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Abstract: Structural design is a complicated decision-making process involving multiple qualitative
and quantitative factors. Currently, most automated design methods consider only quantitative
objectives and constraints, ignoring the qualitative design information that is difficult define mathe-
matically, such as the user preference for structural shapes. This limits the functionality and efficiency
of such design methods. In this study, a design method named STSA-P is proposed for plane trusses
to incorporate user preference into the automatic design process. Two main problems are addressed,
i.e., how to quantify user preference information and how to coordinate it with other quantitative
design objectives. A prediction model of user preference is developed for the first problem by gener-
ating the data set and selecting an appropriate machine learning (ML) algorithm. Specifically, a set of
truss features quantitatively representing the structural shapes are identified for the truss sample
population. Furthermore, an interactive system is developed for collecting user evaluation informa-
tion as data labels. Strategies for reducing user fatigue are also considered during the evaluation
process. A set of numerical experiments are conducted to select the suitable ML algorithm. Regarding
the second problem, the physical programming method is modified to construct a new aggregate
function which effectively coordinates user preference with other design objectives. A cost function
is designed by considering the design constraints. On this basis, the prediction model is incorporated
into the Structural Topology and Shape Annealing (STSA) method to form the STSA-P method. Two
students are invited to perform a design case using the STSA-P method. It is demonstrated that the
results verify the practicality and validity of the proposed method.

Keywords: structural design; plane truss; prediction model; multi-objective optimization; user
preference; user fatigue

1. Introduction

Computational methods have been widely applied in various aspects of structural
design, including both structural analysis and construction drawings. To further improve
design quality and efficiency, plenty of automated design methods, which focused on
performing conceptual design independently, have been developed in recent years. A
representative one is Structural Topology and Shape Annealing (STSA) [1], which simulates
the truss design process well and has been successfully used in engineering practice [2,3].
However, most automated methods such as STSA consider only quantitative objectives
and constraints that can be defined mathematically, e.g., minimum weight or stress limit.
The ability to analyze qualitative factors reflecting the designer’s intuition, experience,
and preference is limited. One example is the user’s subjective preference for structural
shapes. Thus, the qualitative factors can only be considered by designers, which limits the
functionality and efficiency of the automated design methods. To overcome this limitation,
two main problems are to be solved: first, how to quantify the effects of qualitative design
factors so that they can be considered in computational methods; and second, how to
coordinate different design goals, including both subjective and objective, so that they can
guide the search towards an optimal design.
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This study aims at solving these two problems and proposing an innovative conceptual
design method for plane trusses based on user preference. Note that, in this paper, user
preference means the subjective satisfaction with the design appearance. Considering the
first problem, a prediction model that can quantify user preference is proposed to transform
the qualitative information into a quantifiable objective. Regarding the second problem, a
cost function based on modified physical programming (MPP) is introduced. It coordinates
different design objectives effectively and integrates the prediction model into a multi-
objective optimization procedure (STSA). This paper is organized as follows: Section 2
reviews the related studies on applying user preference and multi-objective optimization
methods. Section 3 gives the main steps to build a prediction model for user preference. The
cost function is described in Section 4. After that, a design example is given to demonstrate
the effectiveness of the proposed method in Section 5. Finally, conclusions are presented in
Section 6.

2. Related Work
2.1. Research on User Design Preference

User design preference is one of the typical qualitative factors. It plays a significant
role in the design process. Considerable studies have been devoted to studying the ef-
fects of user preference, including research on modeling and quantifying the preference
information. In earlier research, user preference was abstracted as some simple rules such
as balance, rhythm, and proportionality [4]. Among these rules, the golden ratio is the
best-known one and has been widely applied in architectural design. In the field of indus-
trial design, the Kansei Engineering method [5,6] is a popular design method that assesses
user preference via questionnaires, interviews, etc., and utilizes the information to meet
the user’s expectations in the product design. This method provides a reference for the
quantitative research of subjective information in other fields.

The research on user preference in structural design can be grossly divided into two
categories according to the application form of the information. Some researchers believe
that the preference information is almost impossible to quantify. Thus, they integrate the
user into the optimization system to replace the fitness function. The preference information
is expressed through the user’s judgments and choices during the optimization process.
Interactive evolutionary computation (IEC) is a typical method of this category, which
combines human subjective evaluation with an evolutionary optimization algorithm [7].
Von Buelow et al. [8,9] performed an interactive design for discrete structures with a genetic
algorithm (GA). During the process, a user can select some preferred solutions in every
generation as the parents for the subsequent generation until the optimal design is achieved.
Muller et al. [10,11] extended this method to the design of rigid frame structures. Other than
GA, other heuristic algorithms were also used. Felkner et al. [12] proposed an interactive
framework for truss design based on the particle swarm optimization (PSO) algorithm.
Within the framework, a user can use NURBS curves to draw the initial design and evaluate
the solutions iteratively through an interface until the final design is completed [12–14].

Other researchers tend to use user preference as fundamental information and quan-
tify it into formulas or models before the search process. Furuta et al. [15] developed
a supporting system for the aesthetic design of dam structures. They used the analytic
hierarchy process (AHP) method to represent the user preference in a fitness function.
Chikata et al. [16] simulated user aesthetic evaluation information in the design of con-
crete retaining walls based on neural networks. For the design of discrete structures, a
remarkable work was conducted by Bailey and Raich [17]. The authors modeled the user
preference based on neural networks and combined it with the GA method for generating
Pareto-optimal designs.

There are some disadvantages to the interactive design research. Firstly, user pref-
erence is not quantified nor modeled, thus the preference information cannot be reused.
Secondly, the lengthy interaction can cause user fatigue problems, which reduce the design
quality and efficiency [18]. By contrast, the quantitative research can avoid these problems.
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But how to ensure the accuracy of the user preference represented by the formulas or
models is still challenging. Therefore, it seems viable to develop a model that can accurately
predict user preference and then incorporate the preference information into the structural
design process.

