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Abstract: The implementation of lemon laws in America has played an important role in improving
the quality of after-sales service. Nowadays, many countries, such as China, Canada, Europe,
Australia, Singapore, and South Korea, have adopted lemon laws in various industries to protect the
interest of consumers. From the perspective of manufacturers, accurate estimation of the cost of the
warranty service is of great importance in guiding product pricing, quality control, and design of
warranty policies. According to the terms of different lemon laws, two warranty models considering
the repair time and numbers for failures are proposed in this paper. Products under these models
are multi-state, and Markov processes are used to model the degradation processes of products.
In the first model, a product will be replaced by a new one if the time for a repair or the number of
failures exceeds their respective thresholds over the warranty period. Under the second model, both
catastrophic and minor failures are considered. A product will be replaced if one of the following
three conditions is met over the warranty period: the time of one repair action (regardless of failure
type) is longer than a time threshold; the number of minor failures is larger than a preset threshold;
a catastrophic failure occurs. The expected warranty cost rates under the two proposed warranty
models are derived under the assumption of renewable warranty terms. Numerical examples are
given to illustrate the results obtained.

Keywords: warranty; lemon laws; multi-state products; renewable warranty; Markov process

1. Introduction
1.1. Motivation

Lemon laws had been enacted since 1982 in the state of Connecticut, US, and in the next
five years, all states in the US had implemented lemon laws ([1]). Customers’ veto power
over car quality is transferred to them, and automobile manufacturers are responsible
for quality-related financial losses. Numerous nations, including China, Canada, Europe,
Australia, Singapore and South Korea, have enacted lemon laws to protect consumers,
and other items are also covered by these regulations ([2–4]). After the official introduction
of lemon laws, the warranty cost arising from warranty claims has become an enormous
financial burden for manufacturers, compelling them to focus more on enhancing product
quality. Consequently, an accurate calculation of warranty service costs is essential to guide
product pricing, quality control, and warranty policy development ([5]). In this article,
warranty cost modeling and analysis of lemon-law-protected products are examined.

According to lemon laws, if the number of repairs or the time required for a single
repair action exceeds predetermined levels, the product will be deemed defective and
the producer will be required to either replace the device or compensate the consumer
financially. For instance, according to the lemon laws of Illinois and Indiana, the number of
repairs should not exceed four, and the duration of each repair action should not exceed
30 days. Moreover, to guarantee the safety of customers, catastrophic failures during the
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warranty period are not permitted. According to the lemon laws of Maryland, for instance,
only one repair action is permitted for brake or steering system failure, the number of
minor repairs should not exceed four, and the duration of each repair action should not
exceed 30 days ([4]). Based on the aforementioned background, two warranty cost models,
the {τ, N} model and {τ, N1, 1} model, are built in this paper. Under the {τ, N} model,
τ is the threshold repair time, while N is the threshold number of failures. The product will
be replaced with a new and identical one, and warranty terms are renewed at no charge to
customers if the repair time for a failure (regardless of the failure type) is more than τ or the
number of failures is more than N within the warranty period. Under the {τ, N1, 1} model,
the product will be replaced with a new and identical one, and the warranty is renewed at
no charge to the customer if the repair time of a failure activity (regardless of the failure
type) exceeds τ, the number of minor failures exceeds N1 or a catastrophic failure occurs
within the warranty period. Cost analysis is conducted under the assumption that the
failure process of the product can be characterized with a homogeneous Markov chain.

1.2. Literature Review

Few works have addressed warranty modeling based on lemon laws and warranty
cost analysis ([5,6]). For instance, under the piece-wise renewing free replacement warranty
policy proposed in [5], the entire warranty period is divided into two subperiods, and once
an item fails within a specific subperiod, it is replaced with a new identical item, and the
warranty period is either fully or partially renewed. In addition, when the number of
product failures during the warranty period exceeds a predetermined level, the producer
must return the product’s purchase price. This policy’s anticipated warranty cost and
warranty duration are derived from the manufacturer’s standpoint. Ref. [2] categorized the
components as critical and noncritical and examined the warranty cost of a multicomponent
device protected by lemon laws. They assumed that a product becomes a lemon when a
certain number of critical or noncritical component failures occur. The extended warranty
cost of used products covered by lemon laws was determined from Ref. [7]. The opti-
mization of warranty policies for products governed by lemon laws is also discussed.
For instance, Refs. [8,9] discussed the optimization of a post-warranty policy and periodic
preventive maintenance policy for products with a repair time threshold. From the views
of customers and manufacturers, Ref. [10] optimized the length of the extended warranty
period by minimizing the expected cost rate incurred over the whole warranty coverage.
Ref. [11] developed a maintenance cost model based on Korean lemon laws and optimized
the length of the warranty period and the warranty premium price for vehicles from the
manufacturer’s perspective. Ref. [12] considered the optimal maintenance strategies for
warranty products with limited repair time and limited repair number.

In engineering practice, numerous products have multiple working states, and Markov
processes are commonly employed to characterize their operational processes. The degra-
dation processes of offshore wind turbine gears were modeled using non-homogeneous
Markov processes; preventive maintenance optimization and reliability analysis are de-
tailed in Refs. [13,14], respectively. Modeling the operation of systems with neglected
failures, redundant dependencies, and failure dependency using aggregated Markov pro-
cesses is conducted in Refs. [15–19]. Using a two-dimensional Markov chain, Ref. [20] dealt
with imperfect monitoring and forecasting models. Ref. [21] suggested a Markov decision
process framework to optimize repair and replacement plans for medical equipment.

