Feat
∑m

i ki ×1×1
= cat

([
Feat1

k1×1×1
. . . , Featm

km×1×1

])
(7)

Il = Feat
∑m

i ki
= reshape

(
Feat

∑m
i ki ×1×1

)
(8)

In the feature fusion module, the study adopts a feature-level fusion strategy to obtain
new features by concatenating the features of the visual modality and language modality[

Iv
Il

]
= cat(Iv, Il) (9)

The error is backpropagated through the classifier to jointly training the two feature
extraction modules of the model.

The weight of the fully connected layer of the module is W, which can be regarded
as the splicing of two weights using modal features for classification: W = cat(Wv, Wl) =[
Wv | Wl

]
, and the matrix product with the feature to obtain the Out:

Out = W × I =
[

Wv Wl
]
×
[

Iv
Il

]
(10)

During training, in order to simulate modal missing to enhance the ability of the model
to cope with modal missing and adversarial examples attacks, the input modal features are
randomly deactivated. The random inactivation of features is a random event conforming
to the Bernoulli distribution, and its Bernoulli random variable is rm ∼ Bernoulli(p). When
a modality is missing, the visual modality has a q probability of remaining intact, and the
Bernoulli random variable for this event is rv ∼ Bernoulli(q), and the language modality is
rl = 1− rmrv.Then,the forward propagation process of the module is as follows:

Iv = rv ∗ Iv , Il = rl ∗ Il (11)

I = cat(Iv, Il) =

[
Iv
Il

]
(12)
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The output of the model appears as follows:

Out = W × I =
[

Wv Wl
]
×
[

I
′
v

I
′
l

]
= (1− rm(1− rv)) ∗Wv × I

′
v + rl ∗Wl × I

′
l

= (1− rm(1− rv)) ∗Outv + rl ∗Outl

= (1− rm(1− rv)) ∗Outv + (1− rmrv) ∗Outl

= (1− rm) ∗Out + rm(rv ∗Outv + (1− rv) ∗Outl)

(13)

The average expectation of the output is:

E(Out) = (1− p) ∗Out + p ∗ (q ∗Outv + (1− q) ∗Outl) (14)

At this time, the model can be considered as an ensemble model of three models with
strong correlation. Out is a vector representing the confidence (denoted as Con fi) of the
classification result of the model for a total of k categories: Out = [Con f1, . . . , Con fi] Finally,
the output result is normalized by softmax to obtain the predicted value Pred, and the Loss
is calculated as follows:

Pred = softmax(Out) =
1

∑k
1 eCon fi

[
eCon f1 , . . . , eCon fi

]
Loss = Label ∗ log(Pred) + (1− Label) ∗ log(1− Pred)

(15)

It can be inferred from the Formula (15) that when p = 0, the output expectation of the
model is E(Out) = q ∗Outv + (1− q) ∗Outl At this time, if q = 0.5, it can be considered
that Out is equal to the average of the outputs Outv and Outl of the visual modal classifier
and the language modal classifier:

E(Out) =
1
2
(Outv + Outl) (16)

Then, the model becomes a normal feature fusion model, and the average output of
the model is expected

E(Out) = Out = W × I (17)

Since the error rate and correlation of the ensemble model are negatively correlated,
we hope this method can weaken the correlation between submodels and improve the com-
plementarity between modal features to improve the model’s accuracy and robustness. this
study performs related experiments in next Section to find the appropriate hyperparameters
to optimize the model.

3. Experiment
3.1. Experimental setting

To verify the feasibility and universality of the method in this study, the experimental
details are as follows:

The visual feature extraction module of the model has been pretrained on the ImageNet
dataset [35], and the features output by the last layer of convolutions are pooled for feature-
level fusion. The data of the visual modality adopt The Birds dataset [1] and Flowers
dataset [2], the width and height of the image are scaled to 384 pixels, and some of the
grayscale images are copied and synthesized into a three-channel image. Finally, the
image is normalized using ImageNet data processing. The language modality adopts
the text description extended by Reed et al. [36]. Because there are certain errors in
the text description, the spelling correction operation is advanced on the text, and then
lemmatizes words to form a new dictionary, Finally a 50-dimensional embedding layer is
used for embedding.
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The deep learning framework PyTorch [37] and the adversarial example toolbox
torchattacks [38] are used in the experiments. The training parameters of each module of
the model are shown in the Table 1.

