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Abstract: The purpose of this study was to evaluate the feasibility of the large-scale application
of steel slag (SL) in subgrade. Subgrade materials with three kinds of SL proportions were first
prepared. Then, a compaction test, liquid-plastic limit combined-measurement test, and a California
bearing ratio (CBR) test were applied to determine the best proportion between SL and intact soil (S),
i.e., SL/S. Subsequently, static and dynamic tests and a volume stability test were carried out for soil
mixed with SL at the optimum proportion (SSL). In addition, a composition analysis of infiltration
fluid and a permeability test of SSL were performed. The test results showed that compared to S, the
physical properties of SSL were significantly improved, especially the liquid-plastic limit, as well
as the soil water stability. The optimum proportion of SL was determined as 50% of soil by mass.
At the optimum proportion, SSL had the highest CBR value of 60%, which had both economic and
engineering compaction performance, leading to a large-scale utilization rate of SL. The static and
dynamic characteristics showed that the addition of SL would greatly improve the shear strength
and dynamic modulus of soil, mainly expressed as the increase of internal friction angle. The volume
stability of SSL could also meet the requirements of the Chinese specification. After adding 2% cement,
the strength and stability of SSL was further improved. In addition, the environmental impact test
proved that the infiltration liquid did not pollute surface water nor underground secondary water.
Although the permeability coefficient of SSL with the optimum proportion of 50% was higher than
that of pure soil, it still belonged to the normal value of clay and silty clay, and good impermeability
would ensure the controllability of potential trace elements. Based on the test results of mechanical
properties and environmental impact, SSL proved to have the potential for green road material
engineering properties. This study proposes a reliable and practical method to promote the utilization
of steel slag.

Keywords: steel slag; subgrade material; physical property; mechanical property and stability;
environmental impact

1. Introduction

Steel slag (SL) is a bulk industrial by-product in the steel-making process. In 2012, the
annual production of SL in China was 90 million tons, and exceeded 100 million tons in
2020, ranking first in the world. At present, China’s accumulated SL volume has exceeded
4 billion tons, but its utilization rate is less than 30% [1–3]. The environmental burden
caused by SL piling is becoming more and more serious. The main uses of SL can be
summarized as steel-making recycling, sintering material, iron dephosphorization, road
and water construction, production of cement, concrete, and other construction materials,
water pollution treatment, carbon sequestration and desulphurization, agriculture, and
nine other uses [4–6], among which road construction is the most important application for
SL, shown in Figure 1.
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Due to its compressive strength and wear resistance, it has been recognized that SL 
can be used as an aggregate. In 1974, Canada constructed a test road with SL for the 401 
expressway, and its excellent anti-slip properties were noticeable after four years. In the 
1980s, Japan began combining asphalt pavement with SL to improve skid and wear re-
sistance. Subsequently, SL aggregates have been widely applied in the US, Germany, Sin-
gapore and other countries [7]. In 2009, SL was used instead of basalt to pave the surface 
pavement layer in Beijing, and the first all SL municipal road was completed in Taiyuan, 
Shanxi in 2015 [8]. Asphalt mixed with SL can serve as a partial replacement for aggregates 
and significantly improve physical and mechanical properties and fatigue resistance [9–
13]. More recently, waste/recycled materials have gradually been used for stabilizing sub-
grades. Yaghoubi et al. [14] studied the utilization of environmentally clean recycled ag-
gregates, such as recycled glass, for improving subgrades with problematic soils. Mirzaba-
baei et al. [15] carried out a comprehensive investigation on the utilization of carpet waste 
fibers in the reinforcement of clay soils. These relevant studies provided reference for the 
utilization of SL. 

