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Abstract: EEG signals may be affected by physiological and non-physiological artifacts hindering the
analysis of brain activity. Blind source separation methods such as independent component analysis
(ICA) are effective ways of improving signal quality by removing components representing non-brain
activity. However, most ICA-based artifact removal strategies have limitations, such as individual
differences in visual assessment of components. These limitations might be reduced by introducing
automatic selection methods for ICA components. On the other hand, new fully automatic artifact
removal methods are developed. One of such method is artifact subspace reconstruction (ASR).
ASR is a component-based approach, which can be used automatically and with small calculation
requirements. The ASR was originally designed to be run not instead of, but in addition to ICA.
We compared two automatic signal quality correction approaches: the approach based only on ICA
method and the approach where ASR was applied additionally to ICA and run before the ICA. The
case study was based on the analysis of data collected from 10 subjects performing four popular
experimental paradigms, including resting-state, visual stimulation and oddball task. Statistical
analysis of the signal-to-noise ratio showed a significant difference, but not between ICA and ASR
followed by ICA. The results show that both methods provided a signal of similar quality, but they
were characterised by different usabilities.

Keywords: artifact subspace reconstruction; EEG signal analysis; independent component analysis;
automatic EEG data correction

1. Introduction

Electroencephalography (EEG) belongs to non-invasive techniques of neuroimaging,
offering high temporal resolution, although its spatial resolution is poor. Despite the fact
that the EEG technique is relatively inexpensive and widely applied, artifacts present in the
signal are still a subject of research. Artifacts are noisy, non-cerebral origin fragments of the
signal. The presence of artifacts limits the usefulness of the signal and might influence the
analysis process.

Among the most common type of artifacts, one can find ocular movements, eye
blinks, or cardiac activity. As different types of artifacts have specific characteristics, in the
literature, authors often concentrate on analysing a particular type of artifact [1,2].

Artifacts can be divided into two groups: physiological and non-physiological ori-
gins [3]. Physiologically-originated artifacts are caused by behaviour, movement and
physiology of the person examined. This group covers ocular artifacts, including eye
movement and blinks, which cause strong, high-frequency interference with large ampli-
tude visible especially in the frontal electrodes [4]. Other common artifacts in this group
are muscle artifacts which represent myogenic activity visible when a patient is moving,
talking, moving the jaw or walking [3]. The shape and amplitude of the muscular artifacts
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differs depending on type of muscles involved and the degree of their contraction [2].
The most common artifacts originate from the head, face and neck and are detectable by
electrodes located over the entire head [5]. Among other popular physiological artifacts,
cardiac activity is often considered. Electrical activity of the heart is represented by charac-
teristic, slow periodic waves and might be observed if electrodes are placed over pulsating
vessel [6]. To the physiological artifacts group belong also artifacts related to sweat gland
and skin potentials including sweating [6].

Non-physiological or technical originated artifacts might be caused by improper skin-
to-electrode contact which might be related to badly applied gel or electrode displacement
or damage [7]. Other problems might occur in case of inadequately prepared research
environments. A well-known factor is the electric field of external electronic devices, which
is usually filtered out with notch filter.

The problem of artifacts detecting and removing has been well known for years.
Performing this task with a minimal loss of data and keeping the signal quality is difficult.
The traditional approach covers manual or automatic data cleaning consisting of removing
noisy parts of the signal [4,8]. Existing baseline in EEG signal also makes it more difficult
for feature extraction. Thus, baseline removal from EEG records is also important [9].
Automatic detection of artifacts was based on rigid measures such as kurtosis, standard
deviation or voltage changes [10]. Such procedures are often applied in case of typical
artifacts such as eye-, muscle- or electrode-related contaminations. Unfortunately, they
might lead to the loss of a significant part of the recorded signal including informative data.

Development of brain–computer interfaces, including online signal registration and
analysis, forced the development of methods of signal correction instead of cutting out its
fragments. In our opinion, it is also possible to use the measures developed this way in
traditional offline experiments to avoid the influence of the subjective factor (in the process
of manual signal rejection) and high loss of the signal (in case of automatic signal cleaning).

