
Citation: Chaaban, K. A New

Algorithm for Real-Time Scheduling

and Resource Mapping for Robot

Operating Systems (ROS). Appl. Sci.

2023, 13, 1532. https://doi.org/

10.3390/app13031532

Academic Editors: Jinchao Chen and

Chao Chen

Received: 20 December 2022

Revised: 17 January 2023

Accepted: 20 January 2023

Published: 24 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A New Algorithm for Real-Time Scheduling and Resource
Mapping for Robot Operating Systems (ROS)
Khaled Chaaban

College of Computer and Information Systems, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
aochaaban@uqu.edu.sa

Featured Application: Real-Time Systems: Architectures, Software and Applications.

Abstract: A new version of a robot operating system (ROS-2) has been developed to address the real-
time and fault constraints of distributed robotics applications. However, current implementations lack
strong real-time scheduling and the optimization of response time for various tasks and applications.
This may lead to inconsistent system behavior and may affect system performance. This article
presents a new and efficient heuristic scheduling algorithm for the ROS-2 framework to improve
resource mapping and system scheduling for robotics applications. The proposed scheduling design
includes grouping callbacks into executors, assigning executor priority, and sequencing callbacks
inside executors. The timing constraints and functional properties are expressed in the formal design
model, and real-time scheduling is performed with respect to the timing constraints. The benefits
of the proposed solution are demonstrated by a set of experimental results. Using this algorithm, it
is shown that the number of executors needed to schedule a set of callbacks is minimized and the
system schedulability is maximized for loaded and overloaded cases.

Keywords: embedded real-time systems; real-time scheduling; optimization; ROS (robot operating
system)

1. Introduction

The robot operating system (ROS) offers a service-oriented solution for the develop-
ment of distributed robotic systems. It enables the integration of open-source libraries and
tools by standardizing the methodology of software design and the underlying communi-
cation layer [1,2].

Most robotic systems are classified as real-time and safety-critical. The predictable
execution of the timing under real-time constraints is an important key design for such
complex systems. ROS focuses on the fast and functional integration of different applica-
tions, while execution control and timing constraints are not adequately addressed by the
middleware [3]. Despite the effort in the new ROS-2 distribution to address the support of
real-time and fault-tolerance mechanisms [4], there is no clear definition of callback exe-
cution order within an executor and there is no control over the execution order between
the different nodes. The precedence of execution and the dependencies between different
nodes and callbacks cannot be clearly defined, and there are no mechanisms to define the
real-time scheduling of running entities [5].

Research on the end-to-end real-time analysis of ROS-2 embedded applications has
started recently. Casini et al. [6] proposed a pioneering analysis of end-to-end timing
chains in ROS-2. Subsequently, several studies addressed the real-time behavior of the
ROS-2 execution model and its performance and security capabilities [3,7]. New scheduling
techniques were proposed to improve the conventional ROS-2 scheduler by proposing an
alternate scheduler as in [8] or keeping it unmodified as in [9].

Appl. Sci. 2023, 13, 1532. https://doi.org/10.3390/app13031532 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13031532
https://doi.org/10.3390/app13031532
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5008-0358
https://doi.org/10.3390/app13031532
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031532?type=check_update&version=1

Appl. Sci. 2023, 13, 1532 2 of 20

All these previous studies consider the number of callbacks and executors to be
predefined and assume that the callbacks are already assigned to executors. They then
propose solutions for the real-time scheduling of the application. To schedule an embedded
application in ROS, we need to map callbacks to an executor in the context of which
callbacks are executed on the processor. ROS does not impose any requirements on this
step of configuration. The execution model is based on the processes that run the executors
to receive messages and invoke callbacks [4]. For large systems, manually setting up an
execution order of callbacks inside the executor, as well as assigning priorities to executors,
is always error-prone and difficult to predict. In critical safety systems, static memory
allocation is crucial. In the initialization phase, the system designer determines the number
of callbacks for the embedded application and the necessary dynamic memory to be
allocated before the system execution. Then, the system designer maps the callbacks to
the executors. The order of callbacks within an executor is important because it may affect
the real-time execution and performance of the embedded system in real-time. During
the configuration step, the system designer shall define the number of callbacks and their
sequence within the executor.

The simplest approach is to bind each callback to one executor. However, mapping
each callback to a dedicated executor leads to a lot of context switches and may lead to a
deadline violation and significant OS overhead. Similarly, mapping all callbacks of a node
to a single executor may leave the system unresponsive if the executor fails. In addition, the
internal branching structure of such a process becomes complex to schedule. Having these
two extremes in mind, finding a middle solution is an optimization goal. Our problem
consists of finding a partitioning of the callbacks set that is schedulable with a minimum
number of executors. The number of partitions to be explored for n callbacks is the Bell
number [10]. The Bell number is exponential with respect to the number of callbacks n and
can be computed by the following recurrence relation:

Bn+1 =
n

∑
k=0

(
n
k

)
Bk with B0 = 1 (1)

For example, to search for a space of 500 callbacks, we obtain B500 ≈ 10, 844. If we
group callbacks that have identical periods, the search space can be reduced to Πm

i=0(Bni),
where Bni is the Bell number of the set i of n callbacks with equal periods and m is the
number of sets. However, this number remains exponential. Given the complexity of the
problem, we need to use heuristics to reduce the search space. A simple heuristic is to
regroup callbacks with the same period (or integer multiples) to be assigned to one executor.
Several studies have considered the software clustering problem in the context of real-
time systems. Common optimization goals are stack memory usage [11,12] using genetic
algorithms and scheduling algorithms, core load balancing [11], inter-communication
overhead [13,14] using integer linear programming (ILP), data consistency using ILP and
heuristic methods [15], and deadline violation [16,17] using genetic algorithms and the
greedy heuristic approach for system resource clustering. Other work proposes regrouping
runnables with arbitrary periods on the same task using a greedy heuristic approach
combined with linear cost function and schedulability test [18,19]. This approach may
lead to a minimum number of executors needed to schedule overloaded systems while
minimizing the stack memory usage and context switch overhead. This paper adopts this
approach and adapts it to ROS-2 applications.

Contribution: This work adopts a greedy heuristic approach to quickly construct a
correct solution to the mapping and resource configuration problem of the ROS embedded
system. The heuristic itself is not the central work of this paper. The main contribution
is the design of the cost function and the associated schedulability test, which efficiently
reduce the clustering complexity. The proposed algorithm assigns a set of callbacks to the
executors while preserving the schedulability of the real-time system and simultaneously
determines the number of executors required to schedule a set of callbacks, the priority
assignment of the executor, and the sequence of callbacks within an executor (Figure 1).

Appl. Sci. 2023, 13, 1532 3 of 20

Figure 1. Main steps of the proposed approach.