Table 1. The training parameters of each module of the model.

Optimizer Learning
Rate

Weight
Decay Dropout Batch Size Epoch

Vision SGD 0.005 0.00001 0.5 8 50
Language RAdam 0.01 0.0001 0.5 32 50

Fusion SGD 0.005 0.00001 0.5 8 50

The parameters for generating adversarial examples are shown in the Table 2.

Table 2. Generating parameters for adversarial examples using torchattacks.

Eps Alpha Steps c Kappa lr Random_Start

FGSM 0.014 / / / / / /
BIM 0.01568 0.00392 0 / / / /
PGD 0.03 0.00784 10 / / / /
C&W / / 100 0.0001 0 0.1 True

3.2. Experiment Results
3.2.1. Analysis of the Robustness and Accuracy Performance of the Model

In this study, the robustness of the model is tested by attacking the model with
adversarial examples and causing modal missing (deactivating the features of each modality
of the model). The robustness results of the model are shown in Table 2. Accuracy represents
the model’s accuracy when adversarial examples do not attack it, and the modality is not
missing. FGSM, BIM, PGD, and C&W are adversarial examples of attack methods. Vision
Missing means visual modal features are missing (zeroing the input features of the visual
modality), and Language Missing represents the absence of modal language features
(zeroing out the input features of language modality).

The proposed method has excellent accuracy advantages compared with Bi-modal
PMA. It can surpass the fine-grained recognition method of Bi-modal PMA in the Birds
and the Flower datasets. At the same time, the method’s robustness in this study is also
excellent, and in the face of adversarial sample attacks, EFCMF can exceed Bi-modal PMA
such as FGSM, BIM, PGD, and C&W in most cases. In the face of FGSM attacks, EFCMF’s
accuracy in the Birds dataset can exceed Bi-modal PMA by about 16% and on the Flowers
dataset by about 70%. In addition, EFCMF performed well in the face of BIM attacks and
PGD attacks, surpassing Bi-modal PMAs by about 9% on the Birds dataset and about 70%
on the Flowers dataset. When attacking with powerful adversarial examples method PGD,
the accuracy of Bi-model PMA on both datasets has been reduced to the lowest point, which
is lower than that of random decider (0.0050). However, EFCMF is still able to exercise
some judgment, still having an accuracy of 0.0642 on the Birds dataset and 38% accuracy
on the Flowers data set. The case of C&W attacks is unique, and Bi-modal PMA has high
accuracy on the Birds dataset. inactivation, which is a critical reason EFCMF can cope well
with missing modality. In order to verify that random modal inactivation can effectively
improve the model’s ability to cope with modal loss, this study retrains Bi-modal PMA
using this method. The model test results are shown in Table 3, and it can be seen that
after random mode deactivation training, the model’s ability to cope with modal loss can
be effectively improved. After training with this method, Bi-modal PMA improved the
model accuracy by 15% and 40% under the absence of visual modality in the Birds and
Flowers datasets, respectively. At the same time, the accuracy of Bi-modal PMA in the
face of FGSM and BIM counterattack attacks has also been improved. Random modality
deactivation, which is a critical reason EFCMF can cope well with missing modality. In
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order to verify that random modal deactivation can effectively improve the model’s ability
to cope with modal loss, this study retrains Bi-modal PMA using this method. The model
test results are shown in Table 4, and it can be seen that after random mode deactivation
training, the model’s ability to cope with modal loss can be effectively improved. After
training with this method, Bi-modal PMA improved the model accuracy by 15% and 40%
under the absence of visual modality in the Birds and Flowers datasets, respectively. At
the same time, the accuracy of Bi-modal PMA in the face of FGSM and BIM counterattack
attacks has also been improved.

Table 3. The model’s accuracy in the face of adversarial example attacks and modalities is missing.