Currently, popular methods of EEG artifacts elimination often employ spatial filtering
techniques [1]. Among them, well known are independent component analysis (ICA) [11],
principal component analysis (PCA) [12] or canonical correlation analysis [13]. Out of these
methods, especially ICA has been developed with different implementation versions and
extensions [14–17].

Recent research on the artifact-correction problem resulted in the development of a
new method, artifact subspace reconstruction (ASR) [18]. ASR is a non-stationary method
based on a PCA window, dedicated to automatically detecting and removing artifacts. It is
especially suited for removing occasional large-amplitude artifacts from EEG recordings.
The method presents a different approach to the problem of a artifactual signal. Instead
of traditional data cutting or filtering, it reconstructs the noisy part of the signal based
on its other fragments. The construction of ASR algorithm demonstrates a similarity to
principal component analysis (PCA) methods, where the components with large variances
are rejected and the signal is reconstructed based on remaining components [19–21]. The
ASR uses the clean portion of data (called reference data) to define the thresholds for
rejecting components. This clean portion of data might be selected automatically. The ASR
uses a PCA method and indicates the components with large variances, which are rejected.
The signal is reconstructed based on remaining components. Meaningful brain signals
detectable across channels, usually clustered in a particular scalp region, are usually of
low variation compared with artifacts, so artifacts should be detected against regions with
minimised variance sets. A detailed description of the ASR procedure is explained in [22].

In this paper, ASR was applied to a classical event-related potential (ERP) study, where
it was proved to be an effective and safe technique which does not distort the ERP results.
This method is relatively new and poorly studied. It has been successfully applied to
movement-related artifacts correction and other types of high amplitude noise [23]. In [24]
ASR was applied to the EEG data of treadmill walking subjects whereas in [25] ASR was
successfully adopted in a low-density wearable EEG case study.
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The authors in [26] described that the optimal selection of ASR parameter allows
removing the artifacts without disturbing the signals related to the brain. The experiment
was based on calculating ICA components before and after applying ASR, and then the
obtained results were compared quantitatively in terms of efficiency and effectiveness. The
measures used to compare the obtained results were the percentage of data modification,
variance reduced, coefficient correlation, power of source activities and the percentage
of retained power. The authors define that the optimal ASR that the optimal ASR cutoff
parameter (k) may be between 10 to 100. The authors pay special attention at inverse
proportion of k and the degree of data modification, for example, for k = 100, approximately
3% of data were modified while k = 10, above 60% of the data were modified. The ASR with
a threshold k = 100 allows removing the artifacts with high amplitude while k = 10 may
cause both artifacts and brain signal to be removed. The authors, in their research, focused
on the eye-blink and eye-movement artifacts. The results show that the artifacts related
to ocular activity were not removed completely, but ASR significantly reduced the eye
activity for the k, which is less than 100. It is recommended to choose the cutoff parameter
from the interval between 10 and 100 as a compromise between removing the artifacts
and preserving brain waves. In [27] it was shown that the k parameter determines how
aggressive the procedure of the faulty data removing is. The smaller is the k, the higher
aggressiveness is obtained, as the rejection criterion (Γi) is based on k parameter multiplied
by the standard deviation given by:

Γi = µi + k × σi (1)

In [22], authors discussed the effectiveness of ASR and the optimal choice of its param-
eter. The authors presented an ASR evaluation study performed on twenty EEG recordings
gathered during simulated driving trials. Artifact elimination results achieved with ASR
were also verified with independent component analysis (ICA) and an independent com-
ponent classifier. The study results show that ASR might be a powerful automatic artifact
elimination method suitable for offline and online studies. Well-chosen parameters enable
significantly reducing eye and muscle component activities while leaving most of the brain
components. The mentioned researchers, based on empirical results presented in the paper,
suggested that the optimal ASR parameter is between 20 and 30. This value is a good
compromise between removing non-brain signals and retaining brain activities. The paper
also proves that ASR cleaning positively impacts the quality of a subsequent ICA decompo-
sition. The influence analysis of the ASR cut-off parameter was also conducted in other
papers. In [28], the authors performed an influence analysis of the ASR cut-off parameter
on EEG recordings in motor tasks. In the study, the EEG signal obtained during a cognitive
task, single-leg stance, and fast walking was removed and reconstructed using ASR method.
The ratios of EEG obtained using ASR with 10 cut-off parameters were compared with
results of visual inspection. What is more, the repeatability and dipolarity of independent
components were also analysed with an automatic classification tool to assess the number
of brain-related independent components. The paper showed that ASR performed better
in motor tasks compared with non-movement tasks and the quality index of independent
components reached a maximum for cut-off parameter of 10 and higher, whereas the cut-
off parameter did not affect the number of independent components. According to the
researchers, cut-off parameters less than 10 are not advisable as there is no benefit to using
them. What is more, the literature review shows that majority of researchers using ASR
in their studies use the standard, default version of parameters [19,29]. Furthermore, the
process of tuning the ASR parameters such as k (Equation (1)) and sliding window length
on real data is usually not performed as the original pure signal is not available [27].