2.2. Multi-Objective Optimization Methods

The essence of coordinating different design objectives is to solve a multi-objective
optimization problem (MOP) [19]. Inevitable conflicts between different objectives often
make it difficult to find an optimal solution that performs best in all objectives. Thus,
the solution of MOPs is generally a set of compromise solutions, i.e., the so-called Pareto
optimal solutions or non-dominated solutions. There are a variety of methods for solving
MOPs, which can be classified based on different criteria [19–22]. Regarding the number
of solutions when the search process terminates, some methods obtain only one solution,
and these one-solution methods solve the problem mainly through three ways. Firstly, all
objective functions are converted into a single objective function, e.g., the weighted-sum
method and utopia point method. Secondly, the objective functions are optimized one by
one in order of importance, e.g., the hierarchical method [23]. Thirdly, users are allowed
to participate in the search process, e.g., interactive optimization methods [10,12]. The
other methods obtain more than one solution at the end of the search process. These
multi-solution methods are commonly used to provide the Pareto-optimal set (or subset)
for user selection, including not only the classical methods such as the normal boundary
intersection method [24] and the normal constraint method [25], but also the evolutionary
multi-objective optimization methods such as MOGA [26], SPEA [27], and NSGA-II [28].

The difference between the two types of methods is whether the user information
works during the search process. In the multi-solution methods, the user information
works only when the optimization ends, that is, users select a satisfying solution from the
optimal set. This study expects the user information to play a positive role to guide the
search process. Therefore, the one-solution methods are more suitable. However, such
methods have some limitations, including the difficulty in determining parameters and the
sensitivity to the shape or continuity of the Pareto optimal front (objective values of Pareto
optimal set) [19]. Taking the weighted-sum method as an example, it is rather difficult for
users to determine the weighting values that integrate all objectives with different physical
meanings and orders of magnitude, especially when a MOP involves both subjective and
qualitative objectives. Furthermore, it is not possible to obtain the solutions on the non-
convex portion of the Pareto optimal front by the weighted-sum method [29]. To solve this
problem, physical programming (PP) was proposed [30]. Instead of setting the weights, PP
enables users to express their ideas or expectations on each objective in an understandable
and meaningful way. Based on this information, the class functions for all objectives are
built on the same numerical scale. These functions are combined into one function named
the aggregate function. Thus, a MOP is transformed into a single-objective optimization
problem (SOP). More details about PP are described in Section 4.1. Owing to its simplicity
and ability to represent the complete Pareto optimal set [31,32], PP has been applied in
various engineering problems [33,34].

3. User Preference Prediction Model

A suitable machine learning (ML) technique and a valid data set for training and
testing the model are two essential components of developing a prediction model using
artificial intelligence. A data set generally comprises a number of samples with features
and labels. The features, which are often represented as a vector, reflect a set of sample
attributes of concern. The labels generally represent the target in terms of values or
categories. The samples considered in this study are a group of plane truss structures.
Accordingly, the features need to reflect the geometric information, and the labels are
expected to show the user evaluation information. This section presents the steps of
developing a prediction model of user preference for plane truss designs, mainly including
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generating samples, identifying features, obtaining labels while reducing user fatigue, and
selecting an ML technique.

3.1. Generation of Random Samples

The user preference for plane truss shapes is of concern in this study; thus, a diversity
of truss shapes is necessary for the generation of samples. The truss samples are generated
by the STSA method in a search space of 2000-unit length and 1000-unit height. In order to
meet the shape requirement and generate the universal samples, random loadings with
random direction, value, and distribution range are adopted. Figure 1 shows the sample
population with 200 truss structures.

Figure 1. Sample population of truss structures.

3.2. Identification of Truss Features

Visual discrimination is the basis of expressing user preference for truss shapes. Hence,
the selected features are required to reflect the geometric characteristics of truss shapes
clearly. Then, the users can visually discern the difference between truss samples based
on these features. In this study, 26 initial features are defined, and a selection method is
proposed to get a group of effective features that adequately represent the truss shapes.

Each feature is defined as a dimensionless value to reflect one aspect of geometric
shapes. It can be calculated using structural information such as node coordinates. The def-
inition of the features can be as simple as height-span ratio (HSR), as shown in Equation (1).
It can also be as complicated as symmetry rate (SyR), which describes the symmetry of
structures, as defined in Equation (2). Figure 2 illustrates the calculation of symmetry rate.
A truss structure is divided into two parts by the central axis. The overlapping area can
be calculated by folding one part to the other along the central axis. Then, the ratio of
the overlapping area to the maximum area of the two parts can be obtained. It is evident
that the larger the ratio, the higher the similarity between the two parts, and the more
symmetrical the truss structure.

HSR =
hmax

Lspan
, (1)

where hmax = maximum height of truss nodes, Lspan = span of truss structures.

SyR =
So

max(SL, SR)
, (2)
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where So = overlapping area, SL = area on the left side of the central axis, and SR = area on
the right side of the central axis.

Figure 2. Principle of symmetry rate.

To find the effective features, the K-means clustering method [35] is applied to classify
the sample population into nine groups. The classification is based on each truss feature
separately. Note that the value of each feature is normalized to 0–1. In addition, the
average and the standard deviation of the feature value for each group are calculated. A
resulting graph (Figure 3) is plotted as an auxiliary evaluation tool, in which the truss
samples belonging to the same group are collected. The truss features are evaluated one
by one. Three structural designers were invited to participate in the evaluation process.
There are three criteria to select an effective feature. Firstly, visually identifiable similarities
should exist between the truss samples within the same group, whereas visually identifiable
differences should exist between different groups. Secondly, the average for each group
needs to be evenly distributed and the standard deviation needs to be as small as possible.
Thirdly, suggestions from the designers need to be taken into account.

Figure 3. Part of the resulting graph of height-span ratio (HSR).

Taking HSR as an example, Figure 3 shows a part of the resulting graph of the feature.
The maximum height of truss samples gradually decreases from group 1 to group 9, whereas
the samples in the same group have similar heights. On the other hand, the average for
each group is evenly distributed between 0 and 1, and the standard deviation of each
group is small. This indicates the good numerical performance of the feature. Furthermore,
the designers had no objection to the definition of the feature and affirmed its value to
structural design. Therefore, HSR is identified as an effective feature.

After evaluating all the initial features, nine effective features are identified and
included in a feature vector, summarized in Table 1.
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Table 1. Feature vector.

