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Abstract: Large shaft usually achieves high surface quality through multi-pass grinding in practice.
Common surface quality indexes include surface roughness and glossiness, which are not only
required numerically, but also require high consistency of distribution along the whole shaft. In multi-
pass grinding, these two indexes are affected by the process parameters and the surface quality of the
previous grinding pass, which leads to the difficulty of modeling. In addition, due to the uneven
distribution of actual grinding depth, the surface quality along the whole shaft is usually inconsistent,
resulting in the need for multiple spark-out grinding passes to ensure consistency. In this study,
the surface quality evolution models for surface roughness and glossiness based on Elman neural
network are developed, which build regressions between process parameters, surface quality indexes
of the previous grinding pass, and surface quality indexes of the current grinding pass. Moreover, a
consistency control method of surface quality is proposed by adjusting the actual grinding depth
within the dimensional accuracy tolerance range at the rough grinding stage. Experimental results
show that the surface roughness and glossiness prediction errors of the surface quality evolution
models are only 5.5% and 5.1%. The consistency control method guarantees the consistency of surface
quality, reduces the grinding passes, and increases the grinding efficiency.

Keywords: surface quality; Elman neural network; consistency control method; large shaft grinding;
multi-pass grinding

1. Introduction

Large shaft is widely used in industry to bear heavy load and transfer motion [1], and
multi-pass grinding is the final process to obtain high surface quality [2]. Surface roughness
and glossiness are common surface quality indexes, and the requirements of these two
indexes are high in large shaft grinding. Moreover, surface quality consistency needs to be
ensured, which means the value difference of each surface quality index along the whole
shaft should be small. Both surface roughness and glossiness are affected by grinding
parameters, so the reasonable selection of grinding parameters is the basis to obtain the
desired surface quality [3,4].

Some studies reveal the mechanism of grinding surface formation through physical
modeling of the grinding process, and then obtain the correlation between grinding param-
eters and surface roughness [5,6]. Zhou et al. proposed a conventional method determining
the surface roughness using the mean value of the grain protrusion heights [7]. Jiang et al.
developed a predictive model for grinding surface roughness based on micro-interacting
mechanism modeling [8]. Chakrabart et al. simplified the abrasive particles into a cone
and calculated the surface roughness by obtaining the topography of the grinding surface
through a simulation method [9]. The above research established surface roughness predic-
tion models based on physical modeling and simulation, but these models are difficult to
describe the random factors in the actual grinding process, so the prediction performances

Appl. Sci. 2023, 13,1502. https:/ /doi.org/10.3390/app13031502

https://www.mdpi.com/journal/applsci


https://doi.org/10.3390/app13031502
https://doi.org/10.3390/app13031502
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4941-6862
https://doi.org/10.3390/app13031502
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031502?type=check_update&version=2

Appl. Sci. 2023,13, 1502

20f15

are not high enough. Another kind of surface roughness modeling method is the empirical
method, by which the correlation between grinding parameters and surface roughness
is established by numerical method [10,11]. Kwak et al. proposed a surface roughness
prediction model based on a respond surface model for external cylindrical grinding of
SCM440 steel [12]. Alao et al. used the Taguchi method to establish the correlation between
grinding depth, grinding wheel speed, and surface roughness [13]. Caydas et al. developed
the least squares vector machine and spider support vector machine to predict the surface
roughness of stainless steel turning [14]. Liu et al. used an artificial neural network to accu-
rately describe the influence of grinding parameters on surface roughness [15]. In general,
the empirical method is the most commonly used method for predicting surface roughness
with grinding parameters due to its convenient calculation and high precision [16,17].
Recently, some studies predict surface roughness by monitoring grinding signals, such as
image [18] and acoustic emission signals [19]. However, this method is not helpful to the
selection of grinding parameters.

