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Abstract: Seismic activity prediction has been a challenging research domain: in this regard, accurate
prediction using historical data is an intricate task. Numerous machine learning and traditional
approaches have been presented lately for seismic activity prediction; however, no generalizable
model exists. In this work, we consider seismic activity predication as a binary classification problem,
and propose a deep neural network architecture for the classification problem, using historical data
from Chile, Hindukush, and Southern California. After obtaining the data for the three regions, a
data cleaning process was used, which was followed by a feature engineering step, to create multiple
new features based on various seismic laws. Afterwards, the proposed model was trained on the
data, for improved prediction of the seismic activity. The performance of the proposed model was
evaluated and compared with extant techniques, such as random forest, support vector machine, and
logistic regression. The proposed model achieved accuracy scores of 98.28%, 95.13%, and 99.29% on
the Chile, Hindukush, and Southern California datasets, respectively, which were higher than the
current benchmark model and classifiers. In addition, we also conducted out-sample testing, where
the evaluation metrics confirmed the generality of our proposed approach.

Keywords: seismic activity prediction; earthquake prediction; deep neural network; deep learning;
feature engineering

1. Introduction

Earthquakes are considered one of the most dangerous natural disasters, as they can
occur without warning. The ratio of deaths caused by earthquakes is above half more than
that of other natural disasters [1]. According to the World Health Organization (WHO),
earthquakes killed 750,000 people worldwide between 1998 and 2017 [1]. During this
period, more than 125 million people were affected by tremors, meaning that they were
either injured or lost their houses and valuable properties. In 2020, Americans lost USD 4.4
billion, due to catastrophic earthquakes. Seismic activity prediction is the optimal technique
for avoiding earthquake-related economic and human tragedies.

Machine learning (ML) approaches play a pivotal role in prediction and forecasting in
various fields, including different disasters, such as floods, earthquakes, and landslides [2–8].
Significant research has been conducted, using these techniques, to reduce the impact of the
aforementioned disasters [3,6,7,9]. These studies have utilized a variety of machine learning
approaches, including artificial neural network [5], support vector machine [9], random
forest [10], and convolutional neural network [6]. In this work, we consider the seismic
activity prediction problem as a binary classification problem, and present a deep neural
network model for predicting the occurrence or otherwise of significant seismic activity.

Asim et al. [11] used genetic programming and Ada-boost methods to classify seismic
activities in the California region. The authors applied the mentioned methods on only
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one dataset, and reported accuracy of 78%. An artificial neural network was implemented
by Oktarina et al. [5] for earthquake prediction in the Indonesian region, and it calculated
the mean square error. Jena et al. [6] studied the Palu region in Indonesia, to identify
earthquake-prone areas using cluster analysis techniques. The authors used silhouette
clustering, pure locational clustering based on hierarchical clustering analysis, and con-
volutional neural networks. The approach to the selected region achieved 89% accuracy.
Majhi et al. [12] used a moth flame optimized functional link with an artificial neural
network to predict seismic magnitude on earthquake catalog data, by considering the mean
square error as a metric. Zhang et al. [13] discussed the precursory pattern-based feature
extraction method for earthquake prediction in China. The authors used an artificial neural
network for earthquake prediction, and reported accuracy of 80%. A different approach
was used by Aslam et al. [14] in the northern areas of Pakistan, for the prediction of seismic
activity. The authors implemented the support vector machine and hybrid neural network
on the targeted area, to predict earthquake occurrence for a period of one month: the
maximum accuracy of their models was 79% on one dataset. Al Banna et al. [15] advocated
the use of long short-term memory network structure for predicting earthquakes in the
Bangladesh region: the authors used hyper-parameters optimization, as well as L1 and L2
regularization, to achieve maximum accuracy of 76%.