Basic Size Complexity Mid-Span
Width Flatness Symmetry

Height-Span
Ratio

Number of
Members Truss Depth

Top Chord
Height

Differences
Symmetry Rate

Mid-span Clear
Height

Average Length
of Web Members

Dispersion of
Nodes

Bottom Chord
Height

Differences

These features describe five geometric attributes of truss shapes (basic size, complexity,
mid-span width, flatness, and symmetry), in which Number of Members (NM), Mid-span
Clear Height (MCH), and Average Length of Web Members (AL) can be easily calculated
from the basic structural information. Besides, other effective features are expressed by
Equations (3)–(5).

TD =

nt
∑

i=1
htbi +

nb
∑

j=1
hbtj

nt + nb
· 1

Lspan
, (3)

where nt = number of top chord nodes, nb = number of bottom chord nodes, htbi = vertical
distance from the ith top chord node to the bottom chord, and hbtj = vertical distance from
the jth bottom chord node to the top chord.

Truss Depth (TD) can be calculated by using Equation (3), which reflects the average
width of a truss sample. Lspan is introduced in the equation to eliminate the size effect.
Dispersion of Nodes (DN, Equation (4)) presents the maximum deviation from the average
height among all the top and bottom nodes, which reflects the local width of a truss sample.
Note that fixed nodes at both ends are excluded from the calculation.

DN = max

 max
1≤i≤nt

∣∣∣∣∣∣∣∣∣hti −

nt
∑

i=1
hti +

nb
∑

j=1
hbj

nt + nb

∣∣∣∣∣∣∣∣∣, max
1≤j≤nb

∣∣∣∣∣∣∣∣∣hbj −

nt
∑

i=1
hti +

nb
∑

j=1
hbj

nt + nb

∣∣∣∣∣∣∣∣∣

 · 1
Lspan

, (4)

where hti = height of the ith top chord node, and hbj = height of the jth bottom chord node.

THD =

(
nt

∑
i=2
|hti − hti−1|+ ht1 + htnt

)
· 1

Lspan
, (5)

Top Chord Height Differences (THD, Equation (5)) sums the absolute value of the
difference in heights between two adjacent nodes (including the two fixed nodes) along
the top chord. This feature reflects the flatness of the top chord. Bottom Chord Height
Differences (BHD) is defined similarly.

3.3. Strategies for Reducing User Fatigue

Getting the evaluation information of user preference is an interactive process. It is
well-known that user fatigue is a huge obstacle to obtaining effective information during
this evaluation process. To solve such a problem, two measures are taken, i.e., limiting the
number of interactions and reducing the interaction complexity. This section focuses on the
former measure and the latter one will be introduced in Section 3.4.

Previous studies have demonstrated that users prefer to group the samples based on
their similarity before evaluation [36,37]. Therefore, the user evaluation method “choose
first, evaluate later” is proposed. This means that the users first choose a preferred group
of samples. Then, they only evaluate the samples in this group. This effectively reduces
the number of interactions. Thus, it is vital to find an appropriate clustering method
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to group the truss sample population before the user evaluation. This study selects six
specific clustering methods as candidates, including K-means, DBSCAN [38], CLIQUE [39],
K-medoids [40], SOM [41], and CURE [42] methods. These methods are evaluated from
two perspectives, including subjective consistency and numerical performance.

To detect the consistency of the clustering results with user judgment, a subjective
evaluation experiment is conducted. Seven students of civil engineering or computer
science were invited to compare the truss samples in pairs and rate them based on their
similarities. The score varies from 1 to 5. A value of 5 means that the two samples are
highly similar, whereas 1 means that they are completely different. The truss samples are
randomly selected from the sample population. In total, five random groups (numbered
from 1 to 5) are generated, each of which contains 20 samples. Each student needs to
evaluate all the groups, in which the samples are presented in the form of pictures, as
shown in Figure 4. The final score of each sample pair is calculated from the average of the
seven students’ scores.

Figure 4. Picture of a truss sample.

After the experiment, the candidate methods are used to cluster the truss samples of
each random group. A rating rule is presented to evaluate the clustering results according
to the experimental results. Assigning a similar sample pair with a higher score to the same
group will result in a better reward, e.g., a clustering method will get 5 points if it assigns a
5-score sample pair to the same group; otherwise it will lose 5 points. Based on this rule,
the grade of each candidate method can be calculated. The higher the grade, the better
the performance.

The evaluation results are summarized in Table 2. The SOM method achieves the
highest grade in groups 1, 3, 4, and 5, whereas the K-means method obtains the highest
grade in group 2. By contrast, the CLIQUE method shows the worst performance, with the
lowest grades in groups 2, 3, and 4. Generally speaking, the SOM method consistencies
most consistent with user judgment.

Table 2. Evaluation results based on the rating rule.

Random
Group CLIQUE CURE DBSCAN K-Means K-Medoids SOM

1 611 642 642 635 599 666
2 594 619 619 669 629 656
3 550 639 639 650 627 653
4 632 662 666 677 650 681
5 429 415 480 504 497 510

Regarding the numerical performance, the existing indexes for evaluating clustering
results are generally based on two criteria, i.e., Compactness and Separation [43]. Few
indexes consider Uniformity, which measures the consistency of the sample size for each
cluster. Uniformity is an important evaluation criterion because a large difference in the



Appl. Sci. 2023, 13, 1543 8 of 24

sample size between clusters can lead to some problems: for example, too little information
will be obtained from a small cluster, whereas user fatigue can be caused by a large cluster.
Therefore, a new index, named the Coefficient of Variation and Maximum of Manhattan
Distance (CV-MMD), is proposed to evaluate the performance of the candidate methods. It
can be computed as follows:

CV −MMD = CV ·MMD, (6)

CV =
σ(n)

n
, (7)

MMD = max
k∈N

[
1
nk

nk

∑
i=1

dMd(xk,i, ck)

]
, (8)

where s(n) = standard deviation of the number of samples in each cluster, n = average of
the number of samples in each cluster, nk = number of samples in the kth cluster, ck = center
of the kth cluster, xk,i = the ith sample in the kth cluster, and dMd(x,y) = Manhattan distance
between x and y.