Many products have multiple failure states. During the rail degradation process,
two types of failures are observed: sudden failure without symptoms and degradation-
based failure (see [22–27]). The monitoring of ultrasonic waves reveals four failure modes
on the railroad track ([23]). In Ref. [24], both a catastrophic failure and a two-stage delayed
failure were simultaneously considered. Typically, when multiple-failure-state products
are covered by lemon laws, they are deemed defective based on the number of failures
(regardless of failure type) and the length of time required for one repair activity. To the best
of our knowledge, few studies have discussed the warranty service cost issue of products
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protected by lemon laws in a targeted way. To fill the theoretical gap and promote practical
application, warranty cost analysis of multi-state products protected by lemon laws is
discussed using Markov process theory in this paper.

The remainder of this paper is organized as follows. Section 2 gives detailed model
assumptions and derives the warranty cost under the {τ, N} model. Assumptions and
warranty cost under the {τ, N1, 1} model are discussed in Section 3. Section 4 gives
numerical examples to illustrate the effectiveness of the model. Finally, conclusions are
provided in Section 5.

2. Assumptions and Cost Analysis of {τ, N} Model
2.1. General Assumptions

The general assumptions for the {τ, N} and {τ, N1, 1}models will be given in this section.
The operating process of the product can be modeled by a homogeneous discrete-state

continuous-time Markov chain {X(t), t ≥ 0}. The state space of the chain is S = U ∪ D =
U ∪ D1 ∪ D2, where U and D are the subsets of working and failure states, respectively,
and D1 and D2 are minor and catastrophic failure state sets, respectively.

The state transition probability matrix of the Markov process is Q = [qij], i ∈ U,
j ∈ U ∪ D for i 6= j, i ∈ U, j ∈ U ∪ D, and qij is the transition rate from state i to state
j. The diagonal elements qii are constructed such that the row sums are all zero, so that
qii is minus the sum of all rate constants leaving state i and is therefore negative. If the
system is in state i, the probability that the system transitions to state j can be calculated by
qij/(−qii).

Note that Q can be partitioned in various ways according to the problem under
consideration; for example, Q is commonly partitioned by the operating and failure states
U and D,

Q = (QUU QUD)

where QUU is the sub-matrix of transition rates among states in the working states set U
and QUD is the one from the working states set U to failure states set D. QUD may be
partitioned further according to the type of failure, such as:

QUD = (QUD1
QUD2

)

where QUD1
and QUD2

are the sub-matrices of transition rates from working states set U to
minor and catastrophic failure states sets, D1 and D2, respectively.

Throughout the paper, all the matrices and vectors are written in bold face. Further-
more, I denotes an identity matrix and e denotes a column vector of ones, the dimensions
of them being apparent from the context.

2.2. Assumptions of {τ, N}Model

This section is devoted to the assumptions of the {τ, N}model.

(1) Consider a repairable product sold with a warranty period W1 and the warranty is
renewed according to the {τ, N}mechanism. That is, it will be replaced with a new
and identical one, and warranty terms are renewed at no charge to customers if the
repair time for a failure (regardless of the failure type) is more than τ or the number of
visits to the failure states set D over the warranty period exceeds N. Suppose that the
times for visiting the operating states set are independent random variables having
finite expectations and they are also independent of the times for repair actions.

(2) Let {Yi, i = 1, 2, · · · } be the sequence of repair times. Suppose that Y1, Y2, · · · are inde-
pendent and identically distributed random variables with a probability distribution
G(t) and finite expectation.

(3) At the expiration of the renewable warranty terms, if a repair is in progress, it will be
continued at no charge to the customer. Repair times are not included in the warranty
period ([13]). Repair times, unless otherwise specified, are not part of the time that
the product goes through in this paper.
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Let Si(i = 1, 2, · · · ) denote the time of the completion of the ith repair action. A possi-
ble product state evolution path for such a combined warranty term when N = 3 is shown
in Figure 1 ([10]).
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In Figure 1, the repair time for the first failure does not exceed the threshold τ, while
the second one exceeds the threshold. Furthermore, the total time that the product goes
through two failures does not exceed the warranty period W1, so the product is replaced at
time S2 and the time for the first renewal of the warranty terms is TR1 . Similarly, the product
is replaced at the fifth failure and the duration between the first and second renewals is
TR2 . The repair times for the sixth failure, the seventh failure, and the eighth failure do
not exceed the threshold τ, but the number of failures exceeds the threshold 3; therefore,
the warranty terms are renewed. During the following warranty period, the product goes
through four failures and their repair times do not exceed the threshold, so the warranty
terms are not renewed and the warranty service ends. The length of the whole warranty
period is TR1 + TR2 + TR3 + W1 and 12 repairs are performed.

2.3. Probability Analysis of {τ, N}Model
2.3.1. Renewable Warranty Service Analysis of {τ, N}Model

Considering the possible causes of a warranty renewal, two cases, in which the number
of visits to failure states set exceeds the threshold N and the time for one repair action is
longer than threshold τ, are investigated and they are denoted Case 1–1 and Case 1–2.

For Case 1–1, a product has gone through N repairs which take no more than τ (short
repair) and transit to failure states set D from the operating states set U within (0, W1).
Let T0 be the time that the product has completed the above activities regardless of the
threshold W1 and [ fij(t)] is the probability function of T0 given the entry state i(i ∈ U) and
the exit state j(j ∈ D). Assume that ϕ0(s) = [ϕ0

ij(s)](s ≥ 0) is the Laplace transform matrix

of T0(t) = [ f 0
ij(t)] (i ∈ U, j ∈ D).