From the current literature, we identified that although machine learning models are
used to predict earthquake occurrence to varying degree of success, the models mostly
rely on data from one region, and there is no generalization in the proposed models.
Generalization refers to the concept of the effectiveness (such as higher accuracy, low mean
squared error) of a given machine learning model at learning from the given data, and
effectively applying the learning to other datasets. The machine learning models proposed
for earthquake prediction are not generalized, i.e., the proposed models performed well
(to a certain degree) on the given datasets, but their performances on other datasets were
either not evaluated or were found lacking: that is to say, the models could not be applied
to other datasets/regions.

In this work, a novel methodology for prediction of earthquakes using feature en-
gineering and a deep-learning-based technique is proposed. First, we collected the data
for three regions: California, Chile, and Hindukush. The data collection was followed
by data cleaning and pre-processing. New features were calculated based on the various
seismic laws (such as the Gutenberg–Richter law). The features included the seismic rate of
changes, foreshock frequencies, the release of seismic energy, the total time of recurrence,
the maximum/minimum relevance, and redundancy. These features were extracted and
used as input for our deep learning model. Afterwards, a deep-neural-network-based
architecture was proposed, which was evaluated against standard benchmark algorithms,
using accuracy, precision, recall, and F1-score.

Unlike previous works, we conducted Out of Sample testing, to validate the generality
of the proposed technique. Out of Sample testing means that the model is trained on one
dataset, but is evaluated on a different dataset. A better performance on an Out of Sample
test reflects that the model is generalized, and can be used for datasets other than the one
on which it was trained. The results showed that the proposed deep neural network was
more accurate than the other machine learning approaches. This research will aid risk
and uncertainty mitigation, for better decision-making regarding earthquake prediction, in
various ways.

The rest of this paper is organized in the following manner: Section 2 presents the
proposed methodology, including the dataset, feature engineering, the proposed deep
neural network architecture, the benchmark algorithms, and the evaluation metrics; the
results are presented and discussed in Section 3; Section 4 concludes the work.

2. Methodology

Figure 1 illustrates the workflow of the conducted research. As a first step, the data
were collected from various sources, after which the pre-processing was performed. The
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pre-processing steps included data cleaning, feature engineering, and data normalization.
Afterwards, the data were split into training and test sets, and model training was carried
out on the training set. Once the training had been performed, and satisfactory results had
been achieved on the training set, the model was evaluated on the test data based on the
evaluation criterion. In the following, we explain the various phases in detail.

Figure 1. Research workflow

The steps of the proposed methodology are described as follows.

2.1. Data Collection

Earthquakes produces seismic waves, which are recorded in the form of seismograms.
Seismograms represent ground motion at a specific location, as a function of time. A phase
in seismic waves is the arrival pattern, which is observed in the seismogram: of particular
interest are P-waves and S-waves [16]. A seismogram also records the size of an earthquake
at its source location (called the epicenter), which is generally referred to as magnitude.
Magnitude is a logarithmic measure [16].

Numerous techniques of data acquisition, analysis and filtering in time, frequency, and
scale domains exist in the literature [17,18]. In this study, however, we did not use the raw
seismograms data: instead, we selected the already-available digital data for three of the
most active zones in the globe, for earthquake occurrences. The original seismic activities
data were downloaded, from the information provided in the respective articles [9,19,20].
The downloaded data contained the magnitude data. As these three datasets had been used
in the existing literature [9,19,20], we also selected the same, for a meaningful comparison.
Due to space constraint, the process of data collection from the various sources cannot be
explained here, and the reader is referred to the respective sources, which are available
at [9,19,20]. Table 1 provides an overview of each dataset.

Table 1. Description of each dataset.

Region Total Records Records after Cut-Off Label-Yes Label-No

California 33,543 29,120 4433 24,687
Chile 7656 7590 2002 5588

Hindukush 4350 4274 1379 2971

2.2. Pre-Processing

After obtaining the data from various sources, the data cleaning and feature engineer-
ing steps were performed as follows.