Glossiness is an optical parameter to represent the reflective capacity of the surface,
which also reflects the surface roughness [20]. Generally, the higher the surface roughness,
the lower the glossiness [21]. The existing research seldom discusses the correlation be-
tween process parameters and glossiness based on the modeling of the machining process,
but mostly focuses on the correlation between roughness and glossiness. Yavuz et al.
performed polishing experiments on building stone tiles with SiC abrasive particles and
found an exponential relationship between the surface roughness and glossiness of the
workpiece [22]. Nevertheless, by testing polymer surfaces, Assender et al. pointed out
that surfaces with similar roughness can also have very different glossiness [23]. Li et al.
simulated the surface roughness and glossiness with non-Gaussian topography features,
and it is found that there can be other indexes deciding the final glossiness besides surface
roughness [24]. Overall, current research on glossiness modeling is insufficient.

The above researchers have made achievements in the building correlation between
grinding surface quality and process parameters, but there are still two limitations. Firstly,
the influence of the surface quality of the previous grinding pass is not considered by
existing research. In multi-pass grinding, the same grinding parameters will result in
different grinding qualities under different initial surface qualities, which makes the surface
quality model ineffective. Secondly, the research on the formation mechanism and control
method of surface quality consistency is insufficient. Even if better grinding parameters are
selected to obtain higher grinding quality, there will still be large differences in the grinding
quality indexes along the whole shaft; in other words, the grinding quality consistency
is poor. Thus, the surface quality consistency is hard to guarantee through selection of
grinding parameters alone.

In this study, the formation mechanism of surface quality consistency is revealed by
qualitative analysis of the influence of grinding parameters on surface quality. Then, the
surface quality evolution models for surface roughness and glossiness based on Elman neu-
ral network are developed, which build regressions between process parameters, surface
quality indexes of the previous grinding pass, and surface quality indexes of the current
grinding pass. Moreover, a consistency control method of surface quality is proposed
by adjusting the actual grinding depth within the dimensional accuracy tolerance range
at the rough grinding stage. A case study is performed to verify the effectiveness of the
proposed method.

2. Surface Quality Indexes and Influencing Factors
2.1. Surface Quality Indexes
The surface quality indexes in this study are surface roughness and glossiness. Surface

roughness is used to measure surface fluctuation. In this study, the arithmetic mean
deviation Ra is selected as the surface roughness value. Glossiness is a common index used
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to evaluate finished surfaces, such as roller grinding and parts polishing [24]. Glossiness G

is expressed as:
R

G = Ro x 100% 1)
where R is the specular reflectance of the measured surface, and Ry is the specular re-
flectance of the standard glass, which is the polished black glass with a refractive index
of 1.567. The test method for glossiness is shown in Figure 1. The light source illuminates
the measured surface at a specific incident angle and is reflected at an angle of the same
magnitude as the incident angle. The reflected light is received by the detector, and the
ratio of the reflected light energy to the incident light energy is calculated as the specular
reflectance of the measured surface R. Mirror reflection of the standard glass is performed
to obtain Ry, and the glossiness of the measured surface can be calculated according to
Equation (1). It should be noted that the test value of glossiness changes when the incident
angle of light is changed. The ASTM D523 standard test method developed by Hunter and
ASTM (American Society for Testing and Materials) specifies the test of glossiness at 60°
incident light, so the angle of incidence used in this paper is 60°.

Light source

Y

Detector
1
20°|

Measured surface

Figure 1. The test method for glossiness.

2.2. Analysis of Surface Quality Influencing Factors

The full factor experiments are carried out to analyze the influence of grinding param-
eters on surface roughness and glossiness. The grinding machine is a grinder MKT8445.
The workpiece is a shaft with a length of 1480 mm and a diameter of 244 mm. The material
of the shaft is 92CrMo, which is a kind of alloy steel. The grinding wheel is made of silicon
carbide with a width of 60 mm. The grinding system and process are shown in Figure 2a,b.
The shaft diameter is obtained by measuring arm as shown in Figure 2¢, and the measuring
resolution is 0.1 um. The surface roughness is tested by Surftest-5J210 roughness meter
with a resolution of 0.001 pm. The direction of measurement of roughness is parallel to the
direction of grinding passes as shown in Figure 2d. The glossiness is tested by the YG60
glossiness meter with a resolution of 1GU and a test angle of 60°. The testing instruments
are shown in Figure 2e f.