Accuracy FGSM BIM PGD C&W Vision
Missing

Language
Missing

Birds [1]

Bi-modal
PMA 0.8870 0.2260 0.1350 0.0013 0.7433 0.0486 0.7899

EFCMF
(p = 0.8,
q = 0.4)

0.9114 0.3826 0.2231 0.0642 0.5730 0.5051 0.9099

Flowers [2]

Bi-modal
PMA 0.9700 0.1503 0.0488 0.0019 0.7509 0.0098 0.8999

EFCMF
(p = 0.8,
q = 0.4)

0.9931 0.8882 0.7656 0.3803 0.9509 0.6441 0.9941

Table 4. Comparison of the accuracy of the Bi-modal PMA method trained by the random modality
deactivation method.

FGSM BIM PGD C&W Vision
Missing

Language
Missing

Birds

Bi-modal PMA 0.2260 0.1350 0.0013 0.7433 0.0486 0.7899
Bi-modal

PMA (p = 0.8,
q = 0.4)

0.3386 0.1824 0.0043 0.7239 0.2057 0.7297

Flowers

Bi-modal PMA 0.1503 0.0048 0.0019 0.7509 0.0098 0.8999
Bi-modal

PMA (p = 0.8,
q = 0.4)

0.2109 0.0371 0.0000 0.6582 0.4362 0.8735

EFCMF has more accuracy advantages than Bi-modal PMA and higher accuracy
than other fine-grained recognition models. As shown in Table 5, it can be seen that the
EFCMF method has higher accuracy than the multimodal fine-grained recognition models
such as CVL, TA-FGVC, KERL, and KGRF. Furthermore, EFCMF has higher accuracy
in single-modal fine-grained recognition methods such as Inception-v3 [39], ViT-B [40],
and PART [41].

Table 5. Comparison of the accuracy of each method.

Method Data Field Birds [1] Flowers [2]

CVL [21] Vision+Language 0.8555 \
TA-FGVC [22] Vision+Language 0.8810 \

KERL [25] Vision+Knowledge 0.8700 \
KGRF [26] Vision+Knowledge 0.8849 \

Bi-modal PMA [42] Vision+Language 0.8870 0.9740
Inception-V3 [39] Vision 0.8960 0.9737

ViT-B [40] Vision \ 0.9850
PART [41] Vision 0.9010 \

EFCMF (ours) Vision+Language 0.9114 0.9931
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3.2.2. Performance of the Model under Different Hyperparameters

In this study, the two hyperparameters p and q were performed 36 experiments on each
dataset at intervals of 0.2 from 0 to 1. In order to investigate the effects of hyperparameters
p and q on the model’s robustness and accuracy, the experimental results are plotted in this
study as heat maps shown in Figures 2–4.

(a) (b)

Figure 2. Heat map of model accuracy for different values of p and q. (a) Birds. (b) Flowers.

(1) Language
Missing

(2) Vision
Missing

(a) (b)

Figure 3. Heat map of accuracy of model facing modal missing for different values of p and q.
(a) Birds. (b) Flowers.

Figure 2 shows the model’s accuracy for different values of p and q. The most special
cases are at p = 1, q = 0, and q = 0.2. The reason is that for p = 1, the model only
has data from the visual or language modality for each input sample. When q < 0.2, the
probability of missing data of visual modality is higher, and the model is mostly training
the extraction module of language modality at this time. q < 0.2 makes the model use
only the information of linguistic modality for fine-grained recognition, and therefore the
accuracy is lower.
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Figure 3 shows the heat map of the accuracy of the model in the face of the missing
modality. It can be seen that the accuracy of the model increases with the increase of
the modal deactivation probability p and the decrease of the visual modality integrity
probability q and stays at a low level when facing the missing visual modality. The above
phenomenon is related to the degree of training in the language modality feature extraction
module. The higher the training degree of the linguistic modality feature extraction module,
the better the model can face the visual modality missing.

(1)
FGSM

(2) BIM

(3) PGD

(4) C&W

(a) (b)

Figure 4. Heat map of the accuracy of the model against the adversarial examples attack with
different values of p and q. (a) Birds. (b) Flowers.
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Figure 4 shows the model’s accuracy in the face of the adversarial example attack
under different values of p and q. The p and q parameters not only have a particular
influence on the model’s ability to cope with the modal missing but also can impact the
robustness of the adversarial sample attack. As shown in Figure 4b, with the appropriate
selection of p and q parameters, the trained model has strong robustness and can maintain
high accuracy against examples attacks.

