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Abstract: The bracing components in steel I-girder bridge systems are essential structural compo-
nents for the bridges to restrain their rotation due to lateral torsional buckling (LTB). Current design
specifications require bracing components to be installed to prevent I-girder sections from unex-
pectedly twisting due to instability. To estimate the bracing internal forces acting on the bracing
elements, we can use approximate design equations that provide considerably conservative design
values. Otherwise, it is necessary to conduct a thorough finite element analysis considering initial
imperfections to obtain accurate bracing internal forces in the steel I-girder bracing systems. This
study aims to provide estimation models based on deep neural network (DNN) algorithms to more
accurately estimate the internal forces acting on the bracing element compared with the current
design methodology when LTB occurs. This is conducted by constructing structural response data
based on the geometrically nonlinear analysis with imperfections to provide accurate bracing internal
forces, namely bracing moments (Mbr) and bracing forces (Fbr). To propose prediction models, 16
input and three output variables were selected for training the structural response data. Furthermore,
a parametric study on the hyperparameters used in DNN models was analyzed for the number of
hidden layers, neurons, and epochs. Based on statistical performance indices (i.e., RMSE, MSE, MAE,
and R2), the estimated values using DNN models were evaluated to determine the best prediction
models. Finally, DNN models that more accurately estimate internal forces (Mbr, Fbr) in bracing
elements, and that provide the best prediction results depending on hyperparameters (numbers of
hidden layers, neurons, and epochs), are proposed.

Keywords: deep neural network; steel I-girder; torsional bracing; bracing force

1. Introduction

Lateral torsional buckling (LTB) is a major failure mode induced by instability in
flexural members that typically control the entire design in steel buildings and bridges.
The moment capacity of the flexural members is enhanced by bracing elements to provide
lateral and rotational supports to retain LTB in flexural elements. Thus, bracing members
must possess sufficient strength and stiffness against internal forces affected by the LTB
phenomenon. In general, bracing components in straight steel I-girder bridge systems are
secondary structural members because they resist no direct applied forces, but secondary
internal forces are induced by displacement changes in the top and bottom flanges of
adjacent girders due to twists induced by the LTB. However, it is an essential structural
component for the bridges to restrain against rotation with respect to their longitudinal
axis at points of support and to prevent relative displacement (i.e., twist) of the top and
bottom flanges. Therefore, current design specifications worldwide require the installation
of bracing components such as torsional bracing, lateral bracing, or a combination of
torsional and lateral bracing to prevent unexpected twists of the I-girder sections caused by
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the instability of the girders [1]. Furthermore, stiffness and strength requirements for the
bracings in flexural members were stipulated to avoid the failure of flexural members and
the bracing components due to the LTB.

Since Taylor and Ojalvo [2] proposed an exact solution for the critical LTB strength
of a doubly symmetric beam under a uniform moment with continuous torsional bracing,
researchers have continued to refine their methods for computing the LTB strength of
flexural members with torsional bracing. Milner [3] demonstrated that cross-sectional
distortion in beam members could be controlled by adopting an effective bracing stiffness
(βT). Yura [4] expanded the effective bracing stiffness by considering the effect of stiffeners
and in-plane girder flexibility in the braced flexural members.

Later, Yura [5] provided a comprehensive view of the beam bracing design. Further-
more, design factors affecting bracing requirements and design examples of the torsional
bracing system were introduced. The design methodology developed by Yura [5] was
adopted in the third edition of the American Institute of Steel Construction Load and
Resistance Factor Design Specification [6].

Based on research by Winter [7] and Yura [5], the ideal stiffness requirements obtained
by eigenvalue analysis resulted in poor estimates of LTB behavior in beam bracing systems
because the ideal stiffness requirements disregarded the effects of geometric nonlinearity
due to initial imperfections. Therefore, Wang and Helwig [8] investigated the effects of vari-
ous types of imperfections for beam bracing systems based on geometric nonlinear analysis
to determine the critical imperfection shapes for simulating the most critical LTB behavior in
the beam bracing system. Thus, the stiffness requirements can be determined by numerous
finite element analyses (FEAs). Liu and Helwig [9] investigated the torsional brace strength
requirements for steel I-girder systems. They conducted numerous parametric studies to
evaluate the bracing moments stipulated in the current design specification [1,10]. Han and
Helwig [11] investigated the elastic global LTB of straight I-girder bracing systems.