First, the two-stage approach clusters callbacks using an exact schedulability test
before building an executor with priority assignment. The results of this work are as
follows:

• A formal model to analyze the system.
• A low-complexity heuristic algorithm to build executors from a set of callbacks.
• A method to assign priority to executors and to define the order of execution of

callbacks inside an executor.

Organization: This article is organized as follows: Section 2 reviews the relevant
related works. Section 3 introduces the ROS-2 architecture, its main concepts, and the
scheduling mechanisms. The formulation of the system model is provided in Section 4.
Section 5 presents the new algorithm for real-time scheduling and resource mapping for
ROS-2. Section 6 discusses the results of the experiments obtained. Section 7 concludes the
work and identifies potential perspectives.

2. Related Works

Real-time scheduling and resource allocation have been widely addressed by the
real-time systems community, such as [20–22]. In the particular context of ROS embedded
systems, most of the research work focuses on the integration of real-time scheduling capa-
bilities into the conventional scheduler of the ROS core system [6,8,23,24]. The authors of
[6] have made a significant contribution to the field by proposing a formal model with ana-
lytical methods for the analysis of the end-to-end response time of ROS embedded systems.
It is the first attempt to analyze the response time of ROS-2 processing chains. In subse-
quent work, [24] gives a more detailed analysis of end-to-end paths with the assumption
that a callback may belong to one chain. In [8], the authors suggested an alternative ROS
scheduler to reduce end-to-end latency. They consider both system scheduling techniques
and the mapping functions of callbacks to executors for monocore and multicore systems.
Their algorithm provides callback priority assignments to improve real-time predictability.
However, the proposed solution assumes that the set of executors is defined a priori. The
work in [23] proposes a method to prioritize message transmission between ROS nodes
with harmonic and non-harmonic periods. The results reveal a reduced response time and
low variance between nodes.

Furthermore, several studies have evaluated ROS-2 performance using measurement-
based approaches instead of analytical methods, such as [3,5]. They mainly conduct
empirical performance measures to propose improvement directions. Security aspects are
addressed by [25–28]. In [27], the authors investigated the security plug-ins in ROS-2 to
study its ability to mitigate multiple threats. The study considers the impact of both QoS
and security on ROS-2 network performance using measurement-based results. In [28],
the authors use a probabilistic model checker to validate the real-time performance and
reliability of ROS-2. Their method reduces the data loss rate and the response time of the
system without considering real-time scheduling. In [25], the authors propose an approach
to integrate reliability and QoS services into ROS-2 using DDS middleware services. In
[26], Krichen et al. adopted a model-based security testing (MBST) approach to check the
security of IoT applications in the context of smart cities. The proposed approach uses

Appl. Sci. 2023, 13, 1532 4 of 20

extended timed automata to model security and behavioral requirements, to design and
generate security tests, and to execute and evaluate the security tests. The model-based
nature of the proposed approach makes it applicable to other real-time systems such as
ROS-2.

Other works take advantage of optimization methods to address the NP-hard problem
of software resource allocation and configuration. These works adopted another perspective
using optimization methods [11–13,19]. In [11], Thomas Wilhelm et al. propose methods to
optimize the mapping of runnables to tasks in multicore automotive control units. First, a
constraint programming method is used to automate the generation of initial configurations
while balancing core utilization. Second, an evolutionary algorithm is used to optimize
the mapping of runnables to tasks. Task creation is conducted using a simple heuristic
of mapping runnables with the same period (or integer multiple) to the same task. The
optimization steps are performed in a serial manner, so the process may become stuck
in local minima. In [13], the authors address the problem of mapping tasks in multicore
architecture using rate monotonic scheduling (RMS). The solution regroups tasks with
the same period on the same core; then, a heuristic method is proposed to minimize the
intercommunication overhead between the core and task response time. The authors of
[12] address the issues of AUTOSAR model design analysis to minimize memory stack
utilization for mixed-criticality systems with preemptive threshold setting that addresses
the design synthesis problem. In a prior work [19], the authors developed a heuristic
algorithm to configure task mapping for AUTOSAR-based embedded systems. The main
goal is to optimize the operating system and task mapping to improve system performance.
Their method constructs a set of tasks from a set of runnables with arbitrary periods while
guaranteeing real-time requirements.

The problem of grouping/clustering has recently been addressed by several studies
with an application to the planning of autonomous robot paths [29–31]. Metaheuristic
algorithms are proposed to find optimal collision-free paths between two points for mobile
robots. The low complexity of the proposed methods and their efficiency of resource usage
have been approved for large-scale and crowded farmlands. Metaheuristic algorithms are
suitable for multimodal, multi-objective systems. However, for large systems with multiple
objectives, these methods suffer from high time complexity and the local minima trap.
Heuristic methods quickly provide a solution to a difficult optimization problem. For the
particular resource optimization of this study, we opted for the heuristic method to solve a
scheduling problem. Combining heuristic with metaheuristic methods to solve a holistic
optimization problem seems to be promising for large-scale systems.

Table 1 summarizes related works by classifying them into three main classes: ana-
lytical, heuristic, and metaheuristic methods. The online/offline variable indicates that
the developed method runs during a configuration step or at runtime. Some methods are
integrated into the ROS-2 core scheduler (Built-in). The set of decision variables and cost
objectives is listed for the optimization problem.

To the best of our knowledge, this is the first work that applies resource mapping and
scheduling with arbitrary periods to construct and schedule a set of executors given a set
of callbacks for an ROS embedded system.

Appl. Sci. 2023, 13, 1532 5 of 20

Table 1. Summary of related works

Method Class References Online/Offline Built-in ROS-2 Variables Optimization
Goals

Formal Analysis [15,20–22] Offline No priority
latency-success

ratio, data
consistency

[6,23,24] Offline Yes priority latency

[8] Online Yes priority, mapping latency, core
balancing

[26] Offline N/A QoS profiles, threat
generation

loss rate, coverage,
latency

Measurement-
based [3,7,27] Offline No QoS policy,

security
loss rate, latency,

throughput

Heuristic [28] Offline No priority, mapping
real-time

performance,
reliability

[11,19] Offline No mapping, priority,
sequencing

real-time
performance,

reliability

[12,19] Offline No mapping,
scheduling

success ratio,
latency

[13] Offline No mapping,
scheduling

inter-cores
communication

overhead, latency

Metaheuristic [29–31] Offline No clustering path cost

[11] Offline No mapping, core
balancing resp. time analysis

3. Background of ROS-2 Architecture

An embedded application in ROS consists of a set of interconnected nodes (Figure 2).
Each node contains one or more callbacks, which are the smallest pieces of code of the
application. To ensure the consistent execution of programs written with different specific
languages and different underlying platforms, a set of libraries provides the required
abstraction at different layers. rmw is the middleware layer that ensures the interface
between the data distribution service (dds) [32] layer and the robot client library (rcl) layer.
The rcl layer provides the abstraction of application programming interfaces (APIs) to the
application to ensure consistent execution between the rmw layer and specific language
client libraries such as Python (rclpy) and C++ (rcpcpp) [33]. dds is a vendor-specific
implementation of rmw that standardizes real-time communication between nodes.