Scholars have extensively attempted to use SL in road subgrade and subbase [16–19]. 
Li et al. [16] performed dry shrinkage and temperature shrinkage tests on cement-stabi-
lized steel slag by using SL instead of crushed stone, and found that a reasonable adjust-
ment of SL gradation could effectively reduce the dry shrinkage and temperature shrink-
age. Liu et al. [17] examined the effect of different SL dosing on the mechanical properties 
of cement-stabilized crushed stone subgrade. The strength and stiffness of cement-stabi-
lized aggregates were optimal with an SL of 50%. Li et al. [18] also obtained the best me-
chanical properties and durability of water-stabilized subgrade material when SL was 
mixed at 50%. Gao et al. [19] applied SL in the construction of highway roadbeds, and the 
compaction, surface flatness and compressive strength of water-stabilized SL aggregate 
subgrade met road construction requirements. Therefore, another major application for 
SL is road base construction, with the prospects even more promising. The high strength, 
wear resistance and granular properties of the friction strength and mechanical stability 
of SL can effectively improve the load-bearing capacity and stability of road foundations 
[20]. The main structure of SL is similar to the composition of cement, so it is also used as 
a cementitious material instead of cement and lime, for reinforcement and improvement 
of poor soil properties [21–23]. The application of SL for road bases in China began in the 
1960s, and the flat-furnace SL combined with soil was used as a road-base material, which 
proved that SL can be used for subgrade filling [24–26]. Compared to its application in 
pavement, the application of SL in the subgrade will be much larger, and the requirements 
for the homogeneity and index of raw materials are relatively lenient. However, the po-
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Due to its compressive strength and wear resistance, it has been recognized that SL
can be used as an aggregate. In 1974, Canada constructed a test road with SL for the
401 expressway, and its excellent anti-slip properties were noticeable after four years. In
the 1980s, Japan began combining asphalt pavement with SL to improve skid and wear
resistance. Subsequently, SL aggregates have been widely applied in the US, Germany,
Singapore and other countries [7]. In 2009, SL was used instead of basalt to pave the
surface pavement layer in Beijing, and the first all SL municipal road was completed in
Taiyuan, Shanxi in 2015 [8]. Asphalt mixed with SL can serve as a partial replacement
for aggregates and significantly improve physical and mechanical properties and fatigue
resistance [9–13]. More recently, waste/recycled materials have gradually been used for
stabilizing subgrades. Yaghoubi et al. [14] studied the utilization of environmentally clean
recycled aggregates, such as recycled glass, for improving subgrades with problematic
soils. Mirzababaei et al. [15] carried out a comprehensive investigation on the utilization
of carpet waste fibers in the reinforcement of clay soils. These relevant studies provided
reference for the utilization of SL.

Scholars have extensively attempted to use SL in road subgrade and subbase [16–19].
Li et al. [16] performed dry shrinkage and temperature shrinkage tests on cement-stabilized
steel slag by using SL instead of crushed stone, and found that a reasonable adjustment
of SL gradation could effectively reduce the dry shrinkage and temperature shrinkage.
Liu et al. [17] examined the effect of different SL dosing on the mechanical properties of
cement-stabilized crushed stone subgrade. The strength and stiffness of cement-stabilized
aggregates were optimal with an SL of 50%. Li et al. [18] also obtained the best mechanical
properties and durability of water-stabilized subgrade material when SL was mixed at 50%.
Gao et al. [19] applied SL in the construction of highway roadbeds, and the compaction,
surface flatness and compressive strength of water-stabilized SL aggregate subgrade met
road construction requirements. Therefore, another major application for SL is road base
construction, with the prospects even more promising. The high strength, wear resistance
and granular properties of the friction strength and mechanical stability of SL can effec-
tively improve the load-bearing capacity and stability of road foundations [20]. The main
structure of SL is similar to the composition of cement, so it is also used as a cementitious
material instead of cement and lime, for reinforcement and improvement of poor soil
properties [21–23]. The application of SL for road bases in China began in the 1960s, and
the flat-furnace SL combined with soil was used as a road-base material, which proved
that SL can be used for subgrade filling [24–26]. Compared to its application in pavement,
the application of SL in the subgrade will be much larger, and the requirements for the
homogeneity and index of raw materials are relatively lenient. However, the potential
swelling hazards caused by active substances in SL cannot be ignored. The application of
steel slag in road-base engineering in China is still used in small-scale blending, mostly
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together with other by-products. There are few cases of large-scale SL use, and the research
on the mechanical characteristics and stability control of SL as a subgrade filler is not yet
perfect. In addition, the potential environmental pollution of SL is of great importance
because it generates several by-products due to the use of a number of agents during
its production process. When SL is used as subgrade fill, the metal ions, trace elements
and acidity within the infiltration fluid produced from surface water or groundwater can
potentially contaminate surrounding land and water resources.

Based on the above background, this paper presents a study on the application of
subgrade with large doses of SL as typical fills in Guangxi, China, with the aim to ob-
tain a subgrade fill that is reliable and environmentally friendly. Through compaction,
liquid-plastic limit and CBR tests, the optimum proportion of soil mixing with SL (SSL)
was determined, and its dynamic characteristics were investigated through static and
dynamic tests. Finally, the environmental impact of SSL in the subgrade was evaluated.
The test results, mechanical properties, and environmental analyses of the SSL subgrade
in this study aim to promote the application of waste materials to support sustainable
development, while achieving improved performance of subgrade materials.