In literature, there are also presented modifications of the ASR method. In [30], the
authors presented Riemann ASR (rASR), a modified version of the ASR algorithm. The
applied changes covered using Riemannian geometry instead of traditional Euclidean
geometry in the task of computing the covariance matrix make calculations faster and
more efficient, as this modification enables performing the calculation of covariance matrix
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estimation instead of decomposing many covariance matrices for small chunks of data.
What is more, the presented method uses the geometry-aware PCA method instead of
classical PCA to perform eigen decomposition. According to the results, the proposed
version of ASR method is efficient and works faster than the original solution. The tests were
performed on the eye-blinks reduction task in visual-evoked potentials (VEP). The analysis
was based on EEG recordings gathered from 27 subjects during performing VEP tasks under
two conditions: indoors and outdoors. Although the results are promising, more extended
research should be performed to check the effectiveness of proposed method on other type
of artifacts under different conditions. Another version of ASR was proposed by [31], where
Blum et al. developed an adaptive online ASR technique using the Hebbian/anti-Hebbian
neural networks integrated into the main algorithm. This improvement consists of applying
the Hebbian and anti-Hebbian learning rules in order to segment and self-organise the
artifact subspace by updating the synaptic weights. This modification addresses the issue
related to the fact that fixed threshold in original ASR may reduce the artifact correction
effectiveness, especially in cases of poor quality of the reference data. The method was
tested on EEG data gathered during such experimental paradigms as steady-state visual
evoked potential (SSVEP), rapid serial visual presentation (RSVP) and motor imagery
(MI). In [32], the authors proposed a Hardware-Oriented Memory-Limited Online ASR
(HMO-ASR) algorithm which uses PCA-based and z-score-based preprocessing to clean
the data in each window as well as iterative mean, standard deviation, and covariance
updated in a parallel. These modifications enabled obtaining up to a 98.64% reduction
in memory size, which makes the HMO-ASR algorithm useful in mobile devices or other
hardware with limited memory. In [27] an ASR optimising method was presented. In the
paper, the researchers showed that customisation of ASR parameters might have a positive
influence on ASR performance in application to the low-density EEG.

The aim of our work was to present and compare the effectiveness of two approaches
of artifact correction which might be applied automatically. The first approach is a well
known, widely applied artifact correction based on the ICA method. The second approach
is ASR followed by ICA (ASR + ICA). The ASR is a method less frequently used but
which is gaining the trust of researchers, including in EEG-processing pipelines. The main
question of the paper is whether there are any differences between pure ICA and ASR with
the ICA approach in the context of effects in widely applied, common EEG experimental
procedures such as resting-state with eyes open and closed, stroboscopic stimulation with
eyes closed and oddball procedure. The results were compared for the signal-to-noise
ratio calculated separately for each paradigm. The choice of the procedures was dictated
by the purpose of comparing the way ICA and ASR + ICA correct artifacts in various
experimental conditions. Each and every procedure tested in the current study allows
for the investigation of different mental processes and is frequently used in cognitive
neuroscience research and in biomedical applications in general. This type of research
is usually characterised by a smaller study group size [33] than in the case of testing
machine learning algorithms, for example. They are also conducted by researchers with
different backgrounds and competencies in advanced signal analysis. Therefore, they
may rely more on the default settings of automatic signal preprocessing algorithms or
suggestions from the developers of specific implementations. Hence, our comparisons are
based on the default parameters of popular implementations of ICA and ASR and classical
experimental procedures in cognitive neuroscience. In addition, we limited the range of
the analysed signal to frequencies from 1 Hz to 40 Hz. We decided to do this because of
the recommendations of some authors, who suggest using a high-pass filter at 1 or 2 Hz to
optimise the results of ICA decomposition [34]. We also wanted to minimise line noise’s
impact on the algorithms’ performance. For each of the selected experimental procedures,
the commonly analysed signal changes were also within the chosen frequency range.