The full factor experiments consist of four factors, i.e., grinding depth ap, grinding
wheel speed Nwheel, shaft speed Nshaft, and pallet speed f. The grinding depth and the
grinding wheel speed are set at four levels, while the shaft speed and the pallet speed
are set at three levels as shown in Table 1. Thus, the full factor experiments consist of
144 grinding passes.

Table 1. Grinding parameters of the full factor experiments.

Level ap (um) Nuwheel (t/min) Nghagt (t/min) f (mm/min)
1 0 550 60 800
2 2 700 70 1000
3 3.5 850 80 1200
4 5 1000
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Figure 2. The grinding system and testing instruments: (a) grinding system, (b) grinding process,
(c) diameter measurement, (d) roughness measurement, (e) roughness meter, (f) glossiness meter.

The grinding wheel grinds from the left side of the shaft to the right side in a grinding
pass. On the next grinding pass, the grinding wheel grinds from the right side of the shaft
to the left side. In order to expand the number of samples, six measuring points are selected
along the z-direction on the shaft after grinding to test the surface roughness and glossiness
as shown in Figure 3. The measuring points in this study are distributed uniformly along
the length of the shaft, which can reflect the trend of surface quality on the whole shaft.

Measuring point

i
|‘

Figure 3. Measuring points of shaft.

Figure 4 shows the surface roughness and glossiness with different grinding param-
eters, and the values of surface roughness and glossiness are average values tested on
6 measuring points. The error bar represents the standard deviation. With the increase of
grinding depth, shaft speed, and pallet speed, the surface roughness value increases and
the glossiness decreases. This is because the increase of these three grinding parameters
will increase the grinding force, resulting in more intense plastic deformation of the shaft
and a rougher surface.
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Figure 4. The influence of three grinding parameters on surface roughness and glossiness: (a) grinding
depth, (b) shaft speed, (c) pallet speed, (d) grinding wheel speed.

For grinding wheel speed, lower surface roughness values and higher glossiness
values are obtained in the range from 700 to 850 r/min. The spindle current standard
deviations of the grinding passes in Figure 5d are shown in Table 2. It can be seen that the
current variances are small when the grinding wheel speeds are 700 r/min and 850 r/min.
The spindle runs more stably within this speed range, and the contact between the grinding
wheel and the shaft is more stable, resulting in higher surface quality.

Table 2. The spindle current standard deviations of the grinding passes in Figure 5d.

Nyheel (t/min) 550 700 850

Standard
deviations (A)

1000

1.35 0.64 0.73 1.23

It should be noted that the grinding depth involved in the above analysis is the
nominal grinding depth. In fact, due to grinding wheel wear in the grinding process, the
actual grinding depth is less than the nominal grinding depth and unevenly distributed
along the z-direction. Therefore, it is necessary to further analyze the actual grinding depth
at different positions of the same grinding pass and its influence on the surface roughness
and glossiness. The actual grinding depth ', is calculated as:

1
a/p = E (Dshaft - D/shaft) (2)

where Dgpag and D' .4 are diameters of the shaft before and after a grinding pass.
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Figure 5. The actual grinding depth, surface roughness, and glossiness of a single grinding pass:
(a) actual grinding depth, (b) surface roughness and glossiness.