Regarding internal forces created in the torsional bracings because of the LTB behavior,
current design specifications provide conservative design values by assuming required
rotational displacements of the bracing elements to ensure that the bracing elements possess
sufficient strength and stiffness to avoid failure due to LTB. To estimate reasonable bracing
internal forces, it is necessary to implement it through FEA analysis because the internal
forces are generated by secondary effects due to LTB, which are challenging to solve using
traditional mathematical models.

Meanwhile, with the current development of artificial intelligence (AI), various types
of artificial neural networks (ANNs) are being adopted to model complex nonlinear rela-
tionships that cannot be solved deterministically using traditional mathematical models.
ANNs are a type of mathematical model that resembles the biological characteristics of
the human brain. Numerous researchers have attempted to apply various types of neural
networks to evaluate extremely complex systems and to predict the target values of the
systems in various research fields, including structural engineering. Nguyen et al. [12]
developed a deep neural network (DNN) with high-order neurons, namely a second-order
artificial neural network (SO-ANN), and used it to predict foamed concrete strength. Dung
et al. [13] investigated a vision-based method for crack detection in gusset plate welded
joints of steel bridges using deep convolutional neural networks. Degtyarev [14] sought
to predict the shear strength of CFS channels with slotted webs based on an ANN. Ly
et al. [15] developed a DNN model to predict the compressive strength of rubber concrete.
Nguyen et al. [16] suggested a machine learning-based formulation for predicting the shear
capacity of squat flanged RC walls. Pizarro and Massone [17] developed a structural design
method for reinforced concrete buildings based on DNNs. Tan et al. [18] developed a
prediction model for the compressive strength of CO2 concrete using regression analysis
and ANNs. Tanhadoust et al. [19] investigated the prediction of the stress–strain behavior
of normal-weight and lightweight aggregate concrete exposed to high temperatures using
an LSTM recurrent neural network. Min et al. [20] developed damage detection models for
tethers of submerged floating tunnels based on CNNs.
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Based on the literature, it was indicated that applying neural networks can be effective
for analyzing complex problems and predicting the target values that cannot be solved
using traditional mathematical models. Furthermore, the bracing moments and forces
induced by LTB in steel I-girder bracing systems are a type of complex structural system
due to the secondary effects. To more accurately predict the bracing forces in the steel
I-girder bracing systems, thus, this study aims to evaluate the structural behavior of the
torsional bracing systems in steel I-girder bridges and more accurately estimate the internal
forces compared with the current design methodology based on DNNs. The internal forces
in the beam bracing systems comprise bracing moments and bracing forces, acting on
torsional bracing in steel I-girder bridges when the applied loading reaches the LTB limit
states. In this study, a comparative study was conducted based on geometric nonlinear FEA
to determine the accurate internal forces at strength limit states. Furthermore, it explores
the possibility of applying AI to estimate internal forces in the bracing system, which is
one of the most complex structural systems due to the secondary effects. From the FEA
results, estimates of internal forces in the torsional braced bridge system were implemented
based on a DNN with respect to various design parameters to simplify the preliminary
design phase. Based on statistical performance indices (i.e., root mean square error (RMSE),
mean square error (MSE), mean absolute error (MAE), coefficient of determination (R2)),
the estimated values using DNN models were evaluated to determine the best prediction
models. Finally, deep neural network (DNN) models, which can be tuned by adjusting
hyperparameters such as the hidden layers, neurons, and epochs to accurately estimate
internal forces (Mbr, Fbr) in bracing elements, have been proposed and have been shown to
produce the best prediction results.

2. Summary of Design Specifications for Beam Bracing System with Torsional Bracing
2.1. LTB Strength of Beam Bracing Systems

In the AISC design standard [1], the torsional brace requirements are provided based
on the buckling strength of a beam with a continuous torsional brace along its length, as
presented in Taylor and Ojalvo [2] and modified for cross-section distortion in Yura [5], and
shown in Equation (1).

Mr ≤ Mcr =

√
(Cbu Mo)

2 +
C2

b EIe f f βT
2Ctt

. (1)

where Mr denotes the flexural strength of girder bracing system, Mcr denotes the buckling
strength of a girder with a continuous torsional brace along its length, Cbu denotes the
moment gradient factor for the entire girder, Cb denotes the moment gradient factor for the
beam segment between torsional bracing, Mo denotes the LTB strength of beams without
the torsional brace, E denotes the modulus of elasticity, and Ie f f denotes the effective
moment of inertia of the beam section; Ctt, which is the load height factor of the beam, is
1.2 for top flange loading and 1.0 for centroidal loading, and βT denotes the continuous
torsional brace stiffness per unit length, which is equal to nβT/L.

The moment gradient factors can be computed by the following expression, which
was proposed by Helwig et al. [21].