An experimental procedure commonly used in connectivity analyses and simultaneous
recording of EEG-fMRI is the resting-state paradigm. Research results regarding resting-
state suggest that the brain should not be considered as being in an idle state and activated
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by external stimuli only. The brain is likely to be intrinsically active in an organised way
which supports stimulus processing [35]. Resting-state measurement is typically performed
with the eyes closed or open. When both conditions are included, the brain’s response to
visual stimulation can be evaluated, especially in the form of changes in alpha band activity
in occipital areas [36].

Stroboscope light stimulation is also used to evaluate visual cortex activity [37]. If the
light stimulation frequency is steady, it is possible to observe increased power equal to this
frequency in the EEG in occipital areas. This type of stimulation is known as the steady-
state visual-evoked potential (SSVEP) paradigm and can be used to control brain–computer
interfaces [38].

In the study of cognitive processes such as attention, the oddball paradigm is often
used. In this case, event-related potentials are investigated, mainly the P300 component,
which is a positive deflection in EEG signal and usually occurs about 300 ms after the
stimulus presentation. The P300 is an attention-related component and is considered an
indicator of active detection of targets by the subject [39,40]. Further research has shown
that P300 can be separated into two subcomponents, P3a and P3b [41,42], and due to its
characteristics, P300 can also be applied to brain–computer interface communication [43].

Considering the results of the literature review, as observed, ASR is regarded as a
method with the potential to provide promising results. However, it is still treated as a
relatively new method which needs to be explored [31]. The idea of the study presented
in this paper is to check if the process of automation of artifact removal, more and more
willingly applied in the area of cognitive neuroscience, can affect patterns in the data. The
ICA is a well-known, widely applied method which is considered to be safe for EEG activity
patterns. We decided to check if adding another method, ASR, in the data-preprocessing
phase could change these patterns. Such an influence, if detected, could have a negative
impact on data and cause incorrect results.

The ASR, as added to the procedure, was conducted before the ICA, as ASR is per-
formed continuously on small segments of the data whereas ICA should be used on
continuous data. The ASR is a non-stationary method using a sliding window, while
ICA is a stationary method. The ASR applied before ICA removes less reproducible data
discontinuities and prepares the signal for ICA application.

The experimental procedure and the research group used in this study are typical
for cognitive neuroscience research. It is worth mentioning that this case study covers
the most popular experimental procedures in order to verify the process of preprocessing
automation. We did not attempt to perform a direct assessment of the algorithm parameters
or apply modified versions of the methods. Instead, we used default values of parameters
as they are suggested by the methods developers and applied in other research papers.
Another factor worth mentioning is the computational cost, which is an important aspect
of the assessment of both approaches as it has a practical influence on the applicability of
both solutions, so this aspect was also taken into account in the paper.

2. Materials and Methods
2.1. Subjects

Ten healthy volunteers, 8 adult females and 2 adult males, aged 22–35 years (mean = 26,
SD = 4.47), participated in the study. Nine of them showed right-sided laterality. All partic-
ipants were informed about the possibility to resign from participation at any time without
stating the reasons. The experiment was conducted in compliance with the Declaration of
Helsinki and approved by the University Research Ethics Committee of Lublin University
of Technology (approval no: 8/2019).