The CV-MMD index consists of two parts. CV calculates the coefficient of variation of
the sample size to measure the difference in sample size between clusters, whereas MMD
calculates the maximum average Manhattan distance of all clusters to reflect the compact-
ness of clustering results. The reason for using the Manhattan distance instead of the more
commonly used Euclidean distance is that the latter is easier to fail in multi-dimensional
space. Note that a lower value means better performance for both CV and MMD.

The truss sample population is divided into nine groups by each candidate method.
Table 3. summarizes the results evaluated by the CV-MMD index.

Table 3. Evaluation results based on CV-MMD index.

Index CLIQUE CURE DBSCAN K-Means K-Medoids SOM

CV-MMD 4.1216 1.1881 4.6888 0.2952 0.3092 0.2675
CV 2.3049 1.3264 2.6536 0.3264 0.3080 0.2922

MMD 1.7882 1.5759 1.7670 0.9043 1.0040 0.9153

The SOM method achieves the minimum value of the CV-MMD index, which indicates
the best numerical performance. The K-means and K-medoids methods also have relatively
good performance in the CV-MMD index. Regarding the performance of sub-indexes, the
SOM method achieves the minimum CV value and performs best in Uniformity, whereas
the K-means method performs best in Compactness with a minimum MMD value. In
contrast, the CLIQUE and DBSCAN methods get large CV values, which implies that the
clustering results are unreasonable. This is most likely relates to the algorithm principles.
Both CLIQUE and DBSCAN methods are density-based. In these methods, samples in two
adjacent regions are gathered to the same cluster if t numbers of samples in the two regions
meet the pre-set quantity requirement. This can easily lead to the generation of some small
clusters and super clusters. Therefore, these methods’ performance in both Compactness
and Uniformity is poor.

Considering the results of both the two evaluation measures, the SOM method has an
outstanding performance. Hence, it is selected as the effective clustering method for the
subsequent sections.

3.4. Collection of User Preference Information

To collect the user preference information effectively and reduce the interaction com-
plexity, a user preference interaction system written in the C# programming language is
designed (Figure 5).



Appl. Sci. 2023, 13, 1543 9 of 24

Figure 5. Screenshots of the interaction system: (a) Selection interface; (b) Evaluation interface.

Corresponding to the principle of “choose first, evaluate later”, the main user interfaces
of the system includes both the Selection interface and the Evaluation interface. In the
Selection interface (Figure 5a), users can preview the clustering results of the SOM method,
where the image can be zoomed or dragged. After that, users need to select a preferred
group. Then, it is moved to the Evaluation interface (Figure 5b), in which users need
to evaluate every sample in the selected group. Three simple evaluation options, i.e.,
“Preferred”, “Acceptable” and “Disliked”, which correspond to 1, 2, and 3 points, are set.
Users can choose an appropriate option for the current sample. For reference, all the truss
samples in the group are presented in the left window. To ensure the effectiveness of
the evaluation information, the current sample is presented in a random order, and some
samples will be presented twice. The two evaluation results for the repeated sample will be
checked for consistency to judge the validity of the evaluation information.

When the interaction process ends, a training group with labels is automatically
output. Furthermore, the proportion of the importance of each truss feature is calcu-
lated by the permutation importance method [44]. It is also output to analyze the user
preference information.

Five students (numbered from 1 to 5) were invited to participate in the interaction
process, which was divided into two phases. In the first phase, each student selected a
preferred group and evaluated the samples via the interactive system. Then, another 30
truss samples, similar to the samples in the preferred group, were generated randomly and
evaluated by the same student to form a validation group. Furthermore, the range of their
feature values needed to be consistent with the ones in the preferred group, which is called
Permissible Feature Range (PFR). In the second phase, each student needed to evaluate the
remaining eight groups and their pertinent validation groups. Finally, a total of 90 training
and validation groups were obtained.

3.5. Selection of Machine Learning (ML) Techniques

To develop the prediction models of preference, two classical ML techniques, i.e., back
propagation neural network (BPNN) and random forest (RF), are used. They are briefly
explained in the following.

BPNN is a common type of artificial neural network. The basic network structure of
BPNN includes an input layer, one or more hidden layers, and an output layer. Each layer
contains several neurons that connect to neurons in the adjacent layers with connection
weights. During the training phase, the input data is presented to the input neurons. The
signals received by each neuron are processed through a weighted sum and converted
as an output by an activation function. Then, the output is transmitted to the neurons
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in the adjacent layer. This process continues until the outputs are produced through the
output neurons [45]. BPNN uses a function to gradually reduce the error between the actual
outputs and the target outputs (labels in this study) by adjusting the connection weights.

RF [46] is an ensemble learning method composed of a number of decision trees. Each
tree is constructed based on a subset of features that are randomly selected and a data
subset that is randomly selected from the training data set. The output of RF is the majority
or the average of the results of all decision trees. RF shows effective and robust performance
since it can overcome the overfitting problem of decision trees.

Both BPNN and RF use the 45 training groups to generate the prediction models. In
order to compare the performance between the two methods, two numerical experiments
are conducted. In the first one, the reappearance ability of the methods is evaluated. The
training groups are employed as input again for the corresponding prediction models to get
the outputs, which are continuous values ranging from 1 to 3. On the one hand, the mean
square error (MSE) between the predicted and targeted outputs is calculated (Equation (9)).
On the other hand, the outputs are rounded to integers and then compared with the labels
to obtain the reappearance accuracy (RA, Equation (10)).

MSE =

N
∑

i=1
(yi − ŷi)

2

N
, (9)

RA =
nc

N
× 100%, (10)

where N = number of samples, yi = targeted value of the ith sample, ŷi = predicted value of
the ith sample, and nc = number of correct predictions.

In the second experiment, the validation groups are used as input to evaluate the
prediction ability of the methods. Besides the MSE index, prediction accuracy (PA), which
has a similar definition to RA, and preference accuracy (PreA, Equation (11)) are also
calculated. PreA focuses on the model’s ability to correctly identify the “Preferred” and
“Acceptable” samples for users, which is conducive to generating satisfactory structures.