Cb =

(
12.5Mmax

2.5Mmax + 3MA + 4MB + 3MC

)
Rm ≤ 3.0. (2)

where Mmax is the maximum bending moment, MA is the magnitude of the moment at
the quarter location of the target girders, MB is the magnitude of the moment at the mid-
location of the target girders, MC is the magnitude of the moment at the three-quarter
location of the target girders, and Rm is a factor that considers the reverse curvature
bending moment.
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Neglecting the unbraced beam buckling term provides a conservative estimate of the
torsional brace stiffness requirements. Thus, the required brace stiffness βT to provide the
maximum LTB strength of the braced beams is expressed in Equation (3) as follows:

βT =
2.4LM2

r

nEIe f f C2
b

. (3)

Yura [5] developed the strength requirement for beam torsional bracing based upon
an assumed initial twist imperfection of θo = 0.002Lb/ho, where ho is equal to the depth
of the beam. The strength requirement of the beam bracing is simply determined by the
required bracing stiffness multiplied by the assumed initial twist imperfection in Equation
(4). In Equation (4), the effective bracing stiffness is equal to two times the ideal torsional
bracing stiffness, which provides two times the conservative bracing moment.

Mbr = βTθo =
0.024MrL

nCbLbr
. (4)

2.2. LTB Strength of I-Girder Sections for Bridges

In the AASHTO design standard [22], the LTB strength of the prismatic steel I-girder
is provided. The LTB strength based on the unbraced length (Lb) is provided as below.

If Lb ≤ Lp, then
Fnc = RbRhFyc (5)

If Lp ≤ Lb ≤ Lr, then

Fnc = Cb

[
1−

(
1−

Fyr

RhFyc

)(
Lb − Lp

Lr − Lp

)]
RbRhFyc ≤ RbRhFyc (6)

If Lb > Lr, then
Fnc = Fcr ≤ RbRhFyc (7)

where Fnc denotes the lateral–torsional buckling resistance of compression flange, Lb de-
notes the unbraced length, Lp limits the unbraced length to achieve the nominal flexural
resistance of RbRhFyc under uniform bending, Lr limits the unbraced length to achieve the
onset of nominal yielding in either flange under uniform bending with consideration of
compression flange residual stress effects, Cb is the moment gradient modifier, Rb is the
web load-shedding factor, Rh is a hybrid factor, Fyc is the yielding strength of steel girders,
Fyr is the compression flange stress at the onset of nominal yielding within the cross-section,
and Fcr is the elastic lateral–torsional buckling stress.

3. Finite Element Analysis (FEA)
3.1. Designing FEA Models

In this study, steel I-girder bracing systems (same as beam bracing systems) were
designed based on the provisions of the AASHTO LRFD bridge design specifications [22].
The girder heights (h) of the bridge models are 1/25 times their span length (L) to satisfy
the provisions in AASHTO [22], to ensure that the bridge girder sections considered in this
study do not allow excessive flexural deflections under design loads. The flange widths (b)
of the steel I-girder models are 1/2–1/5 times their girder height (d). Moreover, all flanges
and webs have a compact thickness for structural steels with a yield strength of 345 MPa,
which satisfies the provisions of AASHTO [22] to prevent local buckling behavior.

In this study, two different types of cross-sections were designed. One is the W-section
stipulated in the AISC design manual [1], with 900 mm height or above, with a flange
width of 1/2.5 to 1/3.36 times the girder height, which is intended for designing bridges.
Another group is built-up sections having 2 m and 2.8 m heights with a flange width of
1/3 to 1/5 times the girder height for designing bridges. Thus, six steel I-girder sections
were selected for each group, as summarized in Table 1. For torsional bracing design, this
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study considered zero to thirteen z-type torsional bracings with various values of torsional
stiffness, in which the torsional bracing stiffness ranged from zero to sufficient torsional
bracing to produce LTB within the unbraced length (Lb), so as to ensure that the effects
of torsional bracing on the bracing internal forces are considered in this study. Table 2
illustrates the elastic material properties used in the FEA models.

Table 1. Dimensions of I-girder bracing systems in this study (Unit: SI).

Type Section bf
(mm)

d
(mm)

tf
(mm)

tw
(mm)

L
(mm)

No. of
Bracings

W-section

W920 × 201 305 902 20.6 15.9

25d
0, 1, 3, 5, 7,

9, 11, 13

W920 × 420 422 943 39.7 22.2
W1000 × 314 298 1000 36.5 19
W1000 × 371 400 1000 36.5 19
W1100 × 390 400 1100 36.5 20.6
W1100 × 343 400 1090 31.8 17.5

Built-up
section

BT-1 667 2000 62 32
BT-2 500 2000 46 32
BT-3 400 2000 36 32
BT-4 933 2800 86 46
BT-5 700 2800 64 46
BT-6 560 2800 52 46

Table 2. Material properties used in FEA models.