The nodes communicate using a publisher/subscriber communication paradigm
or a client/server communication paradigm. The publisher/subscriber communication
paradigm is suitable for data flow streaming and sensor nodes, while the client/server
communication paradigm is more suitable for synchronous remote procedural call and
control nodes. Nodes use topics to communicate between publishers and subscribers, and
use services to communicate between clients and servers. Topics and services are identified
by a unique name, and one node can publish data on several topics and may also subscribe
to several topics. A server may have multiple clients, but a client must have one server.

Appl. Sci. 2023, 13, 1532 6 of 20

Figure 2. Main concepts of ROS-2.

Scheduling in ROS-2

This section gives a brief description of the ROS scheduling mechanism and scheduling-
related artifacts. The ROS scheduling model is implemented using executors. An executor
selects pending callbacks from the ready list to be executed. Basically, two implementations
are defined in ROS: a single executor and a multithreaded executor. In this study, we
consider a single-threaded executor.

Callback This is the smallest executable code scheduled in ROS-2. ROS-2 defines five
types of callbacks: timers that are time-triggered by system-level timers, subscribers
that are triggered by the reception of new messages at a topic, services, and clients
callbacks that are triggered by service requests and responses, respectively.

Node The node is the minimal self-contained unit of behavior. A node contains a set
of callbacks organized by application programmers for the modularity and logical
partitioning of functions. All callbacks from the same node are executed by the same
executor.

Executor The executor reads the incoming messages from a ready list and executes, in
a non-preemptive manner, the corresponding callback according to their type and
activation instant in this order: timer callbacks first, then subscriber callbacks, service
callbacks, and, finally, client callbacks, as illustrated in Figure 3. Unlike common
real-time priority-based scheduling algorithms, the executor does not always execute
callbacks in their activation instances. Instead, the executor updates the ready status
of non-timer callbacks in their respective queues when all queues are empty (called a
polling point), and such a delayed update of callback readiness makes the priority
assignment of non-timer callbacks ineffective and lets chains run in a round-robin-like
manner.

Although the conventional scheduling semantic of ROS-2 does its job well for most
applications, there are some limitations that are not compatible with safety-critical embed-
ded systems, such as well-defined execution order, priority inversion, and the high and
complex scheduling overhead in terms of CPU and memory usage.

Appl. Sci. 2023, 13, 1532 7 of 20

Figure 3. Scheduling semantics in ROS-2 (source: ros.org).

4. System Model

We assume a periodic, fixed priority with constrained deadlines to represent real-time
embedded systems. A steady-state system is considered, i.e. callbacks are defined at the
initialization phase, and the configuration is still static during run-time since we consider
safety-critical systems in the context of this work. The response time of a callback is the
duration from the release instant to the completion of the job execution. Each callback must
have a relative deadline. If the worst-case response time of the callback is shorter than or
equal to its relative deadline, we say that the callback is schedulable. In the following, some
useful definitions are given, which are used later in this article.

Definition 1 (GCD). The greatest common divisor (GCD) of two positive integers (a, b), denoted
by GCD(a,b), is defined as the greatest positive number that is a common factor of both positive
integers (a, b). Example: GCD(3,4) = 1.

Definition 2 (LCM). The least common multiple (LCM) of two positive integers (a, b), denoted
by LCM(a,b), is defined as the smallest positive integer that is divisible by both a and b. Example:
LCM(3,4) = 12.

Let us denote by ∆, a set of m callbacks ∆ = {τ0, τ1, . . . τm}. A callback τi is the
smallest piece of code that runs in the context of an executor, denoted ej. A callback τi can
be formalized as follows:

τi(ci, pi, di, ki) (2)

• ci: The worst-case execution time (WCET).
• pi: The callback period.
• di: The deadline for a callback.
• ki: A positive integer that defines the order of callback execution within the executor.

Let us denote by ξ a set of n executors ξ = {e0, e1, . . . , en}. To model an executor, a
multi-frame task model [34] is adopted where the execution of an executor ej consists of a
sequence of N frames characterized as follows:

(~Ej, Pj, Dj, Tj) (3)

• Dj: The executor deadline.
• Pj: The executor priority.

ros.org

Appl. Sci. 2023, 13, 1532 8 of 20

• Tj: The executor period.
• ~Ej = [Cj,0, Cj,1, . . . , Cj,s, . . . , Cj,N−1]: A vector of Nj components. Each component Cj,i

represents the execution time of ej in frame j.

The execution time Cj,s of the sth frame should be less than the executor period Tj.
The period Tj of an executor ej that contains m callbacks can be determined as the

greatest common divisor (GCD) of the periods:

Tj = GCD
1≤i≤m

{pi}. (4)

The frames of the executor ej periodically repeat with a major cycle of πj equal to the
least common divisor (LCM) of the callback periods:

πj = LCM
1≤i≤m

{pi}. (5)

The number of frames Nj can be determined by dividing the major cycle by the
executor period as follows: Nj = πj/Tj.

Each execution time Cj,s of the sth frame (s = 0, 1, . . . , Nj−1) is given by the following
equation:

Cj,s =
n

∑
i=1

hi(s) ∗ ci (6)

where the function hi(s) indicates that the ith callback is present or not in the sth frame as
follows:

hi(s) =

{
1 i f fi(s) = s
0 i f fi(s) 6= s

(7)

with

fi(s) =
⌊

s
γi

⌋
γi (8)

fi(s) computes a location for callback τi in frame s (fi(s) ≤ s). γi = pi/Tj represents
the repetition factor of τi in ej. ((nγi + δi) mod N) indicates the position of τi. Table 2
summarizes the main notation of the system model.

Table 2. Main notations used in this study.

Symbol Description

τ Callback
c Worst-case execution time (wcrt) of callback
p Callback period
d Callback deadline
k Execution order of callback within executor

e Executor
Ej Maximum execution time of executor
T Executor period
D Executor deadline
P Executor priority
π Major cycle of the executor
GCD Greatest common divider
LCM Least common multiple

Hereafter, an example with the callbacks set ’{τ1(1, 10, 8, 1), τ2(1, 15, 10, 2), τ3(1, 15, 12, 3)
and τ4(1, 30, 19, 4)}’ is assigned to one executor e1.

Table 3 illustrates an example of how to compute the parameters of the executor model,
and Figure 4 shows a visual representation of the executor and its callbacks.