PreA =
npc

np
× 100%, (11)

where np = number of samples with “Preferred” or “Acceptable” labels, and npc = number
of samples that are correctly predicted.

Based on the evaluation information provided by the students, the results of the
indexes are summarized for each experiment. Taking the No.2 student as an example,
Figure 6 illustrates the index values calculated with the nine training groups in the first
experiment, whereas Figure 7 depicts the results based on the nine validation groups in the
second experiment.

Figure 6 compares the reappearance ability of the two methods based on the No. 2
student’s evaluation information. It is observed in Figure 6a that the PA values of the RF
models are not less than those of the BPNN models in eight groups. The BPNN model
achieves a higher PA value only in Group 5. In Figure 6b, obvious differences exist in the
MSE values between the two methods for Group 2 and Group 5. This is consistent with
the performance of the two methods indicated by the RA index. The MSE values of the
BPNN models are generally greater than the ones of the RF models. Figure 7 displays
the evaluation results of the prediction ability of the two methods. As seen in Figure 7a,
RF models have better performance indicated by higher values of the PA index for seven
groups. Similarly, the RF models are advantageous over the BPNN models due to the lower
MSE values for all nine groups (Figure 7b). Regarding the PreA index, the RF models also
obtain better results than the BPNN models. The RF models obtain a higher PreA value in
one more group than the BPNN models (Figure 7c).
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Figure 6. Index results of the No. 2 student in the first experiment: (a) RA; (b) MSE.

Figure 7. Index results of the No. 2 student in the second experiment: (a) PA; (b) MSE; (c) PreA.

To show the evaluation results comprehensively, the average index values of all nine
groups are calculated for each student. The results of the two experiments are summarized
in Tables 4 and 5. The RF models are overall advantageous over the BPNN models in all
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indexes due to higher RA, PA, and PreA values and lower MSE values. This indicates
better reappearance and prediction abilities. Besides, the parameters of the RF models
are more general than those of the BPNN models. Nearly all the RF models use the same
parameters, whereas the parameters have to be adjusted for each BPNN model. Therefore,
RF is selected in this study.

Table 4. Evaluation results of BPNN and RF models in the first experiment.

Student No.
BPNN RF

MSE RA MSE RA

1 0.0698 93.84% 0.0571 96.48%
2 0.0807 92.30% 0.0540 95.59%
3 0.0796 94.67% 0.0434 98.10%
4 0.0774 93.07% 0.0477 97.11%
5 0.0691 93.75% 0.0466 98.05%

Table 5. Evaluation results of BPNN and RF models in the second experiment.

Student No.
BPNN RF

MSE PA PreA MSE PA PreA

1 0.3644 62.96% 58.61% 0.2141 74.44% 69.25%
2 0.4986 64.07% 61.68% 0.2303 71.11% 63.39%
3 0.4544 66.67% 59.95% 0.2586 71.48% 69.54%
4 0.4064 62.22% 60.38% 0.2640 71.85% 68.16%
5 0.4628 62.59% 60.82% 0.3366 69.26% 68.47%

In addition, a redundant feature elimination criterion is proposed to improve the
accuracy of the prediction model. When a student finishes the evaluation in the first phase
(Section 3.4), the proportion of the importance of each feature can be obtained. There
would be some features with small proportions of importance, which affect the model
performance. In order to explore this effect, the preferred group of each student obtained
in the first phase is converted into three groups. The first group includes all nine features,
whereas the second and third group eliminate the minimum proportion feature and the
last two minimum proportion features. The three groups are used to train the prediction
models, respectively. The corresponding validation group is used as input to calculate
the PA values. Based on the results, a conservative criterion is obtained, namely, if the
proportion of the minimum proportion feature is less than 1%, it can be identified as a
redundant feature and eliminated. Using this conservative criterion, the redundant feature
is automatically checked and eliminated when a user finishes the evaluation. After that,
the prediction model of user preference can be developed.

4. Cost Function Based on Modified Physical Programming (MPP)

This section focuses on the combination of the prediction model of user preference
and the STSA method. An aggregate function based on MPP is constructed to coordinate
the user preference objective with other objectives, such as structural weight. On this basis,
a cost function is further designed by taking the design constraints into account. Finally, an
innovative design method named STSA-P is proposed.

4.1. Physical Programming (PP) Synopsis

PP is a user-friendly multi-objective optimization method that eliminates the process
of assigning subjective weights. According to the PP procedure, the users’ expectations
for design objectives can be classified into four classes: smaller is better (Class 1), larger is
better (Class 2), value is better (Class 3) and range is better (Class 4). Each class comprises
two cases, hard (H) and soft (S), depending on the sharpness of the expectations [31]. In
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the soft classes, users need to specify several ranges for each objective to show the degrees
of satisfaction. A corresponding class function is built to map the objective function to
a non-dimensional space, where all the objectives with different physical meanings and
orders of magnitude have the same numerical scale. Figure 8. shows one possible class
function of 1-S (soft case of Class 1).

Figure 8. A class function of 1-S.

The objective function gi(x) is illustrated on the horizontal axis. The corresponding
class function gi(x) is shown on the vertical axis. Six ranges for the objective are given:
highly desirable (HD), desirable (D), tolerable (T), undesirable (U), highly undesirable
(HU), and unacceptable (UNA). The parameters gi1 to gi5 are the boundary values of the
ranges, which are specified by users and directly reflect the users’ expectations. To ensure
the same scale for each class function, the parameters g1

i to g5
i , corresponding to gi1 to gi5,

should be the same for different class functions. These parameters can be calculated as:

g1
i = ∆g1, take a small value (12)

∆gk = β · nsc · ∆gk−1, k = 2, 3, 4, 5 (13)

gk
i = gk−1

i + ∆gk, k = 2, 3, 4, 5, (14)

where nsc = number of objective functions, and β = parameter of convexity, generally greater
than 1.

The curve of the 1-S class function has two parts. The first part, in the HD range
(gi(x) < gi1), is represented by a decaying exponential. The second part, in the D, T, U and
HU ranges, takes the form of a spline segment. The class function should meet the require-
ments including continuous first derivative and strictly positive second derivative [30].
These settings are beneficial for gradient-based methods in searching for the optimal
solution [47]. However, they also lead to complicated calculations of the class function.