Proposition 1. For a multi-state product with the failure process modeled by the homogeneous
discrete-state continuous-time Markov chain {X(t)} and the warranty terms renewed according to
the {τ, N} regulation, the Laplace transform of the time that the product has gone through N short
repairs and transited to failure states is:

ϕ0(s) = (µ0(sI−QUU)
−1QUDPSDUeU)×

(µ1((sI−QUU)
−1QUDPSDU)

N−1
eU

)
µ1(sI−QUU)

−1QUDeD,
(1)

where µ0 is the initial state probability vector, µ1 is the state probability vector after a repair action,
and PSDU is the state transition probability matrix after a short repair.
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Proof. Given the entry state in U and the exit state in D, the Laplace transform matrix of
duration time in U is (sI−QUU)

−1QUD (see [28]). According to the convolution property
of the Laplace transform, (sI−QUU)

−1QUDPSDU is the Laplace transform matrix of the
time for a cycle under which the time for each repair is smaller than τ. Reusing the above
results, Equation (1) can be obtained. �

Let T0(t) be the inverse Laplace transform of ϕ0(s). The probability that the warranty
term is renewed due to exceeding the threshold number of visits to the failure states sets is:

p0 =
∫ W1

0
T0(t)dtG(τ)N (2)

For Case 1–2, the first l− 1(l = 1, · · · , N) short repairs and the lth long repair (a repair
action which takes more than τ) are completed within W1. Let Tl be the time required to
complete the above activities regardless of the threshold W1 and [ f l

ij(t)] be the probability

function of Tl given the entry state i(i ∈ U) and the exit state j j ∈ D). Assume that
ϕl(s) = [ϕl

ij(s)](s ≥ 0) is the Laplace transform matrix of Tl(t) = [ f l
ij(t)](i ∈ U, j ∈ D).

Proposition 2. For a multi-state product with the failure process modeled by the homogeneous
discrete-state continuous-time Markov chain {X(t)} and the warranty terms renewed according
to the {τ, N} regulation, the Laplace transform of the time that the product has gone through
l − 1(l = 1, · · · , N) short repairs and a long repair is:

ϕl(s) = ((µ0sI−QUU)
−1QUDPSDUeU)(µ1((sI−QUU)

−1QUDPSDU)
l−2

eU)×
µ1(sI−QUU)

−1QUDPLDUeU , l = 2, · · · , N,
(3)

ϕ1(s) = µ0(sI−QUU)
−1QUDPLDUeU . (4)

where PLDU is the state transition probability matrix after a long repair.

Proposition 2 can be proved in a similar manner as Proposition 1.
Let Tl(t)(l = 1, · · · , N) be the inverse Laplace transform of ϕl(s). Given the number

of short repairs l, the probability that the warranty term is renewed is:

pl =
∫ W1

0
Tl(t)dtG(τ)l−1(1− G(τ)), l = 1, · · · , N (5)

Let pτN be the warranty renewal probability under the {τ, N}model. Then:

pτN =
N

∑
l=0

pl

The expected length of a renewable warranty for Case 1–1 is:

L0 =

∫W1
0 tT0(t)dt

pτN
. (6)

The expected length of a renewable warranty under Case 1–2 is:

Ll =

∫W1
0 tTl(t)dt

pτN
, l = 1, · · · , N. (7)

Note that after the product has gone through N short-duration repairs and transits to
the failure states set D from the operating states set U within W1, the warranty term will be
renewed immediately under the obligation. Therefore, it is impossible that the warranty
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term is renewed due to exceeding the number of visits to the failure states set and the
repair time.

2.3.2. Nonrenewable Warranty Service Analysis of {τ, N}Model

According to the modeling assumptions, if the warranty term is not renewed, the prod-
uct can visit the working state set l(l = 1, · · · , N + 1) times and l(l = 0, · · · , N) short
repairs can happen over the warranty period.

The Laplace transform for the probability density functions of l(l = 1, · · · , N) visits to
the working state set and l short repairs is

ϕl(s) = (µ0(sI−QUU)
−1QUDPSDUeD)(µ1(sI−QUU)

−1QUDPSDUeD)
l−1

. (8)

The associated probability density functions are denoted by fl(t).

Proposition 3. The probability that the product has gone through l(l = 0, · · · , N) short repairs
over the warranty period, no repair action is performed, and warranty terms are not renewed is:

p̃l =

(∫ W1

0

∫ +∞

W1−t1

fl(t1) f (t2)dt1dt2

)
Gl(τ), l = 1, · · · , N, (9)

p̃0 =
∫ +∞

W1

f1(t1)dt1. (10)

where f (t2) is the inverse Laplace transform of µ1(sI−QUU)
−1QUDeD.

Proof. If the warranty term is not renewed and no repair action is performed, the duration
in U will be longer than W1, which gives Equation (9). If warranty term is not renewed
and l(l = 0, · · · , N) short repairs are performed during the warranty period, then the time
taken by the l(l = 0, · · · , N) cycles will be shorter than W1 and the total time of the l
cycles and the following visits to the working state set is longer than W1. According to the
property of convolution, Equation (10) can be obtained. �

2.4. Cost Analysis of {τ, N}Model

In this section, the cost rate of the {τ, N}model will be given.
According to the assumptions in Section 2.2, the warranty terms would be renewed if

the number of visits to the failure states set D is more than N or the repair time of a failure
(regardless of the failure type) is more than τ within the warranty period; otherwise the
warranty policy would not be renewed and the warranty period will end with the warranty
services over (0, W1). After the last repair of a renewable warranty, the old product has
residual value cs. The cost of updating a product is cnw(cnw > cs).