Figure 5 shows the actual grinding depth, surface roughness, and glossiness of a single
grinding pass. The actual grinding depth is larger on both sides of the shaft and smaller in
the middle due to grinding wheel wear. With the decrease of actual grinding depth, the
roughness value decreases and the glossiness increases, which is consistent with the effect
of nominal grinding depth on surface quality. This reveals the mechanism of inconsistent
surface quality. The actual grinding depth along the z-direction is inconsistent due to
grinding wheel wear, so that the surface roughness and glossiness are inconsistent along
the z-direction. In addition, the deflection of the shaft and grinding wheel under grinding
force will also reduce the actual grinding depth. However, in this study, the shaft size is
large and the grinding depth is small (less than 5 um), so the influence of grinding force
can be ignored.

The grinding process of large shaft parts usually includes four stages: rough grinding,
semi-finish grinding, finish grinding, and spark-out grinding. Each stage includes several
grinding passes with the same parameters. In a grinding stage, even if the grinding parame-
ters are the same, the surface roughness and glossiness after grinding are different. Figure 6
shows the surface roughness and glossiness of four consecutive passes with the same
grinding parameters. The data in Figure 6 are the test values only at the measuring point at
z = 800 mm. As can be seen from Figure 6, these two surface quality indicators change with
the grinding passes. This indicates that the surface quality of large shaft parts in multi-pass
grinding is affected by the quality of the previous grinding pass, showing evolutionary
characteristics, rather than a simple correlation only with grinding parameters. It should
be pointed out that the above conclusions are obtained when the material of workpiece is
92CrMo alloy steel. Considering that the material of the large shaft is essentially alloy steel,
this conclusion applies to other large shafts made of different kinds of alloy steel.

0.5 50
a,=3.5um =)
~ 04 Nwhe: = 850 r/min @
g Ngpar = 80 r/min 45 %
3 f= 1200 mm/min g
=03 g
—-Surface roughness ©

—-Glossiness
0.2 40
1 2 3 4
Grinding pass

Figure 6. The surface roughness and glossiness of four consecutive passes.
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3. Surface Quality Evolution Model Based on Elman Neural Network

The analysis in Section 2.2 reveals that the surface quality has evolutionary character-
istics. Therefore, the surface quality evolution model is established based on Elman neural
network, which is suitable to process data with evolutionary characteristics. Elman neural
network consists of input layer, hidden layer, undertake layer, and output layer, and its
architecture is shown in Figure 7.

Output layer

Undertake layer Input layer

u(k-1)
Figure 7. Architecture of Elman neural network.

Assuming that the input of the network is u(k — 1), the output is y(k), the input of the
hidden layer is x(k), and the output of the undertake layer is x.(k), the state space of the
Elman neural network can be expressed as:

x(k) = f(wpxe(k) + wiu(k — 1)) 3)
xc(k) = x(k—1) 4)
y(k) = g(wpx(k)) ®)

where wy, w? and w} are the weight matrices of the undertake layer, input layer, and hidden

layer, respectively; f(-) and g(:) are the transfer functions of the input layer and the hidden
layer, which are tansig function and purelin function, respectively. As can be seen from
Equations (2)-(4), the input of the network includes not only the input of the input layer,
but also the previous output value of the hidden layer, which makes the network sensitive
to the historical state data and suitable to process data with evolutionary characteristics.

Based on the above analysis, the surface quality evolution model based on Elman neu-
ral network is developed. The models for surface roughness and glossiness are established
respectively. For the model of surface roughness, Elman neural network is trained by the
data from the full factor experiments. The input layer of the network has five nodes, which
respectively correspond to the four grinding parameters of the current grinding pass, i.e.,
the actual grinding depth, grinding wheel speed, shaft speed and pallet speed, and the
surface roughness of the previous grinding pass. The output of the network has one node
that corresponds to the surface roughness of the current pass. The model of glossiness is
similar to the model of surface roughness, except that the surface quality index of input
and output is glossiness.