2.2.1. Data Cleaning

After obtaining the raw data from the original sources (please refer to [9,19,20]),
the data cleaning step was performed. In the data cleaning, the dataset was reviewed
for missing values and invalid values. Once it had been ascertained that there were no
missing/invalid values, the data were reviewed for cut-off magnitude. The threshold
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for cut-off magnitude is dependent on the density of the instrumentation in a particular
region [9]. As discussed in Asim et al. [9], the cut-off magnitude is 2.6 for the California
region, 3.4 for Chile, and 4.0 for Hindukush. Weimer and Wyess [21] have discussed various
methodologies for determining the cut-off magnitude; however, in line with the existing
literature, we used the Gutenberg–Richter law [9]. The determination of the magnitude of
completeness was independent of the Gutenberg–Richter law.

2.2.2. Feature Engineering

The process of extracting new attributes, characteristics, and properties from data
is called feature engineering. The main goal of feature engineering is to design/create
new features that can be used to improve the performance of the model. The features are
engineered based on seismic activities indicators. The features are considered from the
available literature. The detailed description about various engineered features is given
as follows.

Gutenberg–Richter Law

The Gutenberg–Richter law describes the relationship between the magnitude and the
number of earthquakes in a particular region [22]. The Gutenberg–Richter law states that
earthquake magnitudes are distributed exponentially as:

log10(N ≥ m) = a− bm ; m ≥ mc (1)

Note that N represents the number of earthquakes of magnitudes of at least m, such
that m ≥ mc, mc is the threshold magnitude of completeness, b is referred to as the scaling
parameter, and a is a constant.

Two different methods—least square regression analysis (LSQ) and maximum likeli-
hood (MLQ)—were used to calculate the values of a and b. We used both sets of techniques
to identify the values of a and b, and we used these values as our features for the machine
learning models. The values of a and b were calculated using least square regression, and
the maximum likelihood criterion was calculated using Equations (2)–(5) [23].

blsq =
n(∑ Mi log Ni)− (∑ Mi ∑ log Ni)

(∑ Mi)
2 − n ∑ M2

i

(2)

alsq =
∑
(

log10 Ni + blsq Mi

)
n

(3)

bmlk =
log10 e

Mmean −Mmin
(4)

amlk = log10 N + bmlk(Mmin) (5)

Mean of Earthquake Magnitude

The mean of the earthquake magnitude was the mean value of n events, as shown in
Equation (6). Prior to any large-scale earthquake, the seismic magnitude is usually rising.

Mmean =
∑i Mi

n
(6)

Standard Deviation of b’s Value

The standard deviation of b’s value (σb) was established by Shi and Bolt [24], and is
calculated as shown in Equation (7):

σb = 2.30b2

√
∑n

i=1(Mi −Mmean)
2

n(n− 1)
(7)
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Recurrence Time

The time between two magnitudes of earthquakes equal to or greater than M′ (M′

being the value of fixed magnitude) is called the total recurrence time, and is calculated
using Equation (8) [9]; it is also called the probabilistic recurrence time (Trec).

Trec =
T

10a−bM′ (8)

Note that T is the length of total time under consideration.

Seismic Rate of Change

In a region, the increase and decrease seismic behavior for two different time intervals
is called the Seismic Rate of Change. We calculated the decrease in seismic behavior, using
Equation (9) [25]:

β =
M(t, δ)− nδ√

nδ(1− δ)
(9)

where n is the number of events, the duration of time is t, and the observed events are
M(t, δ).

To calculate the increase in seismic behavior, we used Equation (10) [26]:

z =
R1 − R2√

S1 + S2

n1 + n2

(10)

where R1 and R2 are the seismic rates for two difference intervals, S1 and S2 repre-
sent the standard deviation, and n1 and n2 represent the seismic events observed in the
two intervals.

Rate of Square Root of Seismic Energy Released

The rate of the square root of seismic energy released over time T was calculated as
shown in Equation (11):

dE
1
2 =

∑
(
1011.8+1.5M)1/2

T
(11)

In cases where the release of seismic energy is not possible for a prolonged duration,
the abrupt accumulated energy release may result in major seismic activity [27].