Appl. Sci. 2023, 13, 1532 9 of 20

Table 3. An example of computing executor model parameters.

sth Frame
fi(s) hi(s) C1,s

τ1 τ2 τ3 τ4 τ1 τ2 τ3 τ4

0 0 1 0 5 1 0 1 0 2

1 0 1 0 5 0 1 0 0 1

2 2 1 0 5 1 0 0 0 1

3 2 4 3 5 0 0 1 0 1

4 4 4 3 5 1 1 0 0 2

5 4 4 3 5 0 0 0 1 1

10 200

1, 10,8,1 1, 15,10,2 1, 15,12,3 1, 30,19,4

= 30
= 8

30

= 5

e1

T1

D1
1π

τ1 τ2 τ3 τ4

Figure 4. Example of assigning callbacks to the executor e1. π1 = LCM(10, 15, 15, 30) = 30. T1 =
GCD(10, 15, 15, 30) = 5. D1 = min{8, 10, 12, 19} = 8. Number o f f rames N = 30/5 = 6.

5. Heuristic Scheduling Algorithm

We try to assign a callback τi from a set ∆ to a unique executor ei of a set ξ. The
problem consists of finding a feasible assignment using a minimal number of executors
while meeting the timing requirements. The system is declared schedulable if and only if
any executor ej of ξ is schedulable and satisfies the deadline constraint.

To achieve this, we propose the following algorithm that assigns n callbacks from ∆ to
m executors of ξ (Algorithm 1).

Algorithm 1: Assigning callbacks to executors.

Input: ∆ = {τ1, τ2, . . . , τn}
Output: ξ = {e1, e2, . . . , em}

1 ξ = ∅ ; //
2 j = 1 ; // Starting from the lowest priority
3 while ∆ 6= ∅ do
4 Πj = Assignment(∆) ; // Algo. 2
5 if Πj 6= ∅ then
6 [Λj, ej] = CreateExecutor(Πj) ; // Algo. 3
7 ξ = ξ ∪ {ej} ; //
8 ∆ = ∆\Λj ; // Remove Λj from ∆
9 j = j + 1;

10 else
11 ξ = ∅ ; // Set empty output
12 break ; // System is not scdedulable!
13 end
14 end

To establish the output list of executors ξ, the algorithm invokes two other algorithms
in its main loop. The first algorithm, ‘Assignment’ (Algorithm 2), establishes a subset
of callbacks Πj to be assigned to the same executor ej by starting from the lowest prior-

Appl. Sci. 2023, 13, 1532 10 of 20

ity level (j = 1). In the case of not empty Πj, a second algorithm, called ’CreateExecutor’
(Algorithm 3), is called to define the subset of callbacks Λi from Πj to be assigned to the ex-
ecutor ej and determine its parameters. By iteration, the set of executors ξ = {1, . . . ,j , . . . ,m }
is constructed until all callbacks (∆ = ∅) are assigned to the executors. If, in any iteration,
Algorithm 2 does not find a feasible subset Πj, then the entire system is declared unschedu-
lable. In the following, we detail Algorithms 2 and 3 used by the main Algorithm 1.

5.1. Algorithm 2: Assignment

This section details Algorithm 2, the objective of which is to identify a subset of call-
backs that could be regrouped with one executor while satisfying real-time requirements.

Theorem 1. Suppose a set ∆ of callbacks and an executor ej. There is a subset Πj ⊆ ∆ that can be
assigned to the same executor ej if and only if each element τi of Πj is schedulable when assigned a
lower priority and other elements∆ -τi} are assigned higher priorities.

Proof. The proof can be obtained by contradiction. Let us suppose two callbacks τ1 and τ2
with d1 and d2 as deadlines, respectively. Suppose that the set of callbacks {τ1, τ2} is feasible
with the lowest priority. Two distinct cases may appear: (1) τ1 has a higher priority than
τ2, or (2) τ2 has a higher priority than τ1. The response times of τ1 and τ2 when assigned
the lowest priority are identical for the two cases. This means that τ1 and τ2 must always
complete the execution before the shortest deadline. Therefore, the set of callbacks τ1, τ2}
can be assigned to an executor with a deadline D =min{d1, d2}. Consequently, if a set of
callbacks is feasible when all callbacks are assigned the lowest priority, then this set can
be assigned to only one executor. On the other hand, if {τ1, τ2} is not schedulable with the
lowest priority, there is no priority assignment that allows scheduling callbacks. Therefore,
if a set of callbacks can be assigned to one executor, each callback is feasible when assigned
to the lowest priority.

As stated in the above theorem, the subset Πj can be obtained if each callback of ∆
satisfies the following equation:

Ri = ci + ∑
k∈∆−{τi}

⌈
Ri
pk

⌉
ck ≤ di (9)

Ri is the worst-case response time of callback τi when assigned the lowest priority and
all callbacks are released at the same time (critical instant). pk and ck are, respectively, the
period and the worst-case execution time for the kth callback. This results in the longest
response time to callback [21]. As all callbacks have the same wcrt when assigned to the
lowest priority, Ri can be simplified as:

∀τi ∈ ∆ : R =
|∆|

∑
k=1

⌈
R
pk

⌉
εk ≤ di (10)

and R can be solved by the following recurrence relation:

Rt+1 =
|∆|

∑
k=1

⌈
Rt

pk

⌉
ck (11)

where R0 = ∑k=1→ |∆| ck. Equation (11) surely converges if the processor utilization factor
does not exceed 100%. The schedulability condition is given by the following condition:

Rt+1 >
|∆|

max
k=1
{dk} (12)

where dk is the deadline for the kth callback.

Appl. Sci. 2023, 13, 1532 11 of 20

The Algorithm 2 finds, from a set ∆, a subset of callbacks Π that can be assigned to the
same executor with a time complexity of O((max(pi)/ min(pi))n).

Algorithm 2: Mapping feasibility test

Input: ∆ = {τ1, τ2, . . . , τn}
Output: Π

1 Π = ∅ ; //

2 R = ∑
|∆|
i=1 ci ; //

3 Dmax = max|∆|i=1{di} ; //
4 cont = True ; //
5 while cont do
6 Rt = ∑

|∆|
i=1

⌈
R
pi

⌉
ci ; //

7 if R == Rt then
8 cont = False
9 end

10 if Rt > Dmax then
11 return ∅ ; // ∆ is not schedulable
12 end
13 R = Rt ;
14 end
15 for i = 1 to |∆| do
16 if (R ≤ di) then
17 Π = Π ∪ {τi};
18 end
19 end

5.2. Algorithm 3: Executor Creation

This section presents the algorithm CreateExecutor, whose objective is to select a subset
of callbacks to be assigned to one executor and to determine its scheduling parameters.

The Algorithm 3 takes as input a set of callbacks Π and then determines as output a
subset Λ to be assigned to an executor e. The algorithm also defines the sequence order
of callbacks within the executor and computes its timing parameters: vector of execution
times ~E, period T, and deadline D.