In order to better demonstrate the effects of parameters p and q on the model, the data
in Figures 2–4 are averaged on each axis to obtain the accuracy trend plots in Figures 5 and 6,
respectively, and the results are given in the following.

(1) Analysis of the effect of the modality deactivation probability p on the model

Figure 5 shows the average model accuracy in various cases for the matrix data shown
in Figures 2–4 for each p-value obtained by averaging over q-values. It can be seen that
the impact of p-values in the face of adversarial sample attacks is similar for both datasets,
with curves having extreme value points at p = 0.2 as well as p = 0.8 and a minimal value
point at p = 0.4. The extreme value point implies that the random modal deactivation
impacts the model’s robustness relative to the case when p = 0 is not performed randomly
and can enhance the model’s ability to cope with counter-sample attacks at the appropriate
value. Tables 6 and 7 correspond to the data in Figure 5a,b, respectively.

(a) (b)

Figure 5. The accuracy trend of the probability of modality deactivation p. (a) Birds. (b) Flowers.

Table 6. Accuracy averages for different cases with different values of the modal deactivation
probability p for the Birds data set.

p = 0.0 p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0

Accuracy 0.9142 0.9137 0.9147 0.9129 0.9128 0.7065
FGSM 0.3418 0.3605 0.3152 0.3341 0.3534 0.3044
BIM 0.1716 0.2027 0.1315 0.1622 0.1882 0.1491
PGD 0.0456 0.0557 0.0321 0.0436 0.0587 0.0468
C&W 0.5366 0.5627 0.5027 0.5272 0.5467 0.4558
Vision

Missing 0.0070 0.0059 0.0321 0.0982 0.1630 0.1872

Language
Missing 0.9137 0.9143 0.9152 0.9136 0.9120 0.6103

Table 7. Accuracy averages for different cases with different values of the modal deactivation
probability p for the Flowers dataset

p = 0.0 p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0

Accuracy 0.9962 0.9958 0.9961 0.9959 0.9956 0.8426
FGSM 0.8828 0.8895 0.8966 0.8848 0.8962 0.7338
BIM 0.6786 0.7379 0.6773 0.7510 0.7891 0.6113
PGD 0.3843 0.4600 0.3636 0.4505 0.5026 0.3781
C&W 0.9263 0.9397 0.9291 0.9358 0.9410 0.7894
Vision

Missing 0.0108 0.0136 0.0198 0.0297 0.0281 0.0474

Language
Missing 0.9958 0.9964 0.9956 0.9956 0.9956 0.8317
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Tables 6 and 7 show that the model’s accuracy mostly stays the same when p is less
than 0.8. The accuracy of the model drops substantially when p = 1. The reason is that
with p = 1, the model only uses the data of the visual modality or the data of the linguistic
modality to update the weights each time, especially in q = 0. The model only uses the
features of the linguistic modality for training, and the model degenerates into a recognition
model of the linguistic modality, so the accuracy drops considerably.

In the face of the adversarial example attack, the model can achieve the maximum
number of accuracy maxima in the face of the adversarial sample attack at p = 0.8. This
phenomenon is because a higher p-value can better ensure the independence between two
features, whose standard features can represent more information in an integrated way and,
therefore, can achieve higher accuracy. In contrast, at p = 0, the model is not trained with
random modal deactivation. Its average accuracy will be lower than the two maximum
value points and higher than the minimum points. The results show that the parameter p
can improve in robustness only by using the correct value. Otherwise, it may not only fail
to improve the robustness but may also decrease it.

In the face of modality missing, it shows that both p = 0 and p = 1 correspond to poor
average accuracy. These extreme cases represent training only the verbal modal feature
extraction module and the visual modal feature extraction module, respectively, leading to
model failure.