Elapsed Time for Last n Seismic Activities

The n number of seismic events to have occurred before Et, as represented in Equa-
tion (12) in days, is elapsed time:

T = tn − t1 (12)

Maximum Earthquake Magnitude in the Last 7 Days

This feature is considered an important parameter of seismic events: it means the
maximum magnitude recorded in the last 7 days. The mathematical representation is given
in Equation (13):

Xmax7 = Max(Mt); t ∈ {1, 2, ...., 7} (13)

Note that Mt is the magnitude of the earthquake observed on day t.

Earthquake Magnitude Deficit

The earthquake magnitude deficit is defined as the difference between the maximum
observed magnitude and the maximum possible magnitude defined by ai/bi from the



Appl. Sci. 2023, 13, 1598 6 of 13

Gutenberg–Richter relationship, and is formulated as shown in Equation (14). Note that ai
and bi are the parameters of the Gutenberg–Richter relationship, and Max represents

∆M = Max−max
(

ai
bi

)
(14)

2.2.3. Normalization

Data normalization for machine learning models is an essential part of the pre-
processing. Normalization is transforming the numeric values to a common scale without
wrenching differences from the range of values. The calculated features were normalized
using the MinMaxScaler from the scikit-learn library.

Pre-processing is a mandatory step, which is known to have a significant impact on
the performance and generalizability of machine learning models [28]: these steps are, as
such, required, and cannot be ignored.

2.3. Data Splitting

In machine learning, data splitting is normally utilized for splitting the dataset into
training and test sets. Using the “Train/Test split” from the scikit-learn, the datasets were
divided into two parts, with 75% of the data being used for training, while the remaining
25% was used for testing.

2.4. The Proposed Deep Neural Network Architecture
2.4.1. Layers in the Model

A sequential deep neural network (DNN) model was proposed in this work. The
model contained one input layer, three hidden layers, and one output layer for earthquake
prediction. The input layer contained 62 neurons, which represented the no. of features.
The three hidden layers contained 100, 100, and 50 neurons, respectively, while the output
layer comprised a single neuron. The number of layers, and the number of neurons in each
hidden layer, were initially selected randomly, and the final values were the ones which
provided the optimum results. The sigmoid function was used for all layers except the
input layer. The model was implemented in Python 3.7, using Jupyter Notebook as an IDE.

2.4.2. Addressing Over-Fitting

Over-fitting is a common problem in machine learning, and happens when a model
does not generalize effectively from observed to unseen data [29]. In order to avoid over-
fitting from the data, the dropout 0.2 was used after the first layer of the model.

2.4.3. Activation Function

The sigmoid function was used as activation and output function in the proposed
model. The sigmoid function—also called the logistic function—is mathematically repre-
sented as follows:

Sigmoid =
1

1 + e−x (15)

Furthermore, a binary cross-entropy (BCE) [30] as loss function, and “Adam” as
an optimizer, were used in the model. The mathematical representation of the BCE is
as follows:

BCE = − 1
N

N

∑
i=1

yi log(p(yi)) + (1− yi) log(1− p(yi)) (16)

Note that yi is the actual output for the ith input/record, and yi is the predicted
probability for the ith input/record.
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2.4.4. Weight Initializing

For the better learning of the model, implementation of a weight initializing scheme,
“uniform distribution of a fixed bound”, and one hundred epochs in the proposed model
were used. The graphical representation of the model is shown in Figure 2.

Figure 2. The Proposed Deep Neural Network Architecture

2.5. Benchmark Algorithms

To compare the performance of our proposed model, we selected logistic regression,
support vector machine, and random forest as our benchmark algorithms.