2. Materials and Experimental Methods
2.1. Raw Materials
2.1.1. Soil

The soil samples in this study were collected from two sections of an expressway
construction site in Qinzhou City, Guangxi, named soil sample 1 (S1) and soil sam-
ple 2 (S2), respectively. The maximum dry density of S1 and S2 were 1.92 g/cm3 and
1.95 g/cm3, respectively, and the corresponding maximum water content were 10.4% and
12.4%, respectively. The liquid limit of S1 was 43.7%, and its plasticity index was 12.2%. The
liquid limit of S2 is 59.6%, and its plasticity index was 31.9%. Referring to T0115-1993 in
the Chinese specification (JTG 3430-2020), according to this method of soil classification of
the plastic diagram, S1 was silty clay and S2 belongs to high liquid limit clay. The grading
curves of S1 and S2 are shown in Figure 2. For S1, the coefficient of uniformity (Cu) and
coefficient of curvature (Cc) were 2.9 and 0.8, respectively, and the Cu and Cc of S2 were 6.3
and 72.3, respectively, which were poor gradings. The XRD analysis results for S1 and S2
showed that there were more quartz components, and S2 also contained some components
of CaCO3, as shown in Figure 3a,b.
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2.1.2. Steel Slag

The steel slag used was the hot, stuffy steel slag taken from an iron and steel plant in
Guangxi, which was processed by magnetic separation during production, as shown in
Figure 3c. The natural water content of SL was 0.32~0.62%, and its particle specific gravity
was 3.36. The grading curve of SL is shown in Figure 2. The corresponding Cu and Cc were
14 and 1.9, respectively, so the SL used belonged to a good grading. The XRD analysis result
showed that the SL used was mainly composed of calcium carbonate, calcium alumina,
calcium phosphate silicate and calcium silicate, as shown in Figure 3c. The SL used in this
test was aged for six months. After immersion, the volume expansion rate was 1.51%, and
the pulverization rate was 4.8%, meeting the requirements of the Chinese specification
(GB/T 25824-2010).

2.1.3. Specimen Preparation

In this study, a set of test soil with different proportions of soil and SL were prepared
to carry out the relevant experiments. In order to improve the utilization rate of SL and
give full play to the strength advantage of SL, soil specimens mixed with SL at 30%, 50%
and 70% of soil by mass were selected. Compared with the existing research, the above
content of SL in this study was greatly increased [20,25]. Before the laboratory tests, soil
and SL samples were dried at a temperature of 110 ± 5 ◦C for 8 h and then cooled at room
temperature. The SSL specimens were manually prepared according to the target mix
proportion and water content during the whole preparation process. According to the
experimental method of Chinese specification (JTG 3430-2020), the SSL specimens with the
dimension of Φ 152 mm × 120 mm and Φ 39.1 mm × 80 mm were used for compaction,
liquid plastic limit, CBR, static and dynamic tests, etc. Some test specimens had to be cured
for 7 d after specimen preparation. The specimens for the environmental impact assessment
test were taken from specimens that failed the mechanical tests.
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2.2. Experimental Methods
2.2.1. Determination of Optimum Proportion (SL/S) between SL and Intact Soil

The proportion of improved soil was determined by its compaction performance,
boundary water content characteristics and bearing capacity characteristics, which were
examined through a compaction test, liquid-plastic limit combined measurement test and
California bearing ratio (CBR) test.

(1) Compaction test
According to the Chinese specification (JTG 3430-2020), the maximum dry density and

maximum water content can be determined by using the method of T 0131-2019. For each
mixed proportion, five samples with an interval of 2% water content were first prepared in
which each specimen was made by 98 compaction times. After compaction and demolding,
the mass and water content of the specimens were measured, and then the maximum dry
density curve under different water contents was determined.

(2) Liquid-plastic limit combined measurement test
According to the Chinese specification (JTG 3430-2020), the liquid-plastic limit com-

bined measurement test in T 0118-2007 was used. Before the test, the samples were passed
through a 0.5 mm sieve to prepare three specimens, in which the water contents were
controlled at the liquid limit (point a), slightly greater than the plastic limit (point c) and the
intermediate state (point b), respectively. A cone with a mass of 100 g was used in the test,
where the cone penetration depth of point a was (20 ± 0.2) mm, and the cone penetration
depth of point c was less than 5 mm. Based on the test results, the cone penetration depth
versus water content referring to points a, b, and c could be drawn on double logarithmic
coordinates. Points (a, b and c) had to be in a straight line. Otherwise, they had to be
adjusted to a hyperbola hp-wL to obtain the corrected direct line (ad). The liquid limit
corresponded to the penetration depth of 20 mm, and the plastic limit was determined
according to the double curve specified in the specification. The process is briefly presented
in Figure 4.
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(3) CBR test
The specimens were prepared by the same forming method as the compaction test.