The aggregate function G(x) is formed by combing all the class functions (Equation (15)).
Thus, a MOP can be transformed into an SOP.

minG(x) = lg(
1

nsc

nsc

∑
i=1

gi[gi(x)]), (15)

subject to
gi(x) ≤ gi5 (for 1− S). (16)

4.2. Coordination of Multiple Objectives with MPP

The prediction model of user preference is integrated into the STSA method to guide
the generation of a satisfactory structure. The STSA method combines structural grammar
and performance evaluation with a stochastic optimization technique (simulated annealing,
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SA) [1]. It can be used for topology generation and optimization of discrete structures.
Structural grammar defines the basic units (e.g., triangles in 2D, tetrahedrons in 3D) and
rules for the structural modification in sectional size, global shape, and topology, which
can modify and transform the structures more flexibly. Similarly to human languages, the
basic units can form a structure based on structural grammar. STSA improves the initial
design continuously with structural grammar based on the feedback from performance
evaluation until the final design meets the design goals of safety, efficiency, and economy.
The workflow is shown in Figure 9 [1].

Figure 9. Flow chartof STSA.

Generally, many design factors, such as weight, displacement, stiffness, stress, fre-
quency, etc., can be employed as the design objectives when STSA is applied to design
structures. In this study, weight and displacement are selected as the first and second
design objectives. Meanwhile, user preference is introduced as a third objective based on
the prediction model. These objective functions are defined as follows:

g1 = min
n

∑
i=1

ρlisi, (17)

g2 = min
[

max
1≤j≤m

(dispj)

]
, (18)

g3 = minpre f , (19)

where ρ = material density, n = number of members, li = length of the ith member,
si = sectional area of the ith member, m = number of nodes, dispj = displacement of the jth
node, and pref = preference prediction value of the structure.

Structural weight (Equation (17)) is a classical design objective in structural optimiza-
tion. The smaller the weight, the better the structure. The objective of node displacement
(Equation (18)) minimizes the maximum displacement at all the structural nodes. Similarly,
the user preference objective (Equation (19)) minimizes the preference prediction value
of the generated structures. A smaller value means a higher user satisfaction with the
structural appearance. All three objectives conform to the feature of “smaller is better”,
which can be represented by 1-S.

For the objectives of structural weight and node displacement, the class function of
the PP method is redesigned and shown in Figure 10.
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Figure 10. Class function for objectives of weight and displacement.

The number of ranges for each objective is simplified to four (D, T, U, UNA), in which
D, T, and U are pertinent to the evaluation options “Preferred”, “Acceptable” and “Disliked”
in the interactive system, respectively. The curve of the new class function expands to
the UNA range, which is originally regarded as the “infeasible region” in the PP method.
This is beneficial for the full exploration of the optimal structure, especially in the early
optimization phase. The new class function contains three expressions. The first one is
represented by a continuous quadratic function in the U and UNA ranges, where the
objective value is expected to enter the U range from the UNA range quickly at a larger
slope. Then the slope at the left boundary of the U range becomes smaller to reduce the
impact of the current objective. It is conducive to the uniform optimization of all objectives.
The second expression in the T range is set to be a linear function to keep a high slope
throughout the range. This makes the objective values move quickly to the D range. The
third expression in the D range is represented by an exponential function. The curves in
the D and T ranges are continuous and have the same slope at the boundary. The new class
function is defined as:

gi(x) =


g2

i + ∆g3

[
gi(x)−gi2

gi3−gi2

]2
,gi(x) > gi2

∆g2
gi2−gi1

[gi(x)− gi1] + g1
i ,gi1 ≤ gi(x) ≤ gi2

g1
i exp

{
∆g2

(gi2 − gi1)g1
i
[gi(x)− gi1]

}
,gi(x) < gi1

(20)

The parameters gi1 to gi3 need to be specified by users, whereas the parameters on
the vertical axis are calculated by Equations (12)–(14).

For the user preference objective, the expressions of class function are the same as
those of the weight and displacement objectives in the D, T, and U ranges, whereas a
special expression is used in the UNA range. The boundary values gi1, gi2 and gi3 are
determined as 1.5, 2.5, and 3, according to the evaluation options and the rounding rule.
The prediction model runs only when all the feature values of the current structure are in
the Permissible Feature Range (PFR, defined in Section 3.4) of the training data. Therefore,
the class function in the UNA range is constructed based on the differences between the
feature values and PFR:

gi(x) = g3
i + ξ +

N f

∑
j=1

v2
j , ∃x j /∈

[
xj

min
, xj

max

]
, (21)

vj =


η xj − xj

max

xj
max − xj

min

,x j > xj
max

0 ,xj
min ≤ x j ≤ xj

max

η
xj

min − xj

xj
max − xj

min

,x j < xj
min

, (22)
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where Nf = number of features without redundant features, ξ = a penalty constant, η = a

penalty coefficient, xj = value of the jth feature of the current structure, xj
max = maximum

value of the jth feature of the samples in the training group, and xj
min = minimum value of

the jth feature of the samples in the training group.
Equation (22) calculates the difference between the jth feature of the current structure

and PFR. Then, the result is substituted into Equation (21) to calculate the value of the
class function in the UNA range. The parameters ξ and η generally take large values to
penalize the structure when feature values are outside the PFR. The class function of the
user preference objective is defined as:

gi(x) =



g3
i + ξ +

N f

∑
j=1

v2
j ,∃x j /∈

[
xj

min , xj
max

]
g2

i + ∆g3

[
gi(x) − gi2

gi3 − gi2

]2
,gi2 < gi(x) ≤ gi3

∆g2
gi2−gi1

[gi(x)− gi1] + g1
i ,gi1 ≤ gi(x) ≤ gi2

g1
i exp

{
∆g2

(gi2−gi1)g1
i
[gi(x)− gi1]

}
,gi(x) < gi1

(23)