We say that there is a set of callbacks Λ ⊆ Π that can be assigned to the same executor
if and only if:

Condition 1: ∀i ∈ Λ : T = GCD|Λ|i=1 pi > 1
Condition 2: E = ∑N−1

s=0 Cs ≤ Tj

Condition 3: R ≤ min|Λj|
i=1 di

Condition 3 is ensured by the feasibility test, which guarantees that R is less than or
equal to the shortest callback deadline. Moreover, the executor deadline may be longer
than its period, and consequently, buffering instances may occur for the execution of an
executor. The number of buffered instances of an executor ej is bounded by

⌈
Rτj /Tj

⌉
. The

first condition prevents the maximum buffering of an executor instance by creating subsets
of callback periods.

To implement this, the bucket select algorithm (BSA) is used to divide n callbacks
into several buckets {Li} using the divisibility test by prime numbers. The bucket select
Algorithm 4 described in the following and illustrated by an example in Figure 5 selects
one bucket from n callbacks with a time complexity of O(kn).

Appl. Sci. 2023, 13, 1532 12 of 20

Algorithm 3: CreateExecutor
Input: Π = {τ1, τ2, . . . , τn}
Output: Λ and executor e(~E, T, D)

1 Λ = ∅; //
2 D = ∞; //
3 let K be the list of k first prime numbers ; //
4 [Lb, Tb] = BucketSelectAlgorithm(Π, K) ; // Algorithm 4
5 Sort Lb by increased period order ; //
6 Tw = p1 ; //
7 π = p1 ; //
8 for i in Lb do
9 Tw = LCM(π, pi); ; //

10 E = maxTw/T
s=0 Cs ; // Computed using Equation (6)

11 if E ≤ T then
12 Λ = Λ ∪ {ri} ; //
13 D = min{D, di} ; //
14 π = Tw ; //
15 end
16 end
17 Sort Λ in ascending deadline order ; // Define callbacks execution order k
18 return Λ, e

2 3 5 7 11

18 3 5 35 55

2 3 5 5 5

5555

25

15

35

3518 18

15

[K]

L1 L2 L3 L4 L5

L1

L1[T]

[P]

Select the bucket Li having K[i]=P[i] and the

greatest T[i] value, for i = 1 to 5.

Lb

1 8

Tb=18

Period set={55, 25, 18, 15, 35}

Figure 5. Example of the bucket select algorithm (BSA).

Appl. Sci. 2023, 13, 1532 13 of 20

Algorithm 4: Bucket select algorithm

Input: Π = {τ1, τ2, . . . , τn}, K = {x1, x2, . . . , xk}
Output: Lb, Tb
/* Creating k empty list {L} and two list of k sise [T] and [P] */

1 for i = 1 to k do
2 Li = ∅; T[i] = 0; P[i] = 0;
3 end
/* Creating buckets L1, L2, . . . , Lk */

4 for i = 1 to n do
5 for j = 1 to k do
6 if mod(pi, xj) = 0 then
7 Lj = Lj ∪ τi ; /* */
8 end
9 end

10 end
/* Computing [T] and [P] */

11 for i = 1 to k do
12 T[i] = GCD(Li) ; //
13 for j = 1 to k do
14 if mod(T[i], xj) = 0 then
15 P[i] = xj ; // This is the first prime number, where Ti is

divisible by it
16 break
17 end
18 end
19 end

/* Determining Lb and Tb */
20 for j = 1 to k do
21 if xj = P[j] and T[j] > Tb then
22 Tb = T[j] ; //
23 Lb = Lj ; // Select the bucket that has the greatest period

value
24 end
25 end

Let [K] be a list of first prime numbers. For each prime number xi (i = 1 to k), the
algorithm regroups in a list Li (i = 1 to k) the callbacks whose periods can be divided by xi.
Therefore, each bucket Li contains a subset of callback periods characterized by two timing
parameters: T[i], which corresponds to the GCD of the callback periods of the bucket Li,
and P[i], which is the minimum prime number, where T[i] is divisible by it. Finally, the
algorithm returns the bucket Lb with xi = P[i] and the highest period value T[i], denoted
by Tb.

To avoid overloading the executor, a sequencing of callbacks within the executor is
necessary. For that, we adapt the lowest peak (LP) method developed in [35]. The algorithm
chooses the callback offset through a larger frame window Tw, which is equal to the LCM

of the callback periods. The maximum execution time Ej = max
Tw/Tj
s=0 Cs must be less than

or equal to the executor period Tj.
The Algorithm 3 creates an executor e from n callbacks with a time complexity of

O((k + N)n + n), where N is the frame number (N = Tw/T) and k is the number of prime
numbers.

Appl. Sci. 2023, 13, 1532 14 of 20

6. Experimental Results

This section presents and discusses the evaluation of the proposed algorithm. The
evaluation is carried out in a uniprocessor case study with periodic and independent
callbacks. The proposed solution is compared with three scheduling methods: RMS, GBFS,
and greedy LL scheduling algorithms.

The rate monotonic scheduling (RMS) algorithm was introduced by Liu and Layland
in 1973 [21] and is considered a baseline for real-time scheduling. It is a preemptive fixed-
priority scheduling algorithm suited for periodic independent and synchronous tasks. The
priority of a task is inversely proportional to its period, i.e., the highest priority task will
correspond to the task with the shortest period. The algorithm clusters n callbacks on m
executors in two steps:

• In the first step, callbacks that have the same periods are grouped in the same executor
with a time complexity of O(mn);

• In the second step, a merge sort algorithm is used to define callback priority by
assigning high priority to the shortest deadlines with a time complexity of O(m2).

In the following, a pseudocode of the RMS algorithm is given (Algorithm 5). The
algorithm iterates to regroup elements of S that have the same period while satisfying a
linear schedulability test (Schedule() function) defined in [36] and considering the following
assumptions:

Clustering two elements τi and τj in S {taui ∪ τj} produces a new element with the
following parameters: cij = ci + cj, dij = min(di, dj), and pij = pi = pj.

Algorithm 5: Rate monotonic scheduling (RMS) algorithm.

Input: S = {τ1, τ2, . . . , τn}
1 Function clustering(S):
2 S

′
= ∅ ; //

3 Sort S in ascending order of priorities first, and deadlines second ; //
4 for i = n− 1→ 0 do
5 if pi = pn then
6 S

′
= {S \ {τi} ∪ {τin} ; /* Clustering pi and pn */

7 if Schedule (S
′
) then ; // Test the schedulability of the system

8

9 Smin = S
′

10 else
11 pi = pi + 1 ; /* Increase the priority of pi */
12 Smin = S ; /* Dot not cluster τi with τn */

13 if Smin not ∅ then
14 return clustering (Smin) ; /* Iterate for the next element */
15 else
16 return S

Note that the number of executors in this case is equal to at least the number of distinct
periods in the set of callbacks. In industry, the system designer still uses the algorithm
for embedded critical systems, as it guarantees upper bounds to the response time and is
simple to implement. However, it is generally too conservative (pessimiste) for practical
use and does not optimize the use of system resources [37].