2.2. Devices

EEG signals were measured with the GES 300 EEG system (Electrical Geodesics, Inc.,
Eugene, OR, USA) comprising a Net Amps 300 amplifier (input resistance 200 MΩ; record-
ing ranging 0.01–1000 Hz) and a 64-channel cap with active electrodes ActiCAP (Brain
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Products, Munich, Germany). In the study, 64 electrodes were used an arranged according
to the 10–10 international system. The impedance of the electrodes was kept below 10 kΩ
and the signal was referenced to an FCz channel throughout the recording. Data were
sampled at 500 Hz and recorded with the Net Station 4.4 (EGI, Eugene, OR, USA). The
experimental procedure was designed and displayed on a computer screen with the use
of PsychoPy Software v. 3.0. Above the computer screen there was a stroboscope emit-
ting white light. Responses were registered with a response pad built using non-ferrous
materials to avoid magnetic induction. The processing of the EEG signal was performed
with EEGLab version 2021.1 (USA) [44], and the statistical analysis as well as visualisation
of the results was carried out with SPSS 20 (IBM, USA). The ICLabel, an automatic EEG
independent component classifier plugin for EEGLAB [45], which is designed to recognise
independent components (ICs) such as brain or non-brain sources, was used to remove
the ICA components, but the final decision was made by an expert if the component had
to be removed. The goal of this paper was to compare the methods which can be used
automatically, so this is possible only if the IC components are classified by the algorithm.
The clean_rawdata [18], which is also the EEGLab plugin, was used to calculate ASR. The
method which was applied in calculating ASR also allows removing channels, line-noisy
channels, poorly correlated channels or applying the high-pass filter. The ASR was calcu-
lated with parameter “Standard deviation cutoff“ for the removal of bursts, which was set
to the default value of 5. This is a conservative, not strongly restrictive value. It was set to
5 based on visual examination. The mentioned functions were calculated in separate steps.

2.3. Procedure

The experimental procedure consisted of five blocks (Figure 1): 1. resting state with
the eyes open, 2. resting state with the eyes closed, 3. stroboscopic stimulation with the
eyes closed, and 4. the oddball procedure. Each block was separated by a short rest break.
Participants were seated in a dimly lit room at a distance of approximately 60 cm from the
computer screen on which experimental stimuli were presented.
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Figure 1. Outline of the experimental procedures: (a) resting state with the eyes open and eyes closed;
(b) stroboscopic stimulation with the eyes closed; (c) the oddball ERP procedure.

1. Resting state with the eyes open/eyes closed. Participants were instructed to look at
the fixation cross at the center of the screen and think of nothing in particular for a
period of 120 s. The beginning and the end of a block was announced with a brief
sound. In the other condition participants were instructed to close their eyes when
they heard a brief sound and think of nothing in particular for a period of 120 s. The
end of a block was also announced with a sound which was also a signal to open
their eyes.
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2. Stroboscopic stimulation with the eyes closed. The stroboscope was located straight
above the computer screen. Participants were asked to close their eyes as soon as they
heard a brief sound and keep them closed during the whole block. A strobe light was
emitted at 16 Hz frequency for 8 s. There were 18 trials with 2 s blank screen breaks.

3. The oddball procedure. Sequences consisting of 80% Xs and 20% Os were presented
at the center of the computer screen. The participants had to press one button for X’s
and another for O’s. Each letter was displayed for 100 ms, followed by a 1400 ms
blank screen interstimulus interval (ISI).

Artifacts in the signal, subjected to the analysis process, were naturally appearing arti-
facts related to person movements such as muscle, eye or heart artifacts and to equipment
operating such as line noise, channel noise, etc.

2.4. Data Analysis

The data were processed in several stages. The same preprocessing procedure was
used for all recordings (A). Then, ICA and ASR followed by the ICA (ASR + ICA) artifact-
removing procedure were performed independently (B). At the next stage, different anal-
yses were used to extract the signal features specific to the experimental procedure (C).
Finally, the noise-to-signal ratio values for data sets cleaned with ASR and ICA + ASR
were compared with the repeated ANOVA measures, separately for each experimental
condition.

2.5. Preprocessing

The EEG data were filtered using a 256th-order finite impulse response (FIR) filter
in the band below 1 Hz and above 40 Hz to remove records that did not represent brain
activity. Then, all unnecessary signal fragments, such as breaks between experimental
conditions, were removed from the dataset. Line noise was removed next with CleanLine
EEGLab extension [46] using a sliding window which adaptively estimates sine wave
amplitude to subtract. Bad channels were also removed by the means of EEGLab (using
clean_rawdata EEGLab procedure with default parameters), following the parameters of
the automated algorithm. Channels were identified as bad and removed if the signal is flat
for more than 5 s. What is more, channels with a large amount of noise were removed based
on their standard deviation (maximal acceptable threshold was set on the default value: 4)
and when they were poorly correlated with other channels (the rejection threshold for
channel correlation was set to default value: 0.8). Removed channels were then interpolated.
The next step of the procedure was additional removal of bad data periods based on a set
number of channels (default 25%) passing a standard deviation threshold in a time window.
The data were subjected to the process of re-referencing the signal (CAR, common average
reference) for all channels except those that had been marked as bad.