For each proportion, the specimens were molded in the state of maximum dry density
and optimum water content. After immersion for 96 h, the immersion height and water
absorption mass were measured, and then a CXY-128B pavement material strength tester
was used for testing and automatically recording the rod penetration depth and correspond-
ing data. Thus, the corresponding testing values when penetrated at 2.5 mm and 5.0 mm
were obtained.
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2.2.2. Mechanical Properties and Deformation Stability of Soils

In order to evaluate the mechanical properties and stability of SSL, static and dynamic
tests were carried out and the volume stability test was also conducted for the deformation
stability of SSL. In addition, considering that a small amount of cement has been used to
improve the strength and stability of soil in many studies [27–29], this paper also carried
out the laboratory test of SSL incorporating 2% cement (i.e., SSLC).

(1) Static triaxial test
The static triaxial test is usually adopted to evaluate internal friction and cohesion.

The shear strength values of soil, SSL, and SSLC could be measured by the static triaxial
test. Based on the optimal water content and maximum dry density, the specimens with
a diameter of 39.1 mm and a height of 80 mm were prepared by simulating the reality
with the compactness of 96%. In this study, the TKA-TTS-1 full-automatic triaxial appa-
ratus shown in Figure 5a was selected, and the confining pressure was set as 50, 100, and
150 kPa, with a longitudinal loading speed of 0.02 mm/min. When the failure or longitudi-
nal deformation reached 5%, the static triaxial test would stop, and the stress-strain curve
could be drawn. Based on the limit equilibrium method, the cohesion (c) and friction angle
(ϕ) could be solved.
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(2) Dynamic modulus test
In this study, the LFTD1821 dynamic triaxial testing machine was used for the dy-

namic modulus test according to the Chinese specification (GB/T 50123-2019), as shown in
Figure 5b. The dynamic modulus test is commonly used to evaluate the dynamic character-
istics of soil materials [30,31]. The specimen size was the same as that of the static triaxial
test, and the specimens were also prepared with a compactness of 96%. The consolidation
was completed at the coefficient 1.1. Sinusoidal cyclic loading with a frequency of 1 Hz
at the confining pressure of 100 kPa was applied. The selected parameters frequency and
confining pressure are the most commonly used, and closest to the engineering situation.
In order to obtain the deformation response of the specimen under different dynamic
pressures, the longitudinal deviatoric stress was continuously increased from small to
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large (i.e., varying from 5 kPa to 350 kPa, at the amplitude of 5~50 kPa). Ten cycles were
performed for each deviatoric stress state. The stress-strain curve data in the last cycle was
extracted for calculation of the dynamic modulus.

(3) Volume stability test
For SL, the volume stability is the most critical factor to determine the engineering

application. According to the requirements of the Chinese specification (GB/T24175-2009),
the water immersion expansion rate test was carried out to measure the volume change of
SL, SSL, and SSLC after immersion. The soil specimens were prepared according to the
particle size requirements and formed by heavy compaction. Referring to the immersion
conditions of the CBR test, the specimens were put into a thermostatic water bath and the
data recorded. The water temperature was then kept at 90 ± 3 ◦C for 6 h and afterwards
heating stopped. Data after 18 h (the next day) was recorded before heating. The above
process was repeated and the final data was recorded after 10 d, in which the volume
change during the process could be obtained. The details of the volume stability test are
shown in Figure 5c.

2.2.3. Environmental Impact Assessment Methods

(1) Composition analysis of infiltration fluid
The SL used for subgrade soil filling has low activity and fewer adverse reactions and

emissions; however, the biggest hidden danger is the potential pollution of infiltration fluid
in the subgrade. According to the Chinese specification (GB 5085.3-2007), the composi-
tion analysis of infiltration fluid was carried out to measure copper, zinc, cadmium, lead,
chromium, hexavalent chromium, mercury, barium, nickel, arsenic and selenium [32]. In
accordance with the Chinese specification (HJ/T 298), after the samples were treated, the
contents of relevant elements were measured using a GGX-810 atomic absorption spec-
trophotometer, an AFS-8520 atomic fluorescence spectrophotometer and a T6 ultraviolet
visible spectrophotometer, respectively. Table 1 lists the specific determination methods
and standards.