Elements E (MPa) ν

Flange
205,000 0.3Web

Torsional bracings

To consider the bracing torsional stiffness (βT) in the FEA models, this study considers
14 different torsional stiffness values for each I-girder section. The bracing torsional stiffness
considered in this study is summarized in Table 3.

Table 3. Torsional stiffness of bracings (βb ) used in the FEA model.

βb α β

α× β
0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1, 2, 3, 4
β = 1

n

(
M2

n,Lb
−M2

cr,L

)
L

EIy

where, Mn,Lb = min
(

My, Mcr,Lb

)

3.2. Outlines of FEA

In this study, geometrically and materially nonlinear analysis with imperfection (GM-
NIA) was conducted using the ABAQUS program [23] with the Riks method. The bridges
are modeled with a three-dimensional shell element (S4R) for the I-girders and a three-
dimensional truss element (T3D2) for z-type bracing elements, as shown in Figure 1.
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Figure 1. FEA model used in this study: (a) FEA model; (b) cross-section of I-girder; (c) plane view of
the bracing system; (d) top view of bracing system.

The girder models are supported with a fork-end condition for each end, which means
that it is simply supported for flexure, fixed for torsion, and free for warping at each end, as
illustrated in Figure 2. For loading conditions, we apply various loading types to estimate
internal forces because of the LTB behavior in steel I-girder bracing systems. Hence, various
loading conditions with pure bending and moment gradients were considered in the FEA
models. For pure bending conditions, equal end moments are applied at each end of the
girder to ensure that the same moment is applied in the entire girder section. For the
moment gradient condition, two different types of loading conditions are applied in the
models, which comprise concentrated loads at the bracing points of the mid-span and
bracing points near the quarter span. Therefore, the target segments between brace points,
where the maximum bending moments are created, are near the mid-span for pure bending
conditions and near the mid-span or the quarter span for moment gradients, as shown in
Figure 3. The target segments with the maximum bending moment are critical segments
for realistic bridge design. Therefore, in this study, the bracing forces generated due to the
LTB are obtained at brace points near the target segments.
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Figure 2. Boundary conditions adopted in the FEA models: (a) longitudinal (y-axis) constraints at
midpoints; (b) vertical (z-axis) constraints at each end; and (c) lateral (x-axis) constraints at each end.
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Figure 3. Applied loading conditions considering various moment gradient effects when the number
of bracings is (a) 1; (b) 3; (c) 5; (d) 7; (e) 9; (f) 11; and (g) 13.

Based on an earlier report [8], the initial imperfection significantly influences the LTB
behavior and internal forces produced in the torsional bracing. Furthermore, it was con-
cluded that the critical imperfection acting on the brace locations is essential for estimating
accurate bracing forces and realistic lateral torsional behavior in the steel-I girder bracing
systems. In this study, initial imperfections of Lb/500 are applied at the bracing locations
of target segments of the FEA models that have the maximum bending moments. Fur-
thermore, initial imperfections of Lb/2000 and L/2000 are applied at both target segments
between the brace points and mid-span, as suggested in the previous study [8]. Thus, the
three different imperfections obtained from three different static analyses were adopted in
the FEA models for the geometrically nonlinear FEA simultaneously (see Figure 4). More-
over, it was applied at the upper flange locations near the target segments. The verification
analysis for this study is provided in Appendix A.
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Figure 4. Initial imperfections for FEA: (a) initial imperfection of target segments and (b) initial
imperfection of the girders for global LTB mode.

Meanwhile, Yura [5] investigated total torsional bracings considering various effects
produced by bracings, girders, and stiffeners for estimating the effective torsional bracing
stiffness. Based on their research, the total bracing stiffness can be expressed as a series
connection of each bracing stiffness, as shown in Equation (8).

1
βT

=
1
βb

+
1

βg
+

1
βsec

(8)

where βb is the torsional stiffness of attached bracing members, βg is the strong axis stiffness
of girder systems, and βsec is the cross-section web stiffness.

For tension bracing systems, such as z-type bracing, βb can be determined using
Equation (9) as follows:

βb =
ES2h2

b
2L2

c
Ac

+ S3

Ah

(9)

Torsional stiffness induced by the contribution of the in-plane girder flexibility to the
brace system is shown in Equation (10) as follows:

βg =
12S2EIx

L3 (10)

For special cases, when the torsional bracing is attached near both flanges or a vertical
diaphragm element is approximately the same depth as the girder, then web distortion will
be insignificant, and βsec may be considered infinite.