Let W{τ,N} denote the length of the warranty under the {τ, N} regulation. It is clear
that W{τ,N} is a random variable depending on the total number of warranty renewals,
the inter-arrival times between two successive renewals of the warranty terms, and the
length of the original warranty period W1. Hence,

W{τ,N} = TR1 + TR2 + · · ·+ TRNR
+ W1, (11)

where NR is the number of renewals during the warranty period, TRi (i = 1, · · · , NR) are
the time intervals between two subsequent warranty renewals, and they are independent
and identically distributed non-negative random variables.
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Theorem 1. For a multi-state product with the failure process modeled by the homogeneous discrete-
state continuous-time Markov chain {X(t)} and warranty terms renewed according to the {τ, N}
regulation, the expected length of the warranty service is:

E(Wτ,N) =

N
∑

l=0
piLi

1− pτN
+ W1. (12)

Proof. According to the assumptions in Section 2.2, the probability that the warranty terms
are renewed is pτN = ∑N

l=0 pl . If the product is renewed, the expected inter-arrival times
between two successive renewals is:

E(TR1) =
1

pτN

N

∑
l=0

pl Ll . (13)

�

The probability that the warranty terms are renewed s times is:

P(NR = s) = pτN
s(1− pτN), s = 0, · · · . (14)

Given NR = s, the expected length of the warranty service is:

E(W{τ,N}|NR = s) = E(TR1 + TR2 + · · ·+ TRs + W1) =
s

pτN

N

∑
l=0

pl Ll + W1. (15)

By taking the expectation for the conditional expectation of Equation (15) with respect
to NR,

E(W{τ,N}) = E(E(W{τ,N}|NR)

=
+∞
∑

s=0
E(WW{τ,N} |NR = s)P(NR = s)

=
+∞
∑

s=0
( s

pτN

N
∑

l=0
pl Ll + W1)pτN

s(1− pτN)

=

N
∑

l=0
pl Ll

1−pτN
+ W1.

(16)

Let C{τ,N} denote the total cost of the warranty service under the {τ, N} regulation.
Then,

C{τ,N} = CR1 + CR2 + · · ·+ CRNR
+ CW1 , (17)

where CRi (i = 1, · · · , NR) is the cost of the ith warranty renewal and they are independent
and identically distributed non-negative random variables. CW1 is the warranty service
cost during the nonrenewable warranty period W1.

Theorem 2. For a multi-state product with the failure process modelled by the homogeneous
discrete-state continuous-time Markov chain {X(t)} and warranty terms renewed according to the
{τ, N} regulation, the expected renewable warranty service cost over the warranty period is:

E(Crw
{τ,N}) =

p0Ncs
nr +

N
∑

l=1
pl((l − 1)cs

nr+cl
nr) + pτN(cnw − cs)

1− pτN
, (18)

where cs
nr and cl

nr are the cost for one short repair and long repair, respectively.
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Proof. If the product is renewed, the expected warranty service cost over two successive
renewals is:

E(CRi ) =
1

pτN
[p0Ncs

nr +
N

∑
l=1

pl((l − 1)cs
nr+cl

nr) + pτN(cnw − cs)]. (19)

�

In a similar manner to that of Equation (16), Equation (18) can be obtained.
The expected warranty service cost over the whole warranty period is:

E(C{τ,N}) =
1

1− pτN
[p0Ncs

nr +
N

∑
l=1

pl((l − 1)cs
nr+cl

nr) + pτN(cnw − cs)] +
N

∑
l=1

p̃l lcs
nr, (20)

The last term in Equation (19) is the cost for the nonrenewable warranty service.
Combining with Equation (18), we obtain the average cost of the whole warranty period,
which can be expressed as Equation (20).

From Equations (16) and (20), the expected cost rate per unit time during the warranty
period can be given as follows:

CR{τ,N} = E(C{τ,N})/E(W{τ,N}). (21)

3. Assumptions and Probability Analysis of {τ, N1, 1} Model

The assumptions and probability analysis of the {τ, N1, 1}model will be given in the
following.

3.1. Assumptions of {τ, N1, 1}Model

Consider a repairable product sold with a warranty period W1 with the warranty
renewed according to the {τ, N1, 1}model. Under the proposed {τ, N1, 1}model, within
the warranty period W1, the product will be replaced with a new and identical one and
the warranty will be renewed at no charge to the customer if the repair time of a failure
(regardless of the failure type) is more than τ, the number of visits to the minor failure
states set D1 is more than N1, or the number of visits to the catastrophic failure states set D2
is more than 1. Suppose that the lengths of visits to the operating states set are independent
random variables having finite expectations, and they are independent from the repair
times for minor failures and catastrophic failures.

Assumptions (1) and (2) of the {τ, N}model are also made for the {τ, N1, 1}model.
Let S1

i /S2
i (i = 1, 2, · · · ) denote the time for the ith repair completion of a minor

failure/catastrophic failure. A possible product state evolution path for such a combined
warranty term under N1 = 3 is shown in Figure 2.
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the 1{ , ,1}Nt  regulation, the Laplace transform of the time that the product has gone through 

Figure 2. A possible product state evolution path under {τ, N1, 1}model.
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In Figure 2, the first renewal happens due to the ultra-limit of repair time. In the second
and third renewals, the numbers of visits to the minor failure states set and catastrophic
failure states set are higher than their thresholds 3 and 1, respectively. During the following
warranty period, both the times and numbers of visits to the minor (catastrophic) failure
states do not exceed the thresholds, and hence the warranty term is not renewed.