The GBFS algorithm developed by [17] uses the greedy heuristic approach to gather
the largest number of callbacks to the same executor. Priorities are assigned by deadline,
i.e., the callbacks with the shortest deadline have the highest priority. The time complexity
of the algorithm is of O(n4), where n is the initial number of callbacks to be clustered
(Algorithm 6).

Appl. Sci. 2023, 13, 1532 15 of 20

Algorithm 6: GBFS algorithm.

Input: S = {τ1, τ2, . . . , τn}
1 Function Clustering(S):
2 S

′
= ∅ ; //

3 minSet = ∅ ; //
4 minSumTests = ∅ ; //
5 Sort S in ascending order of deadlines ; //
6 for i=n→0 do
7 for j = i− 1→ 0 do
8 if pi = pj then
9 if (ci + cj) ≤ min(di, dj) then ; // Test laxity

10

11 S
′
= {S \ {τi, τj}} ∪ τij if Schedule (S

′
) then

12 if cost(S) < minSumTests then
13 m

14 inSumTests = cost(S) ; //
15 SminSet = S

′
; //

16 if Smin not ∅ then
17 return Clustering (minSet)
18 else
19 return S

For each clustering iteration, the algorithm uses a sufficient schedulability test and a
cost function to select the best result in each clustering iteration (Equation (13)).

cost(S) =
|S|

∑
k=0

ck
dk

(13)

The third algorithm used for comparison is the least loaded (LL) heuristic approach,
used in [18]. The approach applies a deadline test schedulability similar to the one used in
this paper along with a heuristic approach of least load to design the cost function, and
defines the sequencing order of callbacks inside the executor with a complexity of O(n2).

6.1. Workload Generation

A set of callbacks is generated randomly using the UUnifast algorithm developed
by [22] in order to accurately assess the proposed solution in different execution scenarios.
The algorithm splits the CPU usage factor U into smaller usage factors ui for n callbacks.
For each callback τi, the deadline di is determined by the following equation:

di = (pi − ci)rand(a, b) + ci (14)

where rand(a, b) generates values from a uniform distribution in the interval [a, b] with
0 ≤ a ≤ b. Using these equations, several sets of callbacks are randomly generated with a
cardinality varying from 10 to 10,000. The callback period is chosen randomly in the range
of [10, 275] ms and the deadline is set equal to the period.

6.2. Performance Metrics

The comparison study considers four performance metrics: success ratio, number of
executors, execution time, and average response time.

Success ratio: Consider a set Σ = {∆1, ∆2, . . . , ∆i, . . . , ∆N} composed of N subsets of call-
backs ∆i, and A as a scheduling algorithm. We say that ∆i can be scheduled by the

Appl. Sci. 2023, 13, 1532 16 of 20

scheduling algorithm A if all callbacks from ∆i meet their deadlines, denoted by
A(∆i) = 1, and if not, we denote it by A(∆i) = 0. As a result, the success rate SR of
the scheduling algorithm A on Σ is defined by the following:

SR = 100 ∗ ∑N
i=1 A(∆i)

N
(15)

Number of executors: This metric represents the number of executors provided by the
algorithm to schedule all callbacks while meeting real-time constraints. We try to
minimize this metric.

Runtime: This metric measures the time it takes the algorithm to obtain a solution.

Average response time: Average response time is the time elapsed between the activation
and completion of a callback. The following equation is defined to calculate the
average response time rate TRm for a set of callbacks with cardinality n:

TRm = 100 ∗
∑n

i=1
ci
di

n
(16)

6.3. Schedulability Test

Figure 6 shows the success ratio of all algorithms when varying callback deadlines.
For each deadline interval [a, b], we run all algorithms on sets of 1000 callbacks with a
cardinality of 100 callbacks per set and a CPU utilization factor of 90%.

Figure 6. Success ratio vs. deadline.

Figure 6 shows that the proposed algorithm significantly outperforms both the RMS
and the GBFS algorithms in terms of the success ratio. We observe that the ratio decreases
as the deadlines become shorter (stressed system). RMS algorithms quickly fail to schedule
callbacks when the proposed algorithm continues to provide feasible solutions under tight
deadlines. However, LL provides the same success ratio as the proposed algorithm, since it
applies the same schedulability test.

6.4. Number of Executors

In this experiment, we compare the number of executors obtained by all algorithms.
A utilization factor of 60% is used and 10 callback sets are randomly generated with a
cardinality of 100 and a deadline on request.

We then successively run all algorithms on all workloads and determine the maximum
number of executors among the 10 sets of callbacks.

Appl. Sci. 2023, 13, 1532 17 of 20

As shown in Figure 7, the proposed algorithm outperforms RMS, LL, and GBFS in
terms of the number of executors. For both RMS and GBFS, the algorithms try to regroup
callbacks with the same period to the same executor, while LL regroups periods to the
same executor. The proposed algorithm builds executors from callbacks with arbitrary
periods. This leads to a minimal number of executors with low variance while guaranteeing
system schedulability even in very stringent deadline situations. On the other hand, in
RMS and GBFS, the variance is greater and the number of executors may be twice the
number of distinct periods. This may have a major influence on the system stack memory.
For example, suppose that all callbacks consume the same stack memory size of 512 bytes.
The stack of an executor is the maximum size of all callbacks assigned to it. Therefore, the
stack memory used to implement MPS for a deadline interval [0.2, 1] is 20 executors*512
bytes = 10 kb. However, in the proposed algorithm, it is only 2 executors*512 bytes = 1 kb.

Figure 7. Executor number vs. deadline.

Let us also note that the RMS and GBFS algorithms do not succeed in scheduling
the system, since the deadline becomes tight where the proposed algorithm still finds a
schedulable system.

6.5. Runtime Analysis Comparison (in ms)

Runtime analysis of algorithms is performed by running each algorithm on different
sets of callbacks with a cardinality ranging from 1 to 1000. For each cardinality value, ten
sets of callbacks are randomly generated with a deadline on request (i.e., the deadline is
equal to the period), and a CPU utilization factor of 60%. All algorithms are run successively
on all callback sets, and the average execution time is computed for each. The runtime is
obtained using a PC i7-2640-2.8 GHz and 8 GB of memory.

As shown in Table 4, the GBFS algorithm quickly fails to find an acceptable solu-
tion (n/a) when the number of callbacks increases. However, the proposed algorithm
outperforms RMS in finding a schedulable solution in a reasonable time. The lower time
complexity of the algorithm proposed by O((k + N)n + n) leads to a minimum runtime,
compared to the RMS and LL algorithms that have a time complexity of O(m2 + mn) and
O(n2), respectively, and the GBFS algorithm that has a polynomial time complexity of
O(n4).