3.3. Internal Forces in Bracing Elements

Figure 5 illustrates the internal forces acting on the brace element. As mentioned
earlier, the torsional bracing members are secondary members in straight I-girder bracing
systems. The internal forces of the bracing elements are totally induced by the LTB behavior
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of the I-girder bracing systems. Thus, the internal forces due to LTB were obtained from
the FEA at the LTB strength limit state, as stipulated in AASHTO [22]. This means that
the bracing forces, such as bracing moments and axial forces, were obtained when the
applied loadings reached the LTB strength limits. The bracing moments can be obtained
from a couple of forces at the locations where the bracings are attached to the girder
sections. Because of vertical shear forces at each end of the torsional bracing, maximum
and minimum torsional moments are produced. The maximum values are obtained from
locations near the buckled girders and the minimum values are obtained at opposite ends,
as shown in Figure 5. In addition to the torsional moments, lateral tensile forces also can be
created in the torsional bracing. Therefore, the maximum and minimum torsional moments
and lateral forces are obtained from the FEA. The internal forces can be obtained based
on the calculation shown in Figure 5. Once we obtain each element force of the z-type
bracings based on the FEA results, we can simply compute the axial forces (Fbr) based on
the equilibrium condition in the x direction by adding the axial forces at locations that are
attached near the top and bottom flange sections of Girder 1 in Figure 5. By eliminating Fbr
from the total axial forces near the top flanges, which is expressed as Fbr + Mbr,max/h in
Figure 5, we can compute the moments by multiplying the forces (Mbr,max/h) and girder
height (h) between the centroids of the top and bottom flange sections. Finally, each axial
force acting near the bracing installation locations can be assumed, as indicated in Figure 5.
The bracing force calculation processes were conducted for all bracing locations when the
applied loadings reached the LTB strength. Subsequently, maximum bracing forces among
all the bracing elements were obtained.
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Figure 5. Bracing moments and internal forces acting on bracing members.

4. FEA Data Construction
4.1. Database Construction

To construct structural response data from the geometrically nonlinear analysis with
imperfection (GNIA), several main design parameters were considered in this study, in-
cluding various cross-sections of the bridges, torsional bracing stiffness (βb), the number of
bracings, the girder spacing to height ratio (S/d), the moment gradient factor (Cbb) within
the brace points at target segments, the moment gradient factor (Cbu) of the entire span, and
the yield strength of structural steels ( fy). Therefore, a total of 16,576 structural response
data were constructed, as summarized in Table 4. This study uses 16 input variables, in-
cluding the flange width (b f ), flange thickness (t f ), the height of the girder (d), the moment
of inertia about the strong axis (Ix), the moment of inertia about the weak axis (Iy), span
length (L), unbraced length (Lb), number of bracings, bracing stiffness (βT), girder spacing
(S), moment gradient factors (Cbu, Cbb), the flexural strength of the bracing system ( fbu),
the yielding strength of structural steels ( fy), the LTB strength of braced segments (Fn,Lb ),
and the LTB strength of nonbraced girders (Fn,L), whereas the maximum and minimum
bracing moments (Mbr,max, Mbr,min) and bracing force (Fbr) are the target variables. In
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addition, a detailed statistical analysis of the database, including the min, max, mean,
median, variation (var), standard deviation (std), and skewness of variables, is presented
in Table 5 for input variables and Table 6 for output variables. Finally, the histograms of the
input and output variables used in this study are plotted in Figure 6.

Table 4. Number of structural response data based on major design parameters.

Section βb
No. of

Bracings S/d Cbu Cbb
fy

(MPa)
Count

W920 × 201

14 cases from
Table 1

8 cases from
Table 1

1, 2, 3 1–1.471 1–1.67

235
315
345
450

3360
W920 × 420 2 1 1 392
W1000 × 314 2 1 1 392
W1000 × 371 2 1 1 392
W1100 × 390 1, 2, 3 1–1.471 1–1.67 3360
W1100 × 343 2 1 1 392

BT-1 1, 2, 3 1–1.471 1–1.67 3360
BT-2 2 1 1 392
BT-3 2 1 1 392
BT-4 1, 2, 3 1–1.471 1–1.67 3360
BT-5 2 1 1 392
BT-6 2 1 1 392

Total: 16,576

Table 5. Ranges of design parameters for input parameters used in this study.