The surface quality evolution models for surface roughness and glossiness are trained
using the data from the full factor experiment. The full factor experiments consist of
144 grinding passes, each of which contained six measuring points, resulting in a total
of 864 samples. 700 samples are used for training and 164 samples for testing. After the
training of 20,000 epochs, the prediction errors of surface roughness and glossiness reach
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5.5% and 5.1%, respectively. The actual values of surface roughness and glossiness and
predicted values from surface quality evolution models are shown in Figure 8.

0.8 ; 250 :
0.7 — Actual _ sctgglt d
. —_ . — Predicte
Predicted 200¢ |
0.6
=)
_ Q 150t 1
E ¢
<
= Z 100} 1
O
50 1
00 5‘0 160 150 00 5‘0 160 150
Sample point Sample point
(a) (b)
Figure 8. Prediction performance of surface quality evolution models: (a) surface roughness,
(b) glossiness.

In order to verify the superiority of the proposed model, the prediction accuracy of
different modeling methods for surface roughness and glossiness is compared. Elman
neural network is used in Models 1 to 3. The training samples and parameters are consistent
with the proposed model, but there are some differences in the input and output of the
model. Model 1 uses nominal grinding depth. Model 2 ignores the influence of the previous
grinding surface quality; Model 3 uses nominal grinding depth and ignores the effect of
the previous grinding surface quality. The prediction performance of these three models is
shown in Table 3.

Table 3. The prediction performance of different models for surface quality indexes.
R Previous Grinding Average Prediction Error Average Prediction
Models Grinding Depth Surface Quality of Surface Roughness Error of Glossiness
Proposed model Actual Considered 5.5% 5.1%
Model 1 Nominal Considered 12.4% 13.2%
Model 2 Actual Ignored 15.3% 16.8%
Model 3 Nominal Ignored 24.2% 25.3%

It can be seen from Table 3 that the prediction errors of the proposed model for surface
roughness and glossiness are minimal. This proves that the grinding surface quality index
is affected by the actual grinding depth and the quality of the previous grinding, and also
proves the superiority of the proposed model.

4. Consistency Control Method of Surface Quality in Rough Machining
4.1. The Principle of Consistency Control Method of Surface Quality

Since the surface quality is affected by actual grinding depth, a consistency control
method of surface quality is proposed based on adjustment of actual grinding depth.
Considering the grinding depth is quite small in practice, the adjustment of actual grinding
depth is only performed in rough grinding.

The principle of the adjustment of actual grinding depth is shown in Figure 9. The
profile of the shaft before a grinding pass and the ideal profile after a grinding pass are
shown in Figure 9a. The blue area is the tolerance range. The maximum and minimum val-
ues of the actual grinding depth allowed at zy are max(ay(zg)) and min(a,(zp)), respectively.
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Therefore, the allowable range of the actual grinding depth along the z-direction can be
obtained, as shown in Figure %b.

Profile before a

(a) grinding pass
min(a,(z)) | max(a,(z)) Ideal profile after
a grinding pass
z
4
|
I | | N | »
o V4 z zZ3 Zn z

Figure 9. The principle of the adjustment of actual grinding depth: (a) the profile of the shaft before
a grinding pass and the ideal profile after a grinding pass, (b) the allowable range of the actual
grinding depth.

Several points z1, zp...z; are selected along the z-direction. According to the actual
grinding depth range allowed at each point and the surface quality evolution model
established in Section 4, the adjustable region of surface roughness and glossiness can be
obtained as shown in Figure 10. The maximum values and minimum values of surface
roughness and glossiness of the adjustable region are Ray, Raj, Gg, and Gj.

Adjustable region

of surface roughness Adjustable region
Ray G‘ of glossiness

Go

|
) st

>
0O Z1 zZp Zj3 Zy, Z O Zy Zp Zzj Zy Z
(a) (b)

Figure 10. The adjustable region of (a) surface roughness and (b) glossiness.