Appl. Sci. 2023, 13, 1532 18 of 20

Table 4. Runtime results (in ms).

Callback
Cardinality GBFS RMS LL Proposed

Algorithm

50 12,000 1345 1744 30

60 n/a 1862 732 160

80 n/a 2668 1260 924

100 n/a 5316 n/a 769

200 n/a 16,705 n/a 2483

6.6. Response Time Analysis

This experiment considers 10 sets of callbacks. A set contains 100 callbacks randomly
generated with a CPU utilization factor of 60%.

For each deadline interval [a, b], we run all algorithms on 10 sets of callbacks and
determine the maximum average response time. Figure 8 shows the average response time
versus the deadline. The proposed algorithm finds a mapping of callbacks to executors
that gives better response times than those obtained by other algorithms. This is due
to the tuning of the callback sequencing and activation. However, the LL algorithm
underperforms compared with the RMS and GBFS algorithms by causing the highest
response times. Furthermore, we note that when the deadlines tighten after the interval
[0.2, 1], both the LL and the proposed algorithm continue to be schedulable with a gradual
increase in response time up to the interval [0, 0.5].

Figure 8. Response time for different algorithms.

7. Limitations, Extensions, and Conclusions

This paper provides a new method to optimize the allocation and configuration of
software resources for ROS embedded systems. The proposed solution builds a set of
executors, maps callbacks to executors, assigns executor priority, and defines the execution
sequencing of callbacks. The experimental results reported in this article demonstrate the
efficiency of the new proposed algorithm in improving system scheduling and performance.
For overloaded systems with tight deadlines, the proposed algorithm continues to provide
a feasible solution while minimizing the number of executors to schedule the embedded
application, whereas other algorithms do not find a solution.

The proposed solution is applied to critical embedded real-time systems with periodic
executions. Formal analysis and optimization should be performed in the configuration
phase and before system execution. The study considers a monocore system with a priority-
driven scheduling policy. In extension to this study, future work should extend the system

Appl. Sci. 2023, 13, 1532 19 of 20

model to consider multicore architecture with resource dependencies. A trade-off between
response time, stack memory usage, and data consistency should be considered. In addition,
end-to-end system analysis can be performed by extending the model with the notion
of end-to-end chains for distributed systems. Thus, the analysis considers dependencies
among callbacks when computing the bound of end-to-end response time.

Funding: The author would like to thank the Deanship of Scientific Research at Umm Al-Qura
University for supporting this work by Grant Code: (22UQU4361048DSR04).

Conflicts of Interest: The author declares no conflict of interest.

References
1. Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A. ROS: An open-source Robot

Operating System. ICRA Workshop Open Source Softw. 2009, 3, 1–6.
2. Koubaa, A. Robot Operating System (ROS): The Complete Reference (Volume 3); Studies in Computational Intelligence; Springer: Cham,

Switzerland, 2018; Volume 778. https://doi.org/10.1007/978-3-319-91590-6.
3. Li, Z.; Hasegawa, A.; Azumi, T. A_Perf: A tracing and performance analysis framework for ROS 2 applications. J. Syst. Archit.

2021, 123, 102341. https://doi.org/10.1016/j.sysarc.2021.102341.
4. Macenski, S.; Foote, T.; Gerkey, B.; Lalancette, C.; Woodall, W. Robot Operating System 2: Design, architecture, and uses in the

wild. J. Sci. Robot. 2022, 7, abm6074. https://www.doi.org/10.1126/scirobotics.abm6074.
5. Yang, Y.; Azumi, T. Exploring Real-Time Executor on ROS 2. In Proceedings of the 2020 IEEE International Conference on

Embedded Software and Systems (ICESS), Shanghai, China, 10–11 December 2020; pp. 1–8. https://doi.org/10.1109/ICESS49830.
2020.9301530.

6. Casini, D.; Blaß, T.; Lütkebohle, I.; Brandenburg, B. Response-Time Analysis of ROS 2 Processing Chains Under Reservation-Based
Scheduling. In Proceedings of the 31th Euromicro Conference on Real-Time Systems (ECRTS 2019), Stuttgart, Germany, 2019.
https://doi.org/10.4230/LIPIcs.ECRTS.2019.6.

7. Maruyama, Y.; Kato, S.; Azumi, T. Exploring the Performance of ROS-2. In Proceedings of the 13th International Conference on
Embedded Software, EMSOFT ’16, Pittsburgh, PA, USA, 1–7 October 2016 https://doi.org/10.1145/2968478.2968502.

8. Choi, H.; Xiang, Y.; Kim, H. PiCAS: New Design of Priority-Driven Chain-Aware Scheduling for ROS2. In Proceedings of the 2021
IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS), Online, 18–21 May 2021; pp. 251–263.
https://doi.org/10.1109/RTAS52030.2021.00028.

9. Blaß, T.; Casini, D.; Bozhko, S.; Brandenburg, B.B. A ROS 2 Response-Time Analysis Exploiting Starvation Freedom and
Execution-Time Variance. In Proceedings of the 2021 IEEE Real-Time Systems Symposium (RTSS), Dortmund, Germany, 2021; pp.
41–53. https://doi.org/10.1109/RTSS52674.2021.00016.

10. Rota, G.C. The Number of Partitions of a Set. Am. Math. Mon. 1964, 71, 498–504. https://doi.org/10.1080/00029890.1964.11992270.
11. Wilhelm, T.; Weber, R. Towards Model-Based Generation and Optimization of AUTOSAR Runnable-to-Task Mapping. In

Proceedings of the 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C), Munich, Germany, 2019; pp. 38–43. https://doi.org/10.1109/MODELS-C.2019.00012.

12. Zhao, Q.; Gu, Z.; Zeng, H. Design optimization for AUTOSAR models with preemption thresholds and mixed-criticality
scheduling. J. Syst. Archit. 2017, 72, 61–68. https://doi.org/10.1016/j.sysarc.2016.08.003.

13. Gupta, P.; Singh, N.P.; Srinivasan, G. An Efficient Approach For Mapping AUTOSAR Runnables in Multi-core Automotive
systems to Minimize Communication Cost. In Proceedings of the 2019 Innovations in Power and Advanced Computing
Technologies (i-PACT), Vellore, India, 2019; Volume 1, pp. 1–4. https://doi.org/10.1109/i-PACT44901.2019.8960215.

14. Saidi, S.E.; Cotard, S.; Chaaban, K.; Marteil, K. An ILP Approach for Mapping AUTOSAR Runnables on Multi-core Architectures.
In Proceedings of the 2015 Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools, Amsterdam, The
Netherlands, 19–21 January 2015; pp. 6:1–6:8. https://doi.org/10.1145/2693433.2693439.