Variable Unit Min Max Mean Median Var Std Skewness

b f mm 298 933 554.3 411 53,298.1 230.9 0.55
t f mm 20.6 86 49.7 38.1 532.6 23.1 0.36
d mm 902 2800 1701.2 1550 572,580.6 756.7 0.37

Ix mm4 3.29 ×109 3.65
×1011 1.09 ×1011 2.85 ×1010 1.92 ×1022 1.39 ×1011 1.09

Iy mm4 9.77 ×107 1.17
×1010 3.27 ×109 4.44 ×108 1.92 ×1019 4.38 ×109 1.25

L m 22.55 70 42.5 38.75 357.863 18.917 0.37
Lb m 1.611 35 7.3 5 45.98 6.8 2.35

No. of bracings 1 13 7.2 7 15.13 3.9 −0.04

βT N−mm/rad 0 2.03
×1011 6.76 ×109 1.71 ×109 1.80 ×1020 1.34 ×1010 5.08

S m 0 11.2 3.59 2.8 7.844 2.8 1.25
Cbb 1 1.667 1.08 1.038 0.019 0.137 3.28
Cbu 1 1.471 1.19 1.316 0.033 0.181 0.02
fbu MPa 6.2 450 203.172 203.114 9564.74 97.8 0.14
fy MPa 235 450 336.25 330 5929.688 77.0 0.23

Fn,L MPa 6.2 44.7 28.4 30.5 70.5 8.4 −0.87
Fn,Lb MPa 24.8 450 291.2 308.3 9049.0 95.1 −0.31

Table 6. Ranges of design parameters for output parameters used in this study.

Variable Unit Min Max Mean Median Var Std Skewness

Mbr,max N−mm 0 9,208,109 723,113 396,654.7 8.62 ×1011 928,189.1 2.88
Mbr,min N−mm 0 2,394,757 278,486.4 188,031.7 8.77 ×1010 296,136.8 2.12

Fbr N 0 3421.2 525.8 376.6 250,172.9 500.2 1.61
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4.2. Comparisons of Bracing Moments (Mbr) Using FEA and Design Provision

In design, torsional bracing elements are classified as secondary structural components
in straight steel I-bridges. This implies that the bracing forces are generated as secondary
forces in the bracing elements. The bracing forces are mostly influenced by the LTB behavior
that generates lateral and rotational deformation at the compression flange sections. The
brace forces acting on the torsional bracing elements are conservatively assumed to be
the required torsional stiffness multiplied by the assumed rotational deformation of the
torsional bracings, as given by Equation (4). In this study, the maximum bracing moments
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(Mbr,max) obtained from FEA were compared with those of the design equation, as plotted in
Figure 7. In Equation (3), the coefficient 2.4 is twice that of the coefficient of load height (Ctt),
facilitating a conservative design. Therefore, in this study, the coefficient 2.4 is excluded
from this comparison, because all FEA models are subjected to concentrated loading on the
center of the cross-sections.

The comparison revealed that Equation (3) provided conservative design values for
both the W-section and the built-up section, as shown in Figure 7a. In particular, the design
bracing moment of built-up sections has higher design values than those of the W-sections.
Furthermore, for the W-sections, sections with wider flanges, such as W920 × 420, W1000
× 317, W1100 × 390, and W1100 × 343, have considerably more conservative bracing
moments by AISC compared to W920 × 201 and W1000 × 314, which have a relatively
small flange width compared to other sections. Similar aspects are observed in built-up
sections. BT-4 and BT-5 have higher design values than other sections that have smaller
flange widths. Thus, it can be concluded that the design bracing moments computed by
AISC provide conservative design values when it has wide flange sections, compared to
flange sections with a smaller flange width. This assumption, i.e., that the flange width has
significant effects on the bracing moment, may explain the reason that the built-up sections
(BT-1 to BT-6) of bracing moments are greater than those of the W-sections, which have
smaller flange widths.
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Figure 7. Comparisons between bracing moments of design provision and FEA: (a) cross-section
types; (b) W-sections; and (c) built-up sections.

5. Deep Neural Network Framework

An ANN is a type of mathematical model that resembles the biological characteristics
of the human brain. It has numerous artificial neurons in input, output, and hidden layers,
which are fully connected. In this study, the DNN algorithm, which has multiple hidden
layers (minimum two or above), was employed. The DNN is a type of ANN with several
hidden layers between the input and the output layers, whereas the ANN model has one
hidden layer. It contains multiple neurons (or nodes) arranged in the input, hidden, and
output layers. All the neurons at each layer are fully connected and the information flows in
one direction from the input layer to the output layer through the hidden layers. Recently,
neural networks have been widely used to model complex nonlinear relationships that
cannot be solved deterministically using traditional mathematical models.