(2) Analysis of the effect of the visual modal integrity probability parameter q on the model

By averaging Figures 2–4 on the vertical axis, we can obtain the average accuracy of
the visual modal integrity probability q in each case, as shown in Figure 6. There is an
maximum point at q = 0.4 for both datasets, achieving the highest accuracy under most
adversarial sample attacks. Equation (14) shows the reason for this point. The parameter p
controls the probability of training the model with visual modal data in the case of missing
modality. A large or small probability p will result in one of the modality feature extraction
modules that cannot be trained effectively. Therefore, the value q = 0.4 is suitable to meet
the theoretical expectation.

(a) (b)

Figure 6. The accuracy trend of the visual modal integrity probability q. (a) Birds. (b) Flowers.

Table 8 and 9 shows the specific values of Figure 6. Tables show that the maximum
number of maximum points for accuracy exists at q = 0.4 under the four adversarial
examples attacks. The reason the accuracy maximum point appears at q = 0.4 when facing
the adversarial example attack is that when the visual modality input data of the model
is severely attacked, the unattacked linguistic modality features can describe the target
better at this time. Lowering the p-value and making the model more biased to use the
features of linguistic modality can improve some accuracy. Moreover, letting q = 0 and
q = 1 both lead to a significant drop in the model’s accuracy in the face of modal deficits,
which suggests that when training with the random modal deactivation method, it is best
not to have the model extremely biased towards training a single modality. A proper bias
towards training linguistic modalities enables the model to learn better standard features.
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Table 8. Accuracy averages for different cases with different values visual modal integrity probability
parameter q for the Birds dataset.

q = 0.0 q = 0.2 q = 0.4 q = 0.6 q = 0.8 q = 1.0

Accuracy 0.8100 0.8092 0.9125 0.9130 0.9153 0.9142
FGSM 0.3221 0.3203 0.3538 0.3486 0.3342 0.3223
BIM 0.1554 0.1562 0.1934 0.1809 0.1633 0.1528
PGD 0.0423 0.0394 0.0622 0.0515 0.0505 0.0393
C&W 0.4968 0.4888 0.5487 0.5501 0.5284 0.5198
Vision

Missing 0.1454 0.1342 0.1098 0.0751 0.0232 0.0051

Language
Missing 0.7606 0.7615 0.9136 0.9145 0.9135 0.9154

Table 9. Accuracy averages for different cases with different values of visual modal integrity proba-
bility parameter q for the Flowers dataset.

q = 0.0 q = 0.2 q = 0.4 q = 0.6 q = 0.8 q = 1.0

Accuracy 0.8426 0.9956 0.9959 0.9956 0.9958 0.9967
FGSM 0.7520 0.9011 0.8943 0.8935 0.8619 0.8810
BIM 0.6245 0.7170 0.7879 0.7420 0.6835 0.6902
PGD 0.3866 0.4717 0.5123 0.4294 0.3595 0.3796
C&W 0.7959 0.9364 0.9453 0.9412 0.9160 0.9265
Vision

Missing 0.0458 0.0408 0.0224 0.0204 0.0106 0.0093

Language
Missing 0.8322 0.9954 0.9954 0.9959 0.9956 0.9961

(3) Analysis of the impact of pre-training on the model

The above experiments reveal that the model is more challenging to update the
weights of the linguistic feature extraction module without the modal random deactivation
method. After training with random modal deactivation, the model’s accuracy in the face
of language modality still needs to meet the requirements. For this reason, the number of
training iterations required for each feature extraction module during the training of the
multimodal model is not consistent. The feature extraction module of the visual modality
is often already pre-trained on a large dataset, so the feature extraction module of the
linguistic modality requires more iterations for training. Experiments were done with
p = 0.8 and q = 0.4 to verify the above idea. Table 10 shows the experimental results,
where pre-trained indicates that the language modality of the model has been pre-trained.

Table 10. The effect of pre-training of the language feature extraction module on various aspects of
the model.