The comprehensive index of surface quality, C, is defined as:

Rao —Ra + G— G]
2(Rag — Ray) ~ 2(Go — G1)

C= (6)

The adjustable range of the comprehensive index of surface quality will have two
situations, as shown in Figure 11. In Figure 11a, the minimum value of the upper bound
of the adjustable region is completely contained within the adjustable region. Therefore,
C of each point can reach Cy by adjusting the actual grinding depth. In Figure 11b, the
minimum value of the upper bound of the adjustable region is not fully contained within
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the adjustable region. Then, the points that can obtain Cy are adjusted to obtain Cy, and the
points that cannot obtain C are adjusted to the value closest to Cy.

(:T A Adjustable region of C (_H.T‘ Adjustable region of C
C[] B C[} -7
[
| | |
L ! SR !
—— — — —>_

(a) (b)

Figure 11. The adjustable region of C: (a) the adjustable region of C for situation 1, (b) the adjustable
region of C for situation 2.

The process of obtaining the desired comprehensive index C; for point z; by grinding
depth adjustment is shown in Figure 12.

Set an empty matrix A
v

a, =min(a,(z,))
!

Calculate C by Surface quality evolution model
|

a,-min(a,(z,))+!

A 4

=|C-C,

Z )=|c-¢|
No

a,=a,+l a,+l>max(a,(z))

Yes
| Find the minimum element of 4 as A(j) |

a, =min(a, (z,))+ jl

End

Figure 12. The process of obtaining the desired comprehensive index C; for point z;.

In Figure 12, | is the iteration step length. After obtaining the actual grinding depth
values of each point, the actual grinding depth curve along the z-direction is generated by
B-spline interpolation.

4.2. The Compensation Method to Guarantee the Actual Grinding Depth

Our previous research indicated that grinding wheel wear is the main factor causing
grinding dimensional error of large shaft parts, and the dimensional error model based on
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grinding wheel wear and compensation method was proposed [2]. Therefore, dimensional
errors can be predicted based on grinding process parameters and shaft profiles. Based
on the predicted dimensional error, the grinding wheel path can be adjusted to guarantee
the actual grinding depth. Experiments show that the actual grinding depth error of the
compensation method in reference [2] is only 0.16 um for the shaft when the nominal grind-
ing depth is 5 um in this study as shown in Figure 13. It is proved that the compensation
method is effective and the main factor causing grinding dimensional error is grinding
wheel wear.

g 0.16r

=

= 0.141

0.12¢
0.17

Actual grinding depth erro

0 500 1000 1500
z-direction (mm)

Figure 13. Actual grinding depth error after compensation.

5. Case Study
5.1. Experimental Set Up

A case study is conducted in this section to verify the proposed methods, i.e., the
surface quality evolution model and a consistency control method of surface quality. The
grinding machine, grinding wheel, workpiece, and testing instruments used in the experi-
ment are the same as those described in Section 2.

In case study, the complete grinding process is carried out, including rough grinding,
semi-finish grinding, finish grinding, and spark-out grinding. The parameters of these four
grinding stages are shown in Table 4.

Table 4. The parameters of grinding process.

Grinding Stage ay (um) Nywheel (t/min) Nghast (t/min) f (mm/min) Grinding Pass
Rough 5 1000 80 1200 3
Semi-finish 3 900 70 1050 2
Finish 2 800 70 1000 2
Spark-out 0 800 60 1000 3

Six measuring points are selected on the axis with z-coordinates of 200, 400, 600,
800, 1000, and 1200 mm, respectively. Before each grinding pass in the rough grinding,
the profile of the shaft along the z-direction is measured and the actual grinding depth is
adjusted by the consistency control method. The dimensional error is predicted according to
the process parameters, and the grinding wheel pass is adjusted by compensation method
to guarantee the actual grinding depth. The iteration step length [ is 0.02 um, and the
tolerance range of machining error is 1 pm in rough grinding. In the semi-finish grinding
and finish grinding, only the dimensional error is compensated, while the consistency of
surface quality is not controlled. In spark-out grinding, the grinding wheel path is not
adjusted, since the grinding depth is 0. After each grinding pass, the surface roughness
and glossiness of the measuring points are tested.
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5.2. Results and Discussion

The standard deviations of surface roughness and glossiness of measuring points
are used to describe the surface quality consistency as shown in Figure 14, and it can be
seen that the surface quality consistency gradually becomes better during the grinding
process. The standard deviations of surface roughness and glossiness of measuring points
are 0.651 pm and 26.2 GU for the first grinding pass, and 0.060 um and 4.1 GU for the last
grinding pass, respectively.