Table 1. The specific determination standards and instruments in the composition analysis of
infiltration fluid.

No. Element Standard Instrument Detection limit

1 Cadmium
HJ 787-2016 GGX-810

0.9 µg/L
2 Lead 0.6 µg/L
3 Zinc HJ 786-2016 GGX-810 0.06 mg/L
4 Arsenic

HJ 702-2014 AFS-8520
0.10 µg/L

5 Mercury 0.02 µg/L
6 Selenium 0.10 µg/L
7 Copper

HJ 751-2015 GGX-810
0.02 mg/L

8 Nickel 0.03 mg/L
9 Total chromium HJ 749-2015 GGX-810 0.03 mg/L
10 Hexavalent chromium GB/T 15555.4-1995 T6 0.004 mg/L
11 Barium GB 5085.3-2007 GGX-810 0.1 mg/L

(2) Permeability test
Permeability evaluation is an important indicator for the application of industrial solid

waste in the subgrade. According to the Chinese specification, the permeability test was
carried out by using T 0130-2007. The test water was degassed with the boiling method
before the test, and the specimens were prepared using a circular knife with an inner
diameter of 61.8 mm and a height of 40 mm. Considering the actual engineering situation,
the variable head permeability test was conducted on the specimens with the compactness
of 96% at the room temperature of 20 ◦C.
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3. Results and Discussion
3.1. Determination of Optimum Proportion (SL/S) between SL and Intact Soil
3.1.1. Compaction Test

Figure 6 shows the compaction curves of intact soil (S) and SSL with various propor-
tions of SL/S for two kinds of soil samples (i.e., S1 and S2). From Figure 6, the maximum
dry density of SSL with S1 was 2.14–2.45 g/cm3, and the maximum dry density of SSL
with S2 was 2.10–2.35 g/cm3, displaying an increasing trend with increasing SL content
(i.e., from 30% to 70%). The optimum water content of SSL with S1 was 9.9~10.9%, and
the optimum water content of SSL with S2 was 8.7~10.2%, showing a changing trend
opposite to the maximum dry density. This phenomenon was closely related to the physical
properties of SL. The specific gravity density of SL was 3.36, which was much higher than
2.68 and 2.64 for S1 and S2, respectively. Therefore, the optimum dry density of SSL was
higher than that of intact soil (S). At the same time, as a low cohesion material, the content
of viscous particles in SL was lower, so the optimum water content decreased.
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Greater compaction work is required during construction, especially for high-strength
SL. A subgrade filler with higher SL content requires more energy consumption. Therefore,
selecting the optimum proportion of SSL is of great significance for engineering applications.

3.1.2. Liquid-Plastic Limit Combined Measurement Test

Table 2 shows the results of the Atterberg limits test for two kinds of soil samples
(i.e., S1 and S2) mixed with SL. It was observed that with the addition of SL, the liquid-
plastic limit of the test soil specimen decreased. Due to the greater drop in the liquid
limit, the plasticity index also decreased. This phenomenon can also be attributed to the
reduction of the clay particle content. Furthermore, SL can contain a small number of active
components, and the potential chemical reaction can also lead to a change in the Atterberg
limit value; however, this was ignored because the SL used in this study had low activity.
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Table 2. Limit water content of soil mixed with different SL contents.

Sample Type SL Content (%) Liquid Limit Water
Content (%)

Plastic Limit Water
Content (%) Plasticity Index

S1

0 43.7 31.5 12.2
30 38.1 26.5 11.6
50 36.0 25.2 10.8
70 25.2 19.1 6.1

S2

0 59.6 27.7 31.9
30 43.7 26.7 17.0
50 34.4 24.9 9.4
70 29.3 20.0 9.3

In this study, S1 was silty clay and S2 contained high liquid limit clay. At 0% SL
content, the liquid limit was 43.7%~59.6%, and the plasticity index 12.2% and 31.9%. The
high plasticity index means that the water sensitivity was low, but the water stability of soil
with a higher liquid limit was poor, which could also lead to poor compactness of subgrade
filler. Compaction during the engineering construction could be difficult, resulting in some
problems with later shrinkage and deformation. Therefore, the addition of SL had an
obvious improvement effect on the liquid and plastic limits of S1 and S2. With the increase
in the amount of SL, the plasticity index of the test soils S1 and S2 decreased, as shown in
Figure 7.
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3.1.3. CBR Test