A simplified form is adopted for the aggregate function:

minG(x) =
nsc

∑
i=1

gi[gi(x)], (24)

subject to
rnr(x) ≤ 0, (25)

where nr = number of constraint functions, and rnr(x) = the nrth inequality constraint function.
During the original design process of the PP method, if the final design result or the

performance of an objective fails to meet the user’s needs, the user can improve them by
adjusting or resetting the boundary values. However, this manner has some drawbacks.
Firstly, the adjusted boundary values may be against the original expectations of the user.
Secondly, the boundary values for some objectives are unchangeable. For example, the
boundary values for the user preference objective are fixed according to the rounding rule
and the evaluation options in the interactive system. To solve this problem, an adjustment
coefficient α is introduced to avoid the modification of boundary values. Then, the modified
aggregate function G(x) is given as:

minG(x) =
nsc

∑
i=1

αigi[gi(x)], (26)

subject to
rnr(x) ≤ 0. (27)

Each objective corresponds to one adjustment coefficient. The default value is 1. A
user can improve the performance of an objective by increasing the pertinent coefficient,
which is equivalent to increasing the weight of the objective. To verify the effectiveness of
the coefficient, a simple numerical example is presented:

ming(x) = [g1(x), g2(x), g3(x)], (28)

subject to
x1 + x2 + x3 ≤ 8, 0 ≤ xi ≤ 5, i = 1, 2, 3, (29)

where
g1(x) = 2x3

1 − 2x2
2 − x2

3 + 1, (30)

g2(x) = 3x3
2 − x2

1 − 2x2
3 − 2, (31)
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g3(x) = 4x3
3 − 3x2

1 − x2
2 − 4, (32)

The class function for the three objectives can be calculated by Equation (20). The
boundary values are given in Table 6. The SA method is used to solve the optimization
problem. The results are shown in Equations (33) and (34).

(x1, x2, x3) = (0.9921, 0.4639, 1.0061), (33)

g(x) = (1.5103, −4.7093, −3.0941). (34)

Table 6. Boundary values of objectives.

Objective
Function

Type
Boundary Values

D← gi1 ← T→ gi2 ← U→ gi3 → UNA

g1(x) 1-S −5 0 5
g2(x) 1-S −4 1 6
g3(x) 1-S −7 4 10

According to Equation (34) and Table 6 the three objective values lie in the U, D, and T
ranges, respectively. The result of the first objective g1(x) in the U range is not satisfactory.
Therefore, the user can increase the adjustment coefficient of g1(x). Then, the new results
are shown in Equations (35) and (36).

(x1, x2, x3) = (0.6893, 0.6460, 1.1625), (35)

g(x) = (−0.5310, −4.3690, −0.4408). (36)

It is observed that the three objective values lie in the T, D, and T ranges, respectively.
Compared to the initial results, the first objective is significantly improved, whereas the
other two objective values still lie in good ranges. Thus, the adjustment coefficient can
improve the result effectively without changing the boundary values.

4.3. Treatment of Design Constraints

Many design constraints, e.g., stress constraints and geometric constraints, need to be
considered in the design process of truss structures. Generally, these design constraints
are regarded as hard constraints, i.e., they cannot be violated. This study tends to handle
the constraints as soft constraints, which means that they can be violated during the
optimization process. Meanwhile, the final result needs to satisfy the constraints. This is
beneficial to the full exploration of the optimal result.

The penalty parameter r of constraint violation (Equation (37)) is set to be associated
with the iteration steps. In the early stage of optimization, the penalty for the constraint
violation is small, i.e., the value of r is small. As the optimization progresses, the value of r
gradually increases, which indicates a larger penalty for the constraint violation. At the
late stage of optimization, the penalty is sufficiently large to make the final result satisfy
the constraints.

r = T2, (37)

where T = number of the current step of STSA during the iteration.
For the ith constraint, the constraint violation vi(x) is defined as the proportion of the

current constraint value exceeding the constraint limit:

vi(x) =


∑
k

max( valk
vallimit

− 1, 0) , if vallimit is the upper limit value

∑
k

max(1− valk
vallimit

, 0) , if vallimit is the lower limit value
, (38)
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where valk = value of constraint function of the kth unit, for example, the tensile stress of
the kth member, vallimit = value of constraint limit.

Thus, the penalty term V(x) of constraint violation is defined by Equation (39):

V(x) = 1 + r
nr

∑
i=1

vi(x), (39)

mincost = V(x)G(x) =

[
1 + r

nr

∑
i=1

vi(x)

]
·

nsc

∑
j=1

αjgj
[
gj(x)

]
. (40)

The new cost function (Equation (40)) is obtained by multiplying V(x) and G(x),
which describes the quality of a new design during the optimization process. It combines
the prediction model with the STSA method. On this basis, a new automated design
method named STSA-P is established for the plane trusses, which applies user preference
information. The design process using STSA-P is shown in Figure 11.

Figure 11. Design process based on STSA-P.

The combination of the interactive system and the STSA algorithm forms the STSA-
P design system. Designing a truss structure with this system, designers or users can
preset some design information, such as boundary values, and they need to complete the
evaluation using the interactive system. Then, the prediction model of user preference is
automatically developed and combined with the cost function. After that, the optimization
process starts. Finally, the design result is obtained. if the result fails to meet the user’s
needs, the designer or user can improve the result by modifying the adjustment coefficient
until a satisfactory result is achieved.

5. Design Example

To verify the practicality of the STSA-P method, a design example of a plane truss
structure is presented. Five students were invited to participate in the design process. In
fact, the design results generated by the STSA-P method include only two conditions, no
matter how many students were surveyed. In the former, students obtain a satisfactory
result without any adjustment. In the latter, students are not satisfied with the initial result
and they modify the adjustment coefficient α (proposed in Section 4.2) to get the satisfactory
result. Therefore, only two students’ results representing the two conditions are presented,
for brevity.

5.1. Case Information

Figure 12 shows the initial steel truss structure with a span of 20 m. Both the concen-
trated and distributed loads are applied to the top chord. Note that the loading points can
move freely during the optimization process. The design objectives include minimizing
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the structural weight, node displacement, and user preference. The detailed information is
summarized in Table 7.

Figure 12. Initial layout of the truss structure.

Table 7. Design parameters.