2.6. Feature Extraction

The data after the ICA and ASR followed by ICA ASR or the ICA + ASR artifacts
rejection were subjected to different processing steps in order to extract the characteristics
specific to the experimental procedure. For each experiment, a different electrode montage
was selected for analysis and adjusted to the type of effect being measured. A signal from
parietal-occipital electrodes was chosen to measure changes in the alpha band (8–13 Hz)
activity over visual cortex areas during the relaxed state with eyes open and closed (P3, PZ,
P4, POz, O1, and O2) [47]. We expect an increase of alpha band power spectral density (PSD)
for the eyes-closed condition compared with the eyes-open condition, as it is known to be
one of the strongest human electroencephalographic responses ever discovered [36,48,49].
The electrodes above the left (O1) and right (O2) visual cortex, on the other hand, were
chosen to record the response to stroboscopic stimulation [50]. The P300 component,
whose propagation extends from the frontal cortex, through the central-parietal area to
the occipital region, was chosen as an indicator of the response to stimuli in the oddball
procedure [51].
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The ASR was calculated using clean_rawdata (EEGLab plugin) with parameter stan-
dard deviation cutoff set to the default value of 20 (data regions removed if they exceed
20 times the standard deviation). We decided to leave the default value of the standard
deviation cutoff parameter after visual inspection of results. The ICA was applied to
remove artifactual components based on ICLabel (EEGLab plugin). No-brain components
were removed. The method of data analysis is shown in Figure 2.
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3. Results

The analysis of signal-to-noise ratio differences between ASR + ICA and the ICA
conditions was performed with the repeated measures ANOVA test for each procedure
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independently. A Bonferroni correction [52] was applied to avoid false-positive results due
to multiple post hoc comparisons (type I errors).

3.1. Resting-State with Eyes Open/Eyes Closed

There were no significant differences in signal-to-noise ratio calculated for the power of
alpha band (8–13 Hz) from P3, PZ, P4, POz, O1, and O2 positions (Channel F (1, 9) = 1.432;
p = 0.266; Methods x Channel F (1, 9) = 1.03; p = 0.339). Figure 3 shows the power
spectral density from channel POz and distribution of alpha band on the skull during both
experimental conditions.
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Figure 3. Results of eyes-open/eyes-closed conditions: (a) resting-state log10 power spectrum density
from channel POz; (b) maps of alpha band distribution on the skull (the upper part of the figure
presents ASR + ICA and the lower part represents the ICA condition).

3.2. Stroboscopic Stimulation with Eyes Closed

There were no significant differences in signal-to-noise ratio between the ICA and
ASR + ICA conditions calculated for the stimulation frequency (16 Hz) from O1 and O2
positions (Methods F (1, 9) = 0.378; p = 0.554; Channel F (1, 9) = 3.623; p = 0.089; Methods x
Channel F (1, 9) = 0.08; p = 0.789). Figure 4 shows power spectral density from channel Oz
and distribution of 16 Hz frequency on the skull during both experimental conditions.
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3.3. Oddball Procedure

We found significant differences in signal-to-noise ratio between ICA and ASR + ICA
conditions calculated for the P300 component from positions FZ, FCz, C3, Cz, C4, CPz, P7,
P3, Pz, P4, P8, PO, PO3, POz, PO4, PO8, O1, Oz, and O2 for the factors: Stimuli F (1, 8) = 6.698;
p = 0.029, ηp

2 = 0.43; Channel F (1, 8) = 5.363; p < 0.001, ηp
2 = 0.37, and interaction Stimuli x