The CBR values of the test soils (S1 and S2) mixed with SL after 96 h-immersion
are shown in Figure 8. From Figure 8, it can be seen that the CBR values of the test soil
specimens were 15%~60%. According to the requirements of the Chinese specifications on
subgrade design, the roadbed on expressways and Class I roads is greater than 8%, that on
Class II roads is 6%, and that on Class III and IV roads is 5%. The CBR values of the test soil
specimens (S1 and S2) before improvement were 5% and 22%, respectively, which have a
certain bearing capacity, but the water stability was poor. After adding SL, the CBR values
of the test soil improved significantly, and the water absorption gradually reduced, which
ensures the strength and stability of the test soil used as roadbed for high-grade roads,
and the embankment and subgrade could also meet requirements. A higher CBR value
means a higher bearing capacity. Therefore, soil mixed at a proportion of 50% SL was the
best choice.
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The CBR of the test soil mainly came from materials and structures, and there was
little hydration of active substances. With the addition of SL, the CBR of the improved soil
SSL first increased and then decreased due to its structural composition. The addition of SL
makes the soil and SL form a reliable and stable structure. However, with excessive SL, this
balance is broken, leading to a decrease in strength and the “inflection point”, as shown
in Figure 8a. In addition, it was observed that with the increase of compactness, the CBR
value also increased, and the water absorption and expansibility decreased, making the
subgrade structure more stable. From Figure 8b, it can be seen that the swelling capacity
decreased with increasing steel slag content.

To summarize, the compaction characteristics, Atterberg limit value and CBR values
showed that the improved soil mixed with SL (i.e., SSL) performed well, especially the
SSL with 50% SL which had the highest CBR strength, and can solve the potential stability
problems caused by the high liquid limit of intact soil. Considering the economic and
compaction characteristics, the improved soil mixed with 50% SL also had the characteristics
of a high utilization rate of SL, which was selected for the following study.

3.2. Mechanical Properties and Deformation Stability of Soils
3.2.1. Static Triaxial Test

The stress-strain curves of intact soil (S), SSL and SSLC under the confining pressure
of 50, 100, and 200 MPa are plotted in Figure 9. As shown in Figure 9, with increased
deformation, longitudinal stress also gradually increased, while the slope of the stress-
strain curve gradually decreased with increased deformation. When the stress-strain curve
reached the peak value, it remained unchanged or decreased. The peak strain in the
stress-strain curve was selected as the failure limit. The failure strain values of the test soil
specimens were between 2.5% and 4%, which conforms to the normal failure law of soil.
Figure 9 shows that the failure deviatoric stress corresponding to the failure strain was:
SSLC > SSL > S.

Based on the Lambe plane (s,t) method, the cohesion (c) and friction angle (ϕ) of the
test soil were calculated, as shown in Figure 10 and Table 3. The cohesion and friction angle
of intact soil were 42.24 kPa and 25.27◦, respectively, consistent with previous research [33].
The contribution of cohesion to shear strength was higher, especially under low stress.
With the addition of SL, the shear strength of the soil improved as a whole. Under the
same stress condition, the shear strength of the improved soil significantly increased by
1.75%~2.05%, which was mainly attributed to the increase of cohesion and friction angle
caused by the addition of SL. Compared with the intact soil, the cohesion and friction angle
of SSL increased by 20% and 66%, respectively, especially under high stress. The addition
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of cement further improved SSL’s strength, cohesion and friction angle, especially cohesion
which was 1.5 times higher than that of SSL alone, highlighting the role of cement.
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Table 3. Strength parameters of test soil.

Strength Parameters S2 SSL SSLC

Cohesion (c) (kPa) 42.24 50.77 128.06
friction angle (ϕ) (◦) 25.27 42.14 48.5

The strength parameters of the test soil were used to estimate the strength and stability
of the subgrade for practical engineering. The results showed that SSL performed well and
improved the intact soil. The addition of cement further improved the strength of SSL. For
this reason, cement, lime, etc. are often used as soil reinforcements to improve poor soil.
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The strength of the improved soil even meet the requirements of a road base, which would
be another road application for SSL.