15. Al-bayati, Z.; Sun, Y.; Zeng, H.; Natale, M.D.; Zhu, Q.; Meyer, B.H. Partitioning and Selection of Data Consistency Mechanisms
for Multicore Real-Time Systems. ACM Trans. Embed. Comput. Syst. 2019, 18, 1–28. https://doi.org/10.1145/3320271.

16. Wozniak, E.; Mehiaoui, A.; Mraidha, C.; Tucci-Piergiovanni, S.; Gerard, S. An optimization approach for the synthesis of
AUTOSAR architectures. In Proceedings of the 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation
(ETFA), Cagliari, Italy, 10–13 September 2013; pp. 1–10.

17. Bertout, A.; Forget, J.; Olejnik, R. A Heuristic to Minimize the Cardinality of a Real-time Task Set by Automated Task Clustering.
In Proceedings of the 29th Annual ACM Symposium on Applied Computing, Gyeongju, Republic of Korea, 24–28 March 2014;
pp. 1431–1436. https://doi.org/10.1145/2554850.2554958.

18. Mixed Harmonic Runnable Scheduling for Automotive Software on Multi-Core Processors. Int. J. Automot. Technol. 2018,
19, 323–330.

19. Khenfri, F.; Chaaban, K.; Chetto, M. Efficient mapping of runnables to tasks for embedded AUTOSAR applications. J. Syst. Archit.
2020, 110, 101800.

Appl. Sci. 2023, 13, 1532 20 of 20

20. Kim, S. Efficient Exact Response Time Analysis for Fixed Priority Scheduling in Lowest Priority First-Based Feasibility Tests.
IEEE Embed. Syst. Lett. 2021, 13, 69–72. https://doi.org/10.1109/LES.2020.3025600.

21. Liu, C.L.; Layland, J.W. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment. J. ACM 1973, 20, 46–61.
22. Bini, E.; Buttazzo, G. Measuring the Performance of Schedulability Tests. Real-Time Syst. 2005, 30, 129–154.
23. Saito, Y.; Azumi, T.; Kato, S.; Nishio, N. Priority and Synchronization Support for ROS. In Proceedings of the 2016 IEEE 4th

International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA), Nagoya, Japan, 6–7 October 2016;
pp. 77–82. https://doi.org/10.1109/CPSNA.2016.24.

24. Tang, Y.; Feng, Z.; Guan, N.; Jiang, X.; Lv, M.; Deng, Q.; Yi, W. Response Time Analysis and Priority Assignment of Processing
Chains on ROS2 Executors. In Proceedings of the 2020 IEEE Real-Time Systems Symposium (RTSS), Houston, TX, USA, 1–4
December 2020; pp. 231–243. https://doi.org/10.1109/RTSS49844.2020.00030.

25. Chaaban, K. A seamless integration of fault-tolerant and real-time capabilities for Robot Operating System (ROS), In Proceedings
of the 4th International Conference on Applied Automation and Industrial Diagnostics ICAAID, Hail, Saudi Arabia, 29–31 March
2022. https://doi.org/10.1109/ICAAID51067.2022.9799496

26. Krichen, M.; Lahami, M.; Cheikhrouhou, O.; Alroobaea, R.; Maâlej, A.J., Security Testing of Internet of Things for Smart
City Applications: A Formal Approach. In Smart Infrastructure and Applications: Foundations for Smarter Cities and Societies;
Mehmood, R., See, S., Katib, I., Chlamtac, I., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 629–653.
https://doi.org/10.1007/978-3-030-13705-2_26.

27. Fernandez, J.; Allen, B.; Thulasiraman, P.; Bingham, B. Performance Study of the Robot Operating System 2 with QoS and
Cyber Security Settings. In Proceedings of the 2020 IEEE International Systems Conference (SysCon), Montreal, QC, Canada, 24
August–20 September 2020; pp. 1–6. https://doi.org/10.1109/SysCon47679.2020.9275872.

28. Lu, Q.; Li, X.; Guan, Y.; Wang, R.; Shi, Z. Modeling and Analysis of Data Flow-Oriented ROS2 Data Distribution Service. Int. J.
Softw. Inform. 2021, 11, 505–520. https://doi.org/10.21655/ijsi.1673-7288.00258.

29. Chen, J.; Du, C.; Zhang, Y.; Han, P.; Wei, W. A Clustering-Based Coverage Path Planning Method for Autonomous Heterogeneous
UAVs. IEEE Trans. Intell. Transp. Syst. 2022, 23, 25546–25556. https://doi.org/10.1109/TITS.2021.3066240.

30. Chen, J.; Ling, F.; Zhang, Y.; You, T.; Liu, Y.; Du, X. Coverage path planning of heterogeneous unmanned aerial vehicles based on
ant colony system. Swarm Evol. Comput. 2022, 69, 101005. https://doi.org/10.1016/j.swevo.2021.101005.

31. Chen, J.; Zhang, Y.; Wu, L.; You, T.; Ning, X. An Adaptive Clustering-Based Algorithm for Automatic Path Planning of
Heterogeneous UAVs. IEEE Trans. Intell. Transp. Syst. 2022, 23, 16842–16853. https://doi.org/10.1109/TITS.2021.3131473.

32. Pardo-Castellote, G. OMG Data-Distribution Service: architectural overview. In proceedings of IEEE Military Communications
Conference, Boston, MA, USA, 2003; pp. 242–247, Volume 1. https://doi.org/10.1109/MILCOM.2003.1290110.

33. Cousins, S. Exponential growth of ROS. Robot. Autom. Mag. 2011, 18, 19–20. https://doi.org/10.1109/MRA.2010.940147.
34. Mok, A.K.; Chen, D. A multiframe model for real-time tasks. IEEE Trans. Softw. Eng. 1997, 23, 635–645. https://doi.org/10.1109/

32.637146.
35. Monot, A.; Navet, N.; Bavoux, B.; Simonot-Lion, F. Multisource Software on Multicore Automotive ECUs Combining Runnable

Sequencing With Task Scheduling. Ind. Electron. 2012, 59, 3934–3942.
36. Audsley, N. Optimal Priority Assignment and Feasibility of Static Priority Tasks with Arbitrary Start Times; Department of Computer

Science, University of York: York, UK, 1991.
37. Cottet, F.; Delacroix, J.; Kaiser, C.; Mammeri, Z. Scheduling in Real-Time Systems; Wiley: Oxford, UK, 2002; p. 282. ISBN

0-470-84766-2.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Works
	Background of ROS-2 Architecture
	System Model
	Heuristic Scheduling Algorithm
	Algorithm 2: Assignment
	Algorithm 3: Executor Creation

	Experimental Results
	Workload Generation
	Performance Metrics
	Schedulability Test
	Number of Executors
	Runtime Analysis Comparison (in ms)
	Response Time Analysis

	Limitations, Extensions, and Conclusions
	References