In the general structure of an ANN or DNN, the neurons in the layers are linked
through weights and bias, as illustrated in Figure 8a,b and in Equation (11). The accuracy of
ANN or DNN models depends on the accuracy of the weights and bias, which are updated
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by a backpropagation process. The input vector of the neuron is x = [x1, x2, x3, · · · , xn]
and the weighted sum of the input (z) is expressed as in Equation (11).

z =
n

∑
i=1

wixi + bi. (11)

where z is a weighted sum of the input; wi is the weight, which is equal to [w1, w2, · · · , wn],
and bi is the bias.

The weighted sum of the input (z) is converted into y in Equation (12), in which y is
an activation value obtained through an activation function.

y = σ(z) (12)

The activation function is the essential element during training for deep neural net-
works. In this study, ReLU functions were used, as shown in Equation (13). In the ReLU
activation function,

σ(z) = max(0, z) (13)
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Figure 8. Neural network structures: (a) a typical artificial neural network and (b) an example of the
deep neural network structure used in this study.

In the neural network algorithms, the weights of each link between neurons at each
layer are initially assumed with arbitrary values, and then they are adjusted during the
training process, which is called backpropagation. The results of the training are evaluated
by loss functions, such as MSE or other error estimation functions, by evaluating actual
and predicted values. These evaluation processes are so-called epochs.

To implement the training process using the DNN algorithm and provide accurate
prediction models, Python and TensorFlow were used in all process steps. In this study,
DNN models are developed for predicting bracing moments and forces in torsional bracing
steel I-girder systems, using a database of 16,576 samples, as shown in Table 4. The database
is divided into two parts, which comprise 80% for training and 20% for testing. Furthermore,
the training sets include 25% for validation to evaluate the accuracy of the prediction
models. The best prediction models can be determined by a parametric study of the
hyperparameters. The hyperparameters are parameters used in DNN algorithms affecting
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the accuracy of the prediction models. Table 7 shows the range of the hyperparameters
used in the DNN algorithm.

In this study, we use 16 input neurons, and one and two neurons in the output layer
for Fbr and Mbr predictions, respectively. To evaluate the accuracy of the prediction models,
this study included a parametric study on the number of hidden layers and the number of
neurons at each hidden layer. The number of neurons at each hidden layer ranges from 50
to 200 with three to five hidden layers. The MSE is used as a loss function to evaluate the
accuracy of the weights in the neural network. Furthermore, an ADAM optimizer was used
for fast training to determine the global minimum of the loss function, and the learning
rate was set as 0.001. The hyperparameters used in this study are summarized in Table 7.

Table 7. Range of the hyperparameters used in DNN models in this study.

Hyperparameters Values

Neurons in input layers 16
Neurons in output layers 1, 2
Number of hidden layers 3, 4, 5

Number of neurons at each hidden layer 50, 100, 200
Learning rate 0.001

Activation function ReLu
Loss function MSE

Optimizer Adam
Epoch 100, 200

The four statistical criteria used to evaluate the accuracy of the prediction models
included R2, RMSE, MSE, and MAE. The R2 is the most frequently used criterion to compare
prediction and target values. An R2 close to 1 represents perfectly accurate values. RMSE,
MSE, and MAE values close to 0 represent accurate predictions in typical statistical and
machine learning models. The statistical criteria used in this study are summarized in
Table 8. In Table 8, N is the number of samples, yi

′ is the actual value, yi is the predicted
value, and y is the average real value.

Table 8. Statistical criteria to evaluate the accuracy of DNN models.

Function Values

R2 1− ∑n
i=1(y′i−yi)

2

∑n
i=1(y′i−y)

2

RMSE
√

1
n

n
∑

i=1

(
y′i − yi

)2

MSE 1
n

n
∑

i=1

(
y′i − yi

)2

MAE 1
n

n
∑

i=1

∣∣y′i − yi
∣∣

5.1. Evaluation of Proposed DNN Models

In this section, DNN models with three, four, and five hidden layers with different
numbers of neurons ranging from 50 to 200 are evaluated using 50–200 epochs. In these
models, MSE was used as a loss function to evaluate the accuracy of the prediction models.
The prediction DNN models were evaluated by the performance criteria mentioned in Table 8.
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5.1.1. Estimation of Bracing Moment (Mbr)