0.8 30

—- Surface roughness
—-Glossiness

e
o

10

e
o

Standard deviation (um)
()
~

standard deviation (GU)

1 2 3 4 5 6 7 8 9 10
Grinding pass

Figure 14. The standard deviations of surface roughness and glossiness of measuring points.

The dimensional errors of rough grinding passes are shown in Figure 15. It can be
seen that the dimensional errors are still within the tolerance range after the adjustment
of the actual grinding depth, which proves the effectiveness of the compensation method.
It is also proved that the consistency control method of surface quality will not make the
dimensional error exceed the tolerance range.

0.4
— Pass-1
0.35¢ —Pass-2 ||
— Pass-3 | |

<
w

o
b
(O

i
W me,. \

0.15¢ /

Dimensional error (um)
o o
—_ [\S)

L

0.05¢

0 500 1000
z-direction (mm)

Figure 15. The dimensional errors of rough grinding passes.
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The shaft is continued to be machined with rough grinding process parameters,
without compensation and the consistency control method. The standard deviations of
surface roughness and glossiness of measuring points become 0.628 pm and 23.1 GU. Then,
the shaft is machined again with process parameters in Table 4. During rough grinding,
semi-finish grinding, and finish grinding, only the dimensional error is compensated, while
the consistency of surface quality is not controlled. Finally, enough spark-out grinding
passes are performed until the standard deviations of surface roughness and glossiness are
close to the standard deviations of the last grinding pass in Figure 14. After eight spark-out
grinding passes, the standard deviations of surface roughness and glossiness are 0.055 um
and 4.1 GU.

The standard deviations of surface roughness and glossiness are shown in Figure 16.
It can be seen that without the consistency control method, it requires five more spark-
out grinding passes to achieve high consistency. This shows that the consistency control
method of surface quality can obtain a higher consistency of surface quality with reducing
the grinding passes, resulting in high grinding efficiency.

0.8 30
= —- Surface roughness -
=1 . O
= —- Glossiness =
g 0.6 =
= 20 -2
= 8
B 04 3
S N
g 10 2
g 0.2 2
n b7
0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Grinding pass

Figure 16. The standard deviations of surface roughness and glossiness of measuring points.

6. Conclusions

This research studies the surface quality evolution and consistency control of large
shaft multi-pass grinding. Based on the analysis of the grinding experimental data, it is
found that the grinding surface quality is affected by the grinding process parameters
and the surface quality of the previous grinding pass, which shows the evolutionary
characteristics. Then, the surface quality evolution model is established based on Elman
neural network. Furthermore, the consistency control method of surface quality is proposed
by adjusting the actual grinding depth at the rough grinding stage. Experiments show the
effectiveness of the proposed methods. The conclusions drawn from this research can be
summarized as follows:

(1) The surface quality indexes of multi-pass grinding of shaft parts, i.e., surface
roughness and glossiness, have evolutionary characteristics and are affected by grinding
parameters and surface quality of the previous grinding pass. The uneven distribution
of the actual grinding depth along the length direction of the shaft is the reason for the
inconsistent surface quality.

(2) The surface quality evolution model based on Elman neural network accurately
describes the evolution characteristics of surface quality, and the prediction errors of surface
roughness and glossiness are less than 6%.

(3) The consistency control method of surface quality guarantees the consistency of
surface quality, reduces the grinding passes, and increases the grinding efficiency.
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