3.2. Probability Analysis of {τ, N1, 1}Model
3.2.1. Renewable Warranty Analysis of {τ, N1, 1}Model

According to the modeling assumptions, three cases—renewal due to the over-limit of
catastrophic failures, minor failures, and repair time—are considered and they are denoted
Case 2–1, Case 2–2, and Case 2–3, respectively.

For Case 2–1, the product has gone through one short duration in D2, m(m = 1, · · · , N1)
times short duration in D1, and transits to the catastrophic failure states set D2 from
the operating states set U within W1. Let Tmk

ij be the time to complete the above activ-
ities regardless of the threshold W1, given the total number of visits to the minor fail-
ures set m(m = 0, · · · , N1), the serial number of visits to the catastrophic failures set
k(k = 1, · · · , m + 1), the entry state i(i ∈ U), and the exit state j(j ∈ D2). hmk

ij is the prob-

ability function of Tmk
ij . Assume that φmk(s) = [φmk

ij (s)](s ≥ 0) is the Laplace transform

matrix of hmk(t) = [hmk
ij (t)](i ∈ U, j ∈ D2).

Proposition 4. For a multi-state product with the failure process modeled by the homogeneous
discrete-state continuous-time Markov chain {X(t)} and warranty terms renewed according to
the {τ, N1, 1} regulation, the Laplace transform of the time that the product has gone through
m(m = 1, · · · , N1) short repairs due to minor failures, one catastrophic failure in the
kth(k = 1, · · · , m + 1) cycle, and transits to catastrophic failure states is:

φm1(s) = (µ0GUD2(s)PSD2UeU)(µ1GUD1(s)PSD1UeU)
m×

(µ1GUD2(s)eD2

)
, m = 0, · · · , N1.

(22)

φmk(s) = (µ0GUD1(s)PSD1UeU)(µ1GUD1(s)PSD1UeU)
k−2×

(µ1GUD2(s)PSD2UeU)(µ1GUD1(s)PSD1UeU
)m−(k−1)×

(µ1GUD2(s)eD2), k = 2, · · · , m, m = 2, · · · , N1.
(23)

φmm+1(s) = (µ0GUD1(s)PSD1UeU)(µ1GUD1(s)PSD1UeU)
m−1×

(µ1GUD2(s)PSD2UeU
)
µ1GUD2(s)eD2 , m = 1, · · · , N1.

(24)

where GUD1(s) = (sI−QUU)
−1QUD1

, GUD2(s) = (sI−QUU)
−1QUD2

, PSD1U , and PSD2U
are the state transition probability matrixes after a short repair due to a minor failure and a
catastrophic failure, respectively.

Proof. For k = 1, during the first cycle, a catastrophic failure occurs and the repair
time is not more than τ; hence the Laplace transform for the probability density func-
tion of the first cycle’s length is µ0GUD2(s)PSD2UeU . During the following m cycles,
the product has goes through m times of short duration in D1, which gives the term
(µ1GUD1(s)PSD1UeU)

m. The last term µ1GUD2(s)eD2 is the Laplace transform for the proba-
bility density function of the time that passes from the working state to the catastrophic
failure set. Equations (23) and (24) can be proved in a similar manner. �

Let hmk(t) be the inverse Laplace transform of φmk(s). Given the number of visits to
the minor failures set m(m = 0, · · · , N1) and the serial number of visits to the catastrophic
failures set k(k = 1, · · · , m + 1), the probability that the warranty terms will be renewed is:

pmk =
∫ W1

0
hmk(t)dtG(τ)m+1. (25)
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For Case 2–2, the product experiences 0 or 1 times of short duration in D2, N1 times
of short duration in D1, and transits to the minor failure set D1 from the operating states
set U within W1 times. Let T0

ij and T1
kij be the total times of the aforementioned process

for the case that the product visits the catastrophic failure set 0 and 1 times, respectively,
given the entry state i(i ∈ U) and the exit state j(j ∈ D). Assume that h0

ij(t) and h1
kij(t)

are the probability density functions of T0
ij and T1

kij, respectively, and φ0(s) = [φ0
ij(s)] and

φ1
k(s) = [φ1

k(s)](s ≥ 0) are the Laplace transform matrices of h0(t) = [h0
ij(t)] and

h1
k(t) = [h1

kij(t)], respectively.

Proposition 5. For a multi-state product with the failure process modeled by the homogeneous
discrete-state continuous-time Markov chain {X(t)} and warranty terms renewed according to the
{τ, N1, 1} regulation, the Laplace transform of the time that the product has undergone N1 short
repairs due to minor failure, no or one catastrophic failure in the kth(k = 1, · · · , m + 1) cycle,
and a long repair due to a minor failure is:

φ0(s) = (µ0GUD1(s)PSD1UeU)(µ1GUD1(s)PSD1UeU)
N1−1µ1GUD1(s)eD1 . (26)

φ1
k(s) = (µ0GUD1(s)PSD1UeU)(µ1GUD1(s)PSD1UeU)

k−2×
(µ1GUD2(s)PSD2UeU)(µ1GUD1(s)PSD1UeU

)N1−(k−1)
µ1GUD1(s)eD1 ,
k = 2, · · · , N1,

(27)

φ1
1(s) = (µ0GUD2(s)PSD2UeU)(µ1GUD1(s)PSD1UeU)

N1−1 µ1GUD1(s)eD1 . (28)

φ1
N1+1(s) = (µ0GUD1(s)PSD1UeU)(µ1GUD1(s)PSD1UeU)

N1−1×
(µ1GUD2(s)PSD2UeU

)
µ1GUD1(s)eD1 .