2.5.1. Logistic Regression

Logistic regression is a machine learning technique used to predict positive class based
on prior observation. Logistic regression is used for binary and multi-label classification.
Mathematically, logistic regression is defined as follows [31]:

hθ(x) =
1

1 + e−θT x
(17)

where θ is the set of parameters. Logistic regression, using the sigmoid function to trans-
form the output to probability values, aims to minimize the cost function, to attain an
optimal probability.

2.5.2. Support Vector Machine

Support vector machine (SVM) is a robust method of supervised learning, used for
classification and regression problems [32]. SVM helps in finding the hyper-plane in N-
dimensional space, with less computation. The following is the mathematical representation
of SVM:

J(θ) =
1
2

n

∑
j=1

θ2
j (18)

such that:
θTxi ≥ 1 if yi = 1 (19)

θTxi ≤ 1 if yi = 0 (20)

2.5.3. Random Forest

An ensemble learning technique, random forest is the collection of various decision
trees. Random forest is a flexible and easy-to-use algorithm or classifier among machine
learning approaches, and is mostly used for classification and prediction purposes [33].
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2.6. Evaluation Metrics

The proposed model and the benchmark algorithms were evaluated using the standard
evaluation metrics for classification problems: accuracy; precision; recall; and F1-score [34].
The terms accuracy, precision, recall and F1-score were based on a confusion matrix, which
was calculated on the basis of the actual and predicted values. The confusion matrix is
shown in Table 2. The terms accuracy, recall, precision, and F1-scores are defined in Table 3.

Table 2. Confusion matrix.

Predicted True Predicted False

Actual True True Positive (TP) False Negative (FN)
Actual False False Positive (FP) True Negative (TN)

Table 3. Performance metrics.

Name Formula

Accuracy TP+TN
TP+TN+FP+FN

Recall TP
TP+FN

Precision TP
TP+FP

F1-Score 2 Precision·Recall
Precision+Recall

3. Results and Discussion

We evaluated the performance of our proposed model against the benchmark algo-
rithms, using in-sample and out-sample testing techniques. In the in-sample test, the
dataset was divided into training and test sets, and the performance of the model was
evaluated on the test set. By contrast, in the out-sample test, the model was trained on a
dataset, and was evaluated on a different dataset.

3.1. In-Sample Test

Table 4 illustrates the in-sample test performance scores of different models/classifiers
on various datasets. Overall, the performance of the proposed deep neural network was
found to be the best of all the considered datasets. The performance of random forest was
observed to be better than SVM and LR, and inferior to the proposed deep neural network
model. It is interesting to note that logistic regression performed better than support vector
machine. Figure 3 represents the in-sample testing accuracy of all approaches on targeted
datasets. The accuracy of the proposed DNN model was 7%, 14%, and 9.8% better than
the average accuracy of the other benchmark algorithms on the Hindukush, Chilean, and
Californian datasets, respectively. In terms of precision, the average improvement of the
proposed DNN model was 20%, whereas the corresponding figures for recall and F1-score
were 29% and 36%, respectively.

Table 4. Overall In-Sample Results of All Approaches from the Considered Datasets.

Hindukush Chile Califronia

Approach DNN RF SVM LR DNN RF SVM LR DNN RF SVM LR

Accuracy 95.8 95.13 77.9 92.9 98.28 97.2 73.8 85.7 99.29 98.7 84.8 87.7
Precision 93.15 86.03 88.09 95.86 98.69 86.05 74.4 82.15 99.26 97.52 92.39 75.01

Recall 85.56 80.9 66.35 92.46 98.68 78.34 50.46 79.47 95.87 88.24 50.07 66.95
F1-Score 99.22 82.78 67.89 90.28 98.68 81.06 43.47 80.64 97.62 92.14 46.4 69.75
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Figure 3. Overall accuracy score of all approaches on each dataset.

Overall, it can be argued that the proposed technique is more capable of identifying the
patterns in the time series data for seismic activity detection than the benchmark techniques.
This can be attributed to the complex structure of the proposed deep neural network, and to
the working mechanism of the deep neural network. Furthermore, the addition of drop-out
was potentially helpful, by reducing the over-fitting.