Channel F (1, 18) = 1.814; p = 0.027, ηp
2 = 0.17. The overall SNR ratio was higher for the

stimulus X (M = 16.78, SE = 3.53) than O (M = 6.44, SE = 3.53). However, the post hoc
comparisons with Bonferroni correction did not confirm that these differences between
stimulus O and X occurred on specific channels. Figure 5 shows the average ERP from Pz
location and distribution of amplitude averaged for the P300 time window.
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4. Discussion

The result of ASR + ICA and the ICA comparison in stroboscopic stimulation, oddball,
and resting state procedures did not show significant differences. A possible explanation for
the significant effect of factor stimuli in oddball condition is that stimulus X was presented
five times more frequently than stimulus O during the experiment. The interaction of
stimuli and channel factors in the same analysis did not indicate that the difference between
X and O stimuli occurred regularly on the specific channels. These differences may be
explained by differences in the number of trials averaging in both conditions.

The results of all experimental conditions might be interpreted as that both methods,
ICA and ASR + ICA, allow for achieving a similar quality of the signal. Assuming that
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ICA is a widely known and commonly applied algorithm proven to be efficient in EEG
artifact analysis, the comparison of ASR + ICA and ICA approaches shows that the signal
might be cleared with an ASR method without data loss. Considering the fact that ASR is
automated, significantly faster and therefore more convenient to use than manual artifact
removal, it might be successfully used in the process of EEG data analysis. It could be
also a special advantage in cases where signal processing is conducted in real time, e.g., to
control brain–computer interfaces.

However, our study does not answer all the questions about the potential advantages
or disadvantages of automatic signal correction algorithms. There are a number of methods
of EEG analysis with specific requirements for the preprocessing of data, such as connec-
tivity or source-localisation. Additionally, there are markers in the electroencephalogram
data typical of special clinical groups or research paradigms, e.g., epileptic seizures. The
influence of automatic signal correction on the reliability of these effects requires further
research, as well as comparing the results of signal classification by algorithms with the
indications of neurophysiological experts.

From the view of computational cost, continuing the ICA analysis with the use of ASR
does not affect the pipeline exhaustedly. Computational cost of ICA method (estimated
for FastICA implementation) is O(2md(d + 1)n), where n is the number of samples, d is
the dimension and m is the number of iterations [53]. The computational cost of ASR,
which is based on the PCA method, is O(d2(d + 1)n) [53] on the assumption that PCA is
performed in ASR for data chunks into which the signal is divided. The ICA is a method
of non-closed form solution, so its algorithms use iterative procedures with problems
of convergence difficulties or high computational load [30]. The PCA-based ASR has a
closed-form solution and its operation time is very fast compared with ICA, and the result
is achieved in a fraction of the time needed to complete the ICA procedure. Even though
the selection of the k parameter in the ASR procedure [27] might affect the calculation
performance slightly, such a potential performance loss is not felt throughout the whole
procedure. That is why, from the computational point of view, adding ASR to the procedure
does not affect the time of calculations.

5. Conclusions

Our research was the first attempt to compare the effectiveness of two approaches to
automatic EEG data correction on data from popular experimental procedures. Statistical
comparisons were made on the results of commonly used data analysis methods in time,
frequency or time-frequency domains. There was a high similarity in the signal-to-noise
ratio after applying independently ICA or ASR + ICA to the same data. This may lead us
to the conclusion that both approaches provide very similar effects in the form of signal
quality improvement. At the same time, the use of ASR could be more efficient than manual
artifact removal.

The article had the following limitations. The number of participants having taken
part in the experiment can be increased in order to obtain more diverse signal samples.
Publicly available datasets could be utilised in the experiment. Such an approach allows
comparing results with others and enables other researchers to repeat the experiment.
Another limitation of the research is that, although we did not notice differences, they
might be found during analysis using different implementations or different parameters of
applied methods. Potential influences on the analysis might also be present when using
different window sizes or different sampling frequencies. All these aspects constitute an
area for further research, as results might change. Especially, various implementations
of the methods, for instance, different versions of the clean raw data procedure or ICA
method implementations should be used with caution. These issues were not discussed
in this paper, as we used the most typical configuration and we did not consider different
versions of applied methods. However, if major changes were applied to these methods,
they may affect the obtained results. Our further studies will focus on addressing the
abovementioned limitations.
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