(29)

Equations (26)–(29) can be proved in a similar manner for Equation (22).
Let h0(t) and h1

k(t)(k = 1, · · · , N1 + 1) be the inverse Laplace transforms of ϕ0(s) and
φ1

k(s) (k = 1, · · · , N1 + 1), respectively. Then the probability that the warranty term is
renewed due to exceeding the threshold number of visits to the minor failure set is:

p0 =
∫ W1

0
h0(t)dtG(τ)N1 , (30)

p1
k =

∫ W1

0
h1

k(t)dtG(τ)N1+1, k = 1, · · · , N1 + 1, (31)

For Case 2–3, the product experiences 0 or 1 catastrophic failures of short durations in
D2, m short durations in D1, and one longer duration in the failure set within W1. Given the
entry state i(i ∈ U), the exit state j(j ∈ D), and the serial number of visits to the catastrophic
failures set, the times are denoted by T0

mij(m = 0, · · · , N1) and T1
mkij, respectively. Let h0

mij(t)

and h1
mkij(t) be the probability functions of T0

mij and T1
mkij(k = 1, · · · , m + 1), respectively.

Assume that φ0
m(s) = [φ0

0ij(s)] and φ1
mk(s) = [φ1

mk(s)] (s ≥ 0) are the Laplace transform

matrices of h0
m(t) = [h0

mij(t)] and h1
mk(t) = [h1

mkij(t)].

Proposition 6. For a multi-state product with the failure process modeled by the homogeneous
discrete-state continuous-time Markov chain {X(t)} and warranty term renewed according to the
{τ, N1, 1} regulation, the Laplace transform of the time that the product has undergone m short
repairs due to minor failure, no or one catastrophic failure in the kth(k = 1, · · · , m + 1) cycle,
and one longer repair is:

φ0
0(s) = µ0GUD(s)PLDUeU , (32)

φ0
m(s) = (µ0GUD1(s)PSD1UeU)(µ1GUD1(s)PSD1UeU)

m−1(µ1GUD(s)PLDUeU

)
,

m = 1, · · · , N1 − 1.
(33)
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φ0
N1
(s) = (µ0GUD1(s)PSD1UeU)(µ1GUD1(s)PSD1UeU)

N1−1(µ1GUD2(s)PLD2UeU). (34)

φ1
m1 = (µ0GUD2(s)PSD2UeU)(µ1GUD1(s)PSD1UeU)

m(µ1GUD1(s)PLD1UeU), (35)

φ1
mk = (µ0GUD1(s)PSD1UeU)(µ1GUD1(s)PSD1UeU)

k−2×
(µ1GUD2(s)PSD2UeU)(µ1GUD1(s)PSD1UeU

)m−(k−1)×
(µ1GUD1(s)PLD1UeU

)
, k = 2, · · · , m + 1, m = 1, 2, · · · , N1 − 1.

(36)

φ1
01 = µ0GUD2(s)PLD2UeU . (37)

In Equation (33), the product has experienced m (m < N1) short durations in D1
and 0 visits to D2; hence, the long duration may be in D1 or D2, which gives the term
µ1GUD(s)PLDUeU . In Equation (34), the number of visits to D1 reaches the threshold and
the long duration would be in D2, which gives the term µ1GUD2(s)PLD2UeU . Similarly,
in Equations (35) and (36), the time of visits to D2 reaches the threshold and the long
duration would be in D1, which gives the last term µ1GUD1(s)PLD1UeU . In Equation (37),
the product has not experienced minor failures; therefore, the long duration would be the
first visit to D2.

Taking inverse Laplace transforms on Equations (32)–(37), the associated probability
density functions can be given. The probabilities that the warranty terms are renewed due
to exceeding the threshold repair time are as follows:

p0
m =

∫ W1

0
h0

m(t)dtG(τ)m(1− G(τ)), m = 0, · · · , N1 − 1, (38)

p0
N1

=
∫ W1

0
h0

N1
(t)dtG(τ)N1(1− G(τ)), (39)

p1
mk =

∫ W1

0
h1

mk(t)dtG(τ)m+1(G(τ)), k = 1, · · · , m + 1, m = 1, 2, · · · , N1 − 1, (40)

p1
01 =

∫ W1

0
h1

01(t)dt(1− G(τ)). (41)

According to Equations (25), (30)–(31), and (38)–(41), the probability of warranty
renewal under {τ, N1, 1} is:

pτN1 =
N1

∑
m=0

m+1

∑
k=1

pmk + p0 +
N1+1

∑
k=1

p1
k +

N1

∑
m=0

p0
m +

N1−1

∑
m=1

m+1

∑
k=1

p1
mk+p1

01.