3.2. Out-Sample Testing

Recall that in out-sample testing, the learning algorithm is trained on one dataset,
while its performance is evaluated on another dataset. Thus, the model was trained on the
Chile dataset, while the performance was then evaluated on the Hindukush and California
datasets: this step was important in gauging the generalizability of the proposed approach.
Tables 5–7 show the performance scores of various algorithms using out-sample testing:

Table 5. Training on Chile, and testing on Hindukush and California.

Training on Chile

Testing on Hindukush Testing on California

Approach DNN RF SVM LR DNN RF SVM LR

Accuracy 69.94 81.9 86.7 91.7 89.05 94.5 97.7 98.1
Precision 83.14 56.34 34.14 34.14 90.31 80.88 42.38 42.38
Recall 69.94 56.48 50 50 89.05 58.67 50 50
F1-Score 70.26 49.41 40.58 40.58 86.34 61.11 45.87 45.87

Table 6. Training on California, and testing on Hindukush and Chile.

Training on California

Testing on Chile Testing on Hindukush

Approach DNN RF SVM LR DNN RF SVM LR

Accuracy 99.44 91.2 73.4 90 99.33 85 78.86 99.5
Precision 99.45 54.2 36.8 80.63 99.44 50.14 34.14 85.97
Recall 96.86 55.37 49.98 75.72 99.01 50.04 50 69.48
F1-Score 98.14 52.42 42.39 77.59 97.62 45.3 40.58 71.74

When the models were trained on the Chilean dataset, and evaluated on the Hin-
dukush and California datasets, we found that LR achieved the highest accuracy (91.7
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and 98.1, respectively); however, accuracy alone did not represent the complete picture.
For instance, the low precision score of logistic regression reflected a higher rate of false
positives. Likewise, the low recall score was an indication of a higher rate of false negatives.
Therefore, achieving higher accuracy was not enough to declare an algorithm superior, and
other factors needed to be considered as well. When we considered all the performance
metrics, we observed that our proposed DNN technique achieved better results in compari-
son to the benchmark algorithms. The same trend was observed when the models were
trained on the Californian dataset (ref Table 6), as well as on the Hindukush dataset (ref
Table 7).

Table 7. Training on Hindukush, and testing on California and Chile.

Training on Hindukush

Testing on Chile Testing on California

Approach DNN RF SVM LR DNN RF SVM LR

Accuracy 85.75 89.4 73.4 93.7 86.35 95.8 84.6 98.1
Precision 88.1 57.35 89.05 92.3 88.24 51.24 91.21 92.3
Recall 85.77 58.58 74.48 74.62 86.35 51.19 68.44 74.62
F1-Score 83.89 49.09 73.86 78.83 81.36 25.93 73.86 78.83

3.3. Comparison with Available Studies

The proposed model was compared with the extant literature on, and different method-
ologies applied to, the Chile, California, and Hindukush regions for earthquake or seis-
mic prediction.

3.3.1. Hindukush

Asim et al. [11] applied ensemble-based methods to the Hindukush region, for binary
classification, achieving a 78.7% accuracy score. A hybrid neural networks and support vec-
tor regressor (SVR–HNN) was used by Asim et al. [9] for the Hindukush region, for seismic
prediction. The authors claimed to achieve 65% accuracy. A seismic classification system
was presented by Aslam et al. [14], using machine learning algorithms, while attaining a
79% accuracy score. Table 8 evidently highlights that the proposed model performed better,
with a 95.13% accuracy score against the extant approaches to the Hindukush region, on
the basis of accuracy as well as precision, recall, and F1-score.

Table 8. Performance comparison of extant studies to proposed model for Hindukush region.