Type Name Value Name Value

Material and
geometrical
properties

Material density 7.85 g/cm3 Elasticity
modulus 210 Gpa

Cross section type Solid cylinder
Initial

cross-sectional
area

100 cm2

SA parameters

Initial temperature 2000 Final
temperature 0.0001

Number of
iterations 170

Number of
designs per

iteration
150

Loading
parameters

Concentrated load 150 kN Distributed load 100 N/cm
Self-weight load Yes Loading type Dead load

Design
constraints

Minimum member
length 100 cm Maximum

member length 15 m

Minimum area 10 cm2 Maximum area 1084 cm2

Maximum
connections per

node
20 Minimum angle 20◦

Maximum
compressive stress 31 kN/cm2 Maximum

tension stress 31 kN/cm2

Maximum height 20 m
Maximum
number of
members

60

Intersections
between members No Movable loading

node Yes

The two students completed the interactive evaluation independently. The user
preference information was analyzed and no redundant feature was found based on the
evaluation results of both students. The boundary values of the four ranges (D, T, U, UNA)
of each objective are summarized in Table 8.

Table 8. Boundary values of objective functions.

Objective
Function

Type
Boundary Values

D← gi1 ← T→ gi2 ← U→ gi3 → UNA

Weight 1-S 1500 kg 2100 kg 2500 kg
Displacement 1-S 2 cm 5 cm 8 cm

User
Preference 1-S 1.5 2.5 3
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5.2. Design Results

Table 9 shows the proportion of importance of the truss features based on the eval-
uation results of the two students. Both students pay more attention to the symmetry of
the truss structure, although they selected different groups to evaluate. MCH obtains the
minimum proportion of 2.14% according to the first student’s preference, whereas NM
obtains the minimum proportion of 4.83% for the second student. Since both the two
proportions are more than 1%, there is no redundant feature.

Table 9. Proportion of importance of the truss features.

Feature First Student Second Student

HSR 5.75% 8.90%
MCH 2.14% 8.50%
NM 2.89% 4.83%
AL 21.81% 15.25%
TD 16.30% 6.68%
DN 4.92% 12.28%

THD 4.71% 9.32%
BHD 2.78% 7.22%
SyR 38.71% 27.02%

For the first student, the design results are summarized in Table 10. The final truss
structure is shown in Figure 13.

Table 10. Objective information for the first student.

Objective Value Range

Weight 1817.365 kg T
Displacement 1.385 cm D

Preference 1.798 T

Figure 13. Truss structure for the first student.

It is seen that all the objective values are within the proper ranges, in which the
displacement objective values lie in the D range. The truss structure is arched with strong
top chord members, which conforms to the mechanical requirements. In addition, the
whole structure has a certain degree of symmetry. In general, the student is satisfied with
the design of this truss structure.

The results of the second student are shown in Table 11 and Figure 14. Note that
an asymmetric optimization result can be generated (e.g., in Figure 14a) since the load-
ing point of the initial structure can move freely and become asymmetric during the
optimization process.

Table 11. Objective information for the second student.

Objective
Initial Result Improved Result

Value Range Value Range

Weight 1842.368 kg T 1896.065 kg T
Displacement 2.614 cm T 4.259 cm T

Preference 2.396 T 1.335 D
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Figure 14. Truss structures for the second student: (a) initial result; (b) improved result.

All the objective values of the initial results are in the T range. However, the symmetry
of the truss structure is poor, as shown in Figure 14a, and the student is not satisfied with
the structure, especially the structural shape. Thus, the adjustment coefficient of the user
preference objective is changed to improve the results. The new result achieves a great
improvement in the user preference objective. The value of the objective enters into the D
range from the T range, whereas the values of the other two objectives become greater, but
still in the T range. As depicted in Figure 14b, the symmetry of the new structure is better
than the initial one. In addition, the strong members also form an arch. Finally, the student
is satisfied with the new truss structure.

To measure the impact of user preference on the optimization results, a simple index
named Influence Degree (I) is proposed. It is calculated based on the change in the
structural weight with and without the consideration of the user preference under the same
displacement limit:

I =
mp −mo

mo
× 100%, (41)

where mp = structural weight with the consideration of user preference, mo = structural
weight without the consideration of user preference.

The index I reflects the cost of considering the user preference. Taking the two design
results mentioned above as examples, the index I is summarized in Table 12.

Table 12. Index I of the results for both students.

Student No. Disp Limit mp mo I

1 4.259 cm 1896.065 kg 1206.802 kg 57.11%
2 1.385 cm 1817.365 kg 1577.735 kg 15.19%

Regarding the result of the first student, the weight of the structure considering the
user preference is 57.11% more than the one without considering the user preference. This
indicates a large increase in construction costs. By contrast, the value is 15.19% based on
the results of the second student. Index I can help the users weigh the cost and decide
whether to accept the design result.

6. Conclusions

This paper proposes a new design method named STSA-P for plane trusses which
incorporates user preference into the structural design process. The design method quanti-
fies the preference information by developing a prediction model which transforms the
information into an additional design objective. It realizes the coordination of multiple
qualitative and quantitative objectives, allowing user preference to guide the search process
to explore various designs. The user only needs to set boundary values and perform a short
interaction via the interactive system. Then, the final design is generated automatically.
Due to the short interaction and the reusable preference information, this method effectively
reduces user fatigue and dependence on users. A design example is illustrated to confirm
the effectiveness of the proposed method.

Specifically, the construction of the prediction model is split into two steps, i.e., gen-
erating a valid data set and selecting an appropriate machine learning (ML) technique.
A series of subjective and numerical experiments are designed and carried out to ensure
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the rationality of the steps and the accuracy of the prediction model. To coordinate user
preference with other objectives of structural performance, an aggregate objective function
is proposed based on the Modified Physical Programming (MPP) method. In addition,
the cost function is further designed by considering design constraints, which effectively
incorporates the prediction model into the STSA method.

Besides the user preference objective, only two structural performance objectives, i.e.,
structural weight and displacement, are considered in the STSA-P method. In order to
extend the functionality of the method, further studies can be carried out by incorporat-
ing more design objectives, such as structural stiffness and natural frequency, into the
STSA-P method.
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