The expected length of the renewed warranty under Case 2–1 is:

Lmk =

∫W1
0 thmk(t)dt

pτN1

, m = 0, · · · , N1, k = 1, · · · , m + 1. (42)

The expected length of the renewed warranty for Case 2–2 is:

L0 =

∫W1
0 th0(t)dt

pτN1

, (43)

L1
k =

∫W1
0 th1

k(t)dt
pτN1

, k = 1, · · · , N1 + 1. (44)

The associated expected lengths of the renewal warranty under Case 2–3 are de-
noted by L0

m(m = 0, · · · , N1 − 1), L0
N1

, L1
mk(k = 1, · · · , m + 1, m = 1, · · · , N1 − 1), and L1

01,
respectively. They can be given in a similar manner to Equations (42)–(44).
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3.2.2. Nonrenewable Warranty Service Analysis of {τ, N1, 1}Model

According to the modeling assumptions, if warranty terms are not renewed under the
{τ, N1, 1}model, the product has undergone m (l = 0, · · · , N1) short repairs due to minor
failures and 0 or 1 catastrophic failure with short repairs over (0, W1).

The Laplace transform for the probability density function of the time that the product
has gone without catastrophic failure, m(m = 1, · · · , N1) times in the working state set,
and m(m = 1, · · · , N1) short repairs due to minor failures is:

ϕ0m
f (s) = (µ0GUD1(s)PSD1UeU)(µ1GUD1(s)PSD1UeU)

m−1. (45)

The associated probability density functions are denoted by f 0
m(t).

Laplace transforms for the probability density functions of the times that the product
has experienced 1 short repair due to catastrophic failure at the kth cycle and m(m = 1, · · · , N1)
short repairs due to minor failure are given as:

ϕ1m
k f (s) = (µ0GUD1(s)PSD1UeU)

k−1(µ1GUD2(s)PSD2UeU)×
(µ1GUD1(s)PSD1UeU

)m−(k−1), k = 1, · · · , m + 1, m = 1, 2, · · · , N1.
(46)

ϕ10
1 f (s) = µ0GUD2(s)PSD2UeU . (47)

The associated probability density functions are denoted by f 1
mk(t) and f 1

01(t), respectively.
Using the same method as Proposition 3, we can obtain the following two propositions.

Proposition 7. For a multi-state product with the failure process modeled by the homogeneous
discrete-state continuous-time Markov chain {X(t)} and warranty terms renewed according to
the {τ, N1, 1} regulation, the probability that the product has undergone m(m = 1, · · · , N1) short
repairs due to minor failures and the warranty terms are not renewed is:

p̃0
m =

(∫ W1

0

∫ +∞

W1−t1

f 0
m(t1) f (t2)dt1dt2

)
G(τ), m = 1, · · · , N1. (48)

where f (t2) is the inverse Laplace transform of µ1(sI−QUU)
−1QUDeD.

Proposition 8. For a multi-state product with the failure process modelled by the homogeneous
discrete-state continuous-time Markov chain {X(t)} and warranty terms renewed according to
the {τ, N1, 1} regulation, the probability that the product has undergone one short repair due to
catastrophic failure at the kth cycle, m(m = 1, · · · , N1) short repairs due to minor failures, and the
warranty terms are not renewed is:

p̃1
mk =

(
m+1

∑
k=1

∫ W1

0

∫ +∞

W1−t1

f 1
mk(t1) f (t2)dt1dt2

)
G(τ)m+1, (49)

p̃1
01 =

(∫ W1

0

∫ +∞

W1−t1

f 1
01(t1) f (t2)dt1dt2

)
G(τ). (50)

3.3. Cost Analysis of {τ, N1, 1}Model

Using the same method as that of Theorems 1 and 2, we can obtain the following two
theorems.

Theorem 3. For a multi-state product with the failure process modelled by the homogeneous
discrete-state continuous-time Markov chain {X(t)} and warranty terms renewed according to the
{τ, N1, 1} regulation, the expected length of the warranty service is:
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E(W{τ,N1,1}) =

N1
∑

m=0

m+1
∑

k=1
pmkLmk + p0L0 +

N1+1
∑

k=1
p1

k L1
k +

N1
∑

m=0
p0

mL0
m +

N1−1
∑

m=1

m+1
∑

k=1
p1

mkL1
km+p1

01L1
01

1− pτN1

+ W1. (51)

Theorem 4. For a multi-state product with the failure process modeled by the homogeneous
discrete-state continuous-time Markov chain {X(t)} and warranty terms renewed according to the
{τ, N1, 1} regulation, the expected warranty service costs over the renewable warranty period are:

E(Crw
{τ,N1,1}) =

1
1−pτN1

(
N1
∑

m=0

m+1
∑

k=1
pmk(mcs

d1
+ cs

d2
) + p0N1cs

d1
+

N1+1
∑

k=1
p1

k(c
s
d2
+ N1cs

d1
)+

N1−1
∑

m=0
p0

m(mcs
d1
+ cl

d) + p0
N1
(N1cs

d1
+ cl

d2
) +

N1−1
∑

m=1

m+1
∑

k=1
p1

mk(mcs
d1
+ cs

d2
+ cl

d1
)+

p1
01cl

d2
+ pτN1(cnw − cs)),

(52)

In Equation (52), cs
d1

and cs
d2

are the costs for short repairs of minor and catastrophic

failures, respectively. cl
d1

and cl
d2

are the costs for long repairs of minor and catastrophic

failures, respectively. cl
d is the cost for a long repair of a failure.