3.2.2. Dynamic Modulus Test

Figure 11a shows the dynamic stress-strain curves of intact soil (S), SSL and SSLC. It
can be seen that the stress increased with increasing strain, and the slope of these curves
gradually decreased, showing that the dynamic modulus decreased. Among the test soil
specimens, the dynamic modulus of SSLC was the largest, followed by SSL, and finally S.
The dynamic modulus test results were consistent with the above static triaxial strength
and bearing capacity results. The point line diagram of the dynamic modulus curve was
obtained using the dynamic stress-strain curves, as shown in Figure 11b. Unlike the trend
seen for the stress-strain curve, the dynamic modulus decreased with increased axial strain,
mainly because increased deformation leads to plastic reinforcement and elastic attenuation,
so dynamic modulus decreases.
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Figure 11. The dynamic modulus test results: (a) dynamic stress-strain curve; (b) dynamic re-bound
modulus curve.

Dynamic modulus is an important parameter to evaluate the subgrade deformation
in construction. In order to better analyze the dynamic modulus test results, Equation (2)
converted from Equation (1) (Hardin-Drnevich model) was used to fit the curve of dynamic
modulus versus strain:

σd =
εd

A + Bεd
, (1)

Ed =
1

Aεd + B
, (2)

in which A and B are fitting parameters. It is worth noting that when the longitudinal
strain (εd) is close to 0, the dynamic modulus Ed is equal to 1/B, which is usually defined as
the maximum dynamic modulus Edmax. According to Equation (1), the values of A, B and
Edmax of the test soil are calculated and listed in Table 4. From Table 4, the parameters A
and B of intact soil were the highest, and A and B of SSLC were the lowest. The maximum
dynamic moduli of the test soil (S, SSL and SSLC) were 118.20 MPa, 140.85 MPa, and
255.75 MPa, respectively, where the intact soil was the lowest, SSL was intermediate, and
SSLC was the highest. These results showed the good dynamic modulus characteristics of
the improved soils with SL and cement, including SSL and SSLC.
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Table 4. The fitting parameters of dynamic modulus.

Types
Parameters

A B R2 Emax (MPa)

S 4.5394 0.00846 97.89 118.20
SSL 3.4846 0.00710 98.48 140.85

SSLC 1.6921 0.00391 98.74 255.75

3.2.3. Volume Stability Test

The volume stability test results of SL, SSL, and SSLC are shown in Figure 12. For SL,
SSL and SSLC, the water immersion expansion rates were 1.51%, 0.87% and 0.14%, which
meet the requirements of less than 2% in the Chinese specification (GB/T 24175-2009),
suggesting they all have good volume stability. By comparison, it can be seen that the
volume expansion rate of SSL was 42% lower than that of SL, and the volume expansion
rate of SSLC was 91% lower than that of SL. Therefore, it was obvious that the reduction of
the volume expansion rate led to a good stability control effect. For practical engineering
applications, SL with a shorter aging time or slightly greater expansibility can be reduced
by adding intact soil and cement to improve its volume stability.
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3.3. Environmental Impact Assessment Methods
3.3.1. Composition Analysis of Infiltration Fluid

As a concomitant of steelmaking, SL contains a variety of metal elements, leading
to some concerns about whether its infiltration fluid will pollute surrounding soil and
groundwater. An environmental assessment of SL thus contributes to encouraging the
use of SL in China. This section aims to evaluate the influence of infiltration fluid on
nearby surface water and groundwater after the subgrade is covered with water. The
composition analysis results of infiltration fluid for these test soils are listed in Table 5.
From the 11 trace elements shown in Table 5, for SL, the contents of arsenic, selenium, and
hexavalent chromium were 0.62 µg/L, 0.54 µg/L and 0.009 mg/L, respectively, and the
contents of other trace elements were lower than the detection limits. When the soil was
mixed with cement (i.e., SSLC samples), the concentrations of these three trace elements
decreased by 0.08 µg/L, 0.07 µg/L and 0.001 mg/L, which was mainly caused by the
reduction of SL content in the improved soil. It is worth noting that all trace elements in
SSLC were lower than the detection limits, reflecting the consolidation effect of cement on
trace elements. However, the test results were very vulnerable to the influence of material
homogeneity. Uneven mixing of cement may cause degradation of the solidification effect
of trace elements, but this positive effect cannot be ignored.
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Table 5. The composition analysis results of infiltration fluid.