Figure 9 shows comparisons of the training and validation loss with respect to the
MSE between predicted and FEA values. As indicated in Figure 9, the accuracy of the
DNN models is considerably influenced by the number of hidden layers, neurons, and
epochs. The results indicate that DNNs with three hidden layers need at least 150 epochs
to achieve reasonable MSE estimations, while those with four and five hidden layers need
100 epochs when the number of neurons in the hidden layers is 100 or 200. In addition, the
prediction results of the test sets were also compared using various performance criteria, as
summarized in Table 9. Based on the comparisons, H5N200E200, which is a DNN model
with five hidden layers, 200 neurons, and 200 epochs, exhibited optimal prediction results.
In this model, the performance values in terms of the coefficient of determination are 0.993
for Mbr,max and 0.99 for Mbr,min predictions. It achieved the minimum values for RMSE,
MSE, and MAE, respectively.
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Figure 9. Cont.
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Figure 9. Comparisons of training and validation loss of bracing moments (Mbr,max, Mbr,min): (a) 3-
50-200; (b) 3-100-200; (c) 3-200-200; (d) 4-50-200; (e) 4-100-200; (f) 4-200-200; (g) 5-50-200; (h) 5-100-200;
and (i) 5-200-200 (in which 3-50-200 means a DNN model with three hidden layers, 50 neurons for
each hidden layer, and 200 epochs).

Table 9. Accuracy of DNN models for Mbr using various performance criteria.

Model
Hidden
Layers Neurons Epochs Mbr,max Mbr,min

R2 RMSE MSE MAE R2 RMSE MSE MAE

H3N50E100 3 50 100 0.723 501,974 2.52 × 1011 305,974 0.474 208,982 4.37 × 1010 147,171
H3N50E200 3 50 200 0.747 480,275 2.31 × 1011 296,841 0.543 195,618 3.83 × 1010 138,242
H3N100E100 3 100 100 0.749 477,061 2.28 × 1011 293,478 0.583 185,885 3.46 × 1010 127,637
H3N100E200 3 100 200 0.807 418,479 1.75 × 1011 256,186 0.639 172,947 2.99 × 1010 117,676
H3N200E100 3 200 100 0.802 425,512 1.81 × 1011 159,758 0.659 169,799 2.88 × 1010 115,709
H3N200E200 3 200 200 0.908 295,307 8.72 × 1010 163,460 0.747 147,600 2.18 × 1010 958,91
H4N50E100 4 50 100 0.859 364,493 1.33 × 1011 220,826 0.659 168,732 2.85 × 1010 112,310
H4N50E200 4 50 200 0.913 281,904 7.95 × 1010 175,535 0.697 158,435 2.51 × 1010 105,033
H4N100E100 4 100 100 0.932 250,220 6.26 × 1010 150,478 0.748 144,280 2.08 × 1010 960,34
H4N100E200 4 100 200 0.981 135,862 1.85 × 1010 908,07 0.863 109,627 1.2 × 1010 707,01
H4N200E100 4 200 100 0.982 137,643 1.89 × 1010 873,24 0.859 108,873 1.19 × 1010 687,04
H4N200E200 4 200 200 0.992 855,97 7.33 × 109 530,85 0.973 486,15 2.36 × 109 299,56
H5N50E100 5 50 100 0.951 223,183 4.98 × 1010 143,079 0.779 136,631 1.87 × 1010 913,89
H5N50E200 5 50 200 0.978 144,863 2.1 × 1010 977,20 0.837 116,433 1.36 × 1010 788,44
H5N100E100 5 100 100 0.982 137,411 1.89 × 1010 876,67 0.913 857,49 7.35 × 109 548,41
H5N100E200 5 100 200 0.991 989,19 9.79 × 109 660,66 0.972 494,90 2.45 × 109 336,42
H5N200E100 5 200 100 0.989 109,128 1.19 × 1010 704,50 0.977 502,29 2.52 × 109 332,95
H5N200E200 5 200 200 0.993 791,70 6.27× 109 496,36 0.990 304,57 9.28× 108 200,61

Note that the best prediction model for Mbr is H5N200E200.

Figures 10 and 11 show a comparison of the predicted bracing moments (Mbr,max,
Mbr,min) and FEA results, which are the training and validation data used in this study. For
all cases, the prediction values show good correlations with the FEA results.
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Figure 10. Comparisons of predicted maximum bracing moments (Mbr,max) of training and validation
data sets: (a) training data and (b) test data.
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Figure 11. Comparisons of predicted minimum bracing moments (Mbr,min) of training and validation
data sets: (a) training data and (b) test data.

5.1.2. Estimation of Bracing Force (Fbr)

Figure 12 shows comparisons of the training and validation loss with respect to