Dataset p q Pretrained Accuracy FGSM BIM PGD C&W Vision
Missing

Language
Missing

Birds 0.8 0.4 False 0.9105 0.3639 0.2152 0.0811 0.3639 0.1775 0.9138
0.8 0.4 True 0.9114 0.3826 0.2231 0.0642 0.5730 0.5051 0.9099

Flowers 0.8 0.4 False 0.9951 0.8451 0.7118 0.4412 0.9098 0.0382 0.9961
0.8 0.4 True 0.9931 0.8882 0.7656 0.3803 0.9509 0.6441 0.9941

Table 10 shows that when the language feature extraction module is trained, the
model’s accuracy is substantially improved due to visual modality deficiency. At the same
time, it can achieve some improvement in the face of the adversarial sample attacks of
FGSM, BIM, and C&W. This indicates that the standard features of the multimodal fine-
grained recognition model based on feature fusion are more likely to be biased to represent
modal features that have been pre-trained. Therefore, it is desirable to pre-train each feature
extraction module of the multimodal model to ensure that the standard features do not
tend to represent a particular modality more often.
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3.3. Discussion

The above experiments show that both EFCMF and Bi-modal PMA are multimodal
fine-grained recognition methods based on feature fusion. However, the robustness of the
two differs significantly because of the structural complexity between them. Bi-modal PMA
transforms the features of the visual module into attention to linguistic modalities through
the QRM eodule, a process that makes the model structure more complex. EFCMF, on the
other hand, performs feature fusion using connections, which is a better way to reduce the
complexity of multimodal fine-grained recognition models.

Bi-modal PMA and EFCMF without pre-training of the linguistic modality feature
extraction module showed lower accuracy when faced with the missing of linguistic
modality. The reason is that both models use a pre-trained visual modal feature extraction
module, which requires far fewer iterations to train than the linguistic modal feature
extraction module because it is pre-trained. At the same time, EFCMF is trained using
random modal deactivation, which simulates the modal deficit and allows the model to
cope with counter-sample attacks. The random deactivation train method and pre-training
of the linguistic modal feature extraction module make EFCMF more capable of coping
with the missing modality.

Although EFCMF is able to achieve 91.80% and 99.80% on Birds and Flowers datasets,
respectively, with specific parameters, the difference in accuracy of each parameter is not
large, generally within 2%. Therefore, this study chooses to sacrifice some accuracy to
improve the robustness of the model, which is also more beneficial to the application of the
method in practical engineering.

In summary, it is because EFCMF employs various methods that facilitate the im-
provement of robustness that it has strong robustness in the face of modal deficiencies and
against sample attacks.

4. Conclusions

In order to improve the ability of deep learning models to cope with modal missing and
adversarial sample attacks, this study designs an enhanced framework for modal feature
complementarity, EFCMF. The framework does not require additional expensive methods
such as model distillation or adversarial training to train the models. The method effec-
tively improves the models’ robustness with appropriate parameter selection. Meanwhile,
relevant experiments are conducted in the latest multimodal fine-grained classification
methods using the training method of the framework, and the results show the validity of
the findings. While ensuring the overall classification accuracy of the model and enhancing
the ability of the model to extract features of each modality, the model gains the ability to
cope with the lack of modality and some ability to cope with adversarial examples.

When facing the same level of adversarial sample attacks, EFCMF has a significant
advantage over Bi-modal PMA in dealing with FGSM, PIM, and PGD adversarial sample
attacks. It achieves a 15.56%, 8.81%, and 6.29% accuracy advantage on the Birds dataset
and a 73.79%, 71.68%, and 37.84% accuracy advantage on the Flowers dataset, respectively.
The average accuracy of EFCMF for both datasets is 52.85%, which is 27.13% higher than
Bi-modal PMA when facing all four adversarial sample attacks. In the face of visual modal
deficits, EFCMF achieves 45.65% and 63.43% higher accuracy on Birds and Flowers datasets,
respectively. In the face of linguistic modal deficits, EFCMF achieved 12% and 9.42% higher
accuracy on the Birds and Flowers datasets, respectively. The average precision of EFCMF
for both datasets is 76.33%, which is 32.63% higher than that of Bi-modal PMA in the face of
modal deficits. Regarding accuracy, EFCMF achieved 91.14% and 99.31% accuracy on the
Birds and Flowers datasets. All these performances show that EFCMF has high accuracy
and strong robustness.
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