Similarly, the expected cost over the nonrenewable warranty period is:

E(Cnrw
{τ,N1,1}) =

N1

∑
m=1

p̃0
mmcs

d1
+

N1

∑
m=1

p̃1
mk(mcs

d1
+ cs

d2
) + p̃1

01cs
d2

. (53)

From Equations (51)–(53), the expected cost per unit time during the warranty period
can be given as follows:

CR{τ,N1,1} =
E(Crw

{τ,N1,1}) + E(Cnrw
{τ,N1,1})

E(W{τ,N1,1})
. (54)

4. Numerical Example

This section is devoted to two numerical examples for the {τ, N} and {τ, N1, 1}models.

4.1. Numerical Example for {τ, N}Model

According to lemon laws in Pennsylvania, personal and family vehicles sold in the
state will be recognized as defective if the number of repair actions exceeds three or the
repair time for one repair exceeds 30 days over one year ([4]). Based on the aforementioned
lemon laws, we consider the following example.

The multi-state product is renewed according to the {30,3} regulation. The whole
warranty period W1 = 360 days and the distribution function of repair time
G(t) = 1 − exp(−λt) with λ = 80. The product has four working states and four
failure states, i.e., 1, 2, 3, 4 and 5, 6, 7, 8, respectively. At the initial time, it is new,
that is, µ0 =

(
1 0 0 0

)
. After repairs the product is restored to State 4, that is,

µ1 =
(
0 0 0 1

)
. The state transit rate matrices of the failure process are:

QUU =


−7.8

3
2.5
2

2.5
−10.7

3
2.5

2
2.5
−13

3

1.5
2

2.5
−14.5

, QUD =


1

1.5
2

2.5

0.5
1

1.5
2

0.2
0.5
1

1.5

0.1
0.2
0.5
1
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Since the product cannot be in the same state as the new product after a repair action
(no matter short repair or long repair), PSDU and PLDU are set as follows:

PSDU =


0 0 0.95 0.05
0 0 0.9 0.1
0 0 0.7 0.3
0 0 0.6 0.4

, PLDU =


0 0 0.75 0.25
0 0 0.65 0.35
0 0 0.7 0.3
0 0 0.55 0.45

.

Suppose that the residual value of the old product cs is $3000, the cost of updating
the product cnw is $10,000, and the cost for a short repair and long repair are $300 and
$1500, respectively.

According to the cost rate analysis in Section 2.3, the expected length of the warranty
service is about 562 days and the expected warranty service cost over the whole warranty
period is $11,954. The expected cost rate is $21.27 per day.

4.2. Numerical Example for {τ, N1, 1}Model

According to the lemon laws in Virginia, pickup trucks, vans, and RVs sold will be
recognized as defective if the number of repairs exceeds three, the time for a repair exceeds
30 days, or a catastrophic failure occurs during 18 months ([4]).

Based on the above facts, we set τ = 30, N1 = 3, and W1 = 540 days under the
{τ, N1, 1} model. States 5, 6 and States 7, 8 are minor and catastrophic failures, respectively.
The other parameters are consistent with the {τ, N} model. QUD in Section 4.1 can be
rewritten as:

QUD =
(
QUD1

QUD2

)
=


1 0.5 0.2 0.1

1.5 1 0.5 0.2
2 1.5 1 0.5

2.5 2 1.5 1

,

PSDU = PSDU =

(
PSD1U
PSD2U

)
=


0 0 0.95 0.05
0 0 0.9 0.1
0 0 0.7 0.3
0 0 0.6 0.4

, PLDU =

(
PLD1U
PLD2U

)
=


0 0 0.75 0.25
0 0 0.65 0.35
0 0 0.7 0.3
0 0 0.55 0.45

.

When the product has undergone one short duration in D1 or D2, the costs for a repair
cs

d1
and cs

d2
are $300 and $500, respectively. When the product has undergone one long

duration in D1 or D2, the costs for a repair cl
d1

and cl
d2

are $1000 and $2000, respectively.

Suppose that the cost for a long repair cl
d is $1500.

According to the cost rate analysis in Section 3.3, the expected warranty service
duration is about 666 days, the expected warranty service cost over the entire warranty
period is approximately $6514, and the expected cost rate per unit time during the warranty
period is approximately $9.78 per day.

5. Conclusions

Many countries have enacted lemon laws to effectively protect the legitimate rights and
interests of consumers. When a product subject to lemon laws is recognized as defective,
manufacturers must bear the losses caused by quality problems. Therefore, from the point
of view of manufacturers, the warranty cost analysis of these products is important for
the design and quality control of the warranty strategy. Based on the terms of lemon laws,
two warranty cost models, the {τ, N} model and the {τ, N1, 1} model, are proposed. Both
consider the main characteristics of lemon laws: the limitations of the number of repair
actions and the repair time over the warranty period. The {τ, N1, 1} model focuses on
products with minor and catastrophic failures. Numerical examples are given to illustrate
the application of the models.

Warranty cost analysis in this paper is discussed under the assumptions that work-
ing times and repair times are independent and their expectations, Laplace and inverse
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Laplace transforms exist, which are suitable for low-dimensional models and restrict
the applications of the results. In the future, we will consider the relevant theory and
application problems.

The warranty cost analysis in this paper is discussed under the assumption of a
renewable warranty, that is, a product that is recognized as defective will be replaced with
a new and identical one and the warranty terms will also be updated accordingly. In certain
lemon laws, warranties may be nonrenewable and manufacturers can refund to consumers
the purchase cost partly or fully according to the deterioration level of the product. Cost
analysis of nonrenewable warranty models with refunds is a future research direction.
Other compensation methods, such as offering a free extended warranty service, need to be
discussed. The design of the warranty policy and the optimization of products protected
by lemon laws are also worthy of investigation.
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