Element
Samples Surface

Water Ground Water Detection
Limit

SL SSL SSLC Class I Class I Class II Class III

Cadmium <0.9 <0.9 <0.9 1 0.1 1 5 0.9 µg/L
Lead <0.6 <0.6 <0.6 10 5 5 10 0.6 µg/L
Zinc <0.05 <0.05 <0.05 0.05 0.05 0.5 1 0.06 mg/L

Arsenic <0.10 0.62 0.54 50 1 1 10 0.10 µg/L
Mercury <0.02 <0.02 <0.02 0.05 0.1 0.1 1 0.02 µg/L
Selenium <0.10 0.54 0.46 10 10 10 10 0.10 µg/L
Copper <0.01 <0.01 <0.01 0.01 0.01 0.05 1 0.02 mg/L
Nickel <0.03 <0.03 <0.03 - 0.002 0.002 0.02 0.03 mg/L

Total chromium <0.03 <0.03 <0.03 0.01 0.005 0.01 0.05 0.03 mg/L
Hexavalent
chromium <0.004 0.009 0.008 0.01 0.005 0.01 0.05 0.004 mg/L

Barium <0.1 <0.1 <0.1 0.7 0.01 0.1 0.7 0.1 mg/L

According to the test results in Table 5, all trace elements in the test soils could meet
the class I standard of surface water (GB 3838-2022), indicating that the infiltration fluid
of subgrade soil mixed with SL meets the environmental requirements. The addition of
SL had no impact on the use of common domestic water for drinking and bathing. The
standard for groundwater is strict, and the requirements for barium, cadmium, chromium,
and nickel in the class I standard are much higher than those for surface water. In general,
except for nickel, the infiltration fluid of all test soils conformed to the class II standard
for groundwater (GB/T 14848-2017), that is, there was no impact on centralized drinking,
industrial and agricultural production, breeding, etc. Therefore, based on the infiltration
fluid content, SSL has the potential to be a green subgrade filler. In order to ensure full
safety, edge wrapping can be incorporated with SL in the subgrade.

3.3.2. Permeability Test

Figure 13 shows the permeability coefficients of the test soils. The permeability
coefficient of intact soil was 6.9 × 10−8 cm/s–9.69 × 10−8 cm/s, and was within the range
of the permeability coefficient of typical clay. For SSL, its permeability coefficient was much
higher than that of intact soil, with a value of 4.25 × 10−4 cm/s–1 × 10−2 cm/s, similar to
the permeability coefficient of silty sand and medium sand. Therefore, SL can also be used
as a permeable structure and material. Considering the potential trace elements of SL, a
lower permeability coefficient means safety from dangerous elements. Therefore, silty clay
and clay are often used for edge wrapping of contaminated subgrade filler. As shown in
Figure 13, the addition of 50% SL increased the permeability coefficient of soil, and the test
soil increased by 743%, consistent with the permeability coefficient range of clay and silty
clay. Therefore, the permeability of potentially polluting elements can still be controlled;
especially after adding 2% cement, the permeability coefficient of the test soil was close to
1.72 × 10−7 cm/s. In addition, the permeability coefficient of the test soils decreased with
increasing compactness. For practical engineering applications, permeability can also be
reduced by increasing compactness [34,35].
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4. Conclusions

In this study, the properties and effects of improved soil mixed with SL were evaluated
based on physical and mechanical aspects and the environmental impact. The following
conclusions were obtained:

(1) The conventional physical properties of intact soil were significantly affected by
SL. Increased SL content led to increased maximum dry soil density, while optimum
water content decreased. The liquid-plastic limit of SSL was lower than intact soil, and its
plasticity index was also reduced.

(2) The addition of SL improved the CBR value of intact soil after 96 h-immersion. The
CBR value of the improved soils increased first and then decreased, reaching the maximum
CBR value of 60% at 50% SL, meeting the requirement for Class I expressway.

(3) Based on the compaction, Atterberg and CBR tests, the subgrade soil mixed with
50% SL had the highest CBR strength, good compaction characteristics and better stability.
It also had the characteristics of a high utilization rate of SL.

(4) Strength parameters such as cohesion and friction angle of SSL under the opti-
mal proportion significantly improved. The addition of cement further improved the
soil strength.

(5) The dynamic modulus of the test soil improved by SL obviously increased, and the
dynamic modulus of the test soil after adding cement was even more obvious, consistent
with the static strength results.

(6) The pollution trace elements of SSL and SSLC were lower than that of SL, and
could meet the class I standard of surface water and class II standard of ground water,
which proves that SSL has the potential to be a green subgrade filler.

In conclusion, the physical and mechanical properties of SSL were better than intact
soil, and the environmental pollution was low with no potential impact. The primary
problem limiting the application of SL is its expansibility. In this paper, SL was used after
aging for six months. Unlike other road structures, subgrade has stronger deformation
compatibility, which is the focus of our subsequent studies.
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