Region: Hindukush

Authors Accuracy Precision Recall

Asim et al. [11] 78.7 74.3 89.2
Asim et al. [9] 65 61 36
Aslam et al. [14] 79 69 86
Proposed Model 95.13 93.15 85.56

3.3.2. Chile

An artificial neural network was employed by Rayes et al. [20] for the Chile region,
to predict the earthquake, which obtained 79.7% accuracy. The Genetic Programming
and Adaboost (GP–AdaBoost) methods were used [11] for the mentioned region, for
seismic classification, attaining 84.4% accuracy. Table 9 illustrates that the proposed model
outperformed, compared to the models presented in the literature. For the Chile region,
the proposed model achieved the highest accuracy (98.28%), precision (98.69), and recall
(98.68).
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Table 9. Performance comparison of extant studies to proposed model for Chile region.

Region: Chile

Authors Accuracy Precision Recall

Reyes et al. [20] 79.7 61.1 89.2
Asim et.al. [11] 84.5 80.2 93.9
Asim et.al. [9] 84.9 73.2 90.5
Proposed Model 98.28 98.69 98.68

3.3.3. California

A neural network was used by Panakat et al. [19] for the Southern California region,
to predict the magnitude of the seismic activities, obtaining 75.2% accuracy. GP–AdaBoost
methods were employed by Asim et al. [11] for the Southern California region, for seismic
classification, which achieved accuracy of 86.6%. Similarly, Asim et al. [9] applied the
SVR–HNN approach to the aforementioned region, to predict the earthquake, and obtained
an accuracy score of 90.6%. Table 10 shows that, comparing the existing studies and
techniques, the proposed model performed better on the basis of its accuracy score, but
also outperformed the other methods, in terms of precision and recall score. Our proposed
model attained an accuracy score of 99.26%, a precision score of 99.29%, and a recall score
of 95.87% for the Southern California region.

Table 10. Performance comparison of extant studies to proposed model for Southern Califor-
nia region.

Region: Chile

Authors Accuracy Precision Recall

Panakkat et al. [19] 75.2 71 71
Asim et al. [11] 86.6 84.2 94.4
Asim et al. [9] 90.6 93.8 98.7
Proposed Model 99.26 99.29 95.87

As is evident from Tables 8–10, the performance of our proposed deep neural network
model was superior to the state-of-the-art techniques and the extant literature, on the basis
of standard evaluation metrics such as accuracy, precision, recall, and F1-scores.

4. Conclusions

In this research, a trans-disciplinary investigation was carried out, for seismic pre-
diction via machine learning technique. Several machine learning algorithms—including
deep neural networks, random forest, support vector machine, and linear regressions—
were applied to three distinct datasets: Chile, Southern California, and Hindukush. The
algorithms were evaluated on the mentioned datasets, using in-sample and out-of-sample
techniques. Our proposed deep neural network approach outperformed the benchmark
techniques on all the datasets. On average, the accuracy of the proposed model was 10%
better than the benchmark algorithms, while in terms of precision, recall, and F1-score, the
performance improvement was 20%, 29%, and 36%, respectively. The same performance
order was observed using out-of-sample testing.

Although our model outperformed the existing works, and achieved significantly
better performance, it is important to mention that we focused on seismic activity predic-
tion only (classification problem), and did not consider the problem of predicting exact
magnitude (regression problem). Furthermore, we did not collect our own data: instead,
we used the currently available and already peer-reviewed data. Like all machine learning
works, the current work was heavily dependent on the underlying data. Although we have
shown that our proposed model was able to achieve better performance than the current
techniques, the model may require further testing on other datasets, to strengthen its case.
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Finally, like all machine learning techniques, our proposed model also suffers from the
inherit risk of interpretability.

The proposed technique enriches the body of literature, by proposing a deep-learning-
based generalizable architecture for seismic activity prediction. The study should be of
interest to trans-disciplinary researchers and practitioners in the domain of seismology.
This work could be extended further, by identifying the important features that affected
the seismic outcome. Another interesting direction would be to design explainable AI-
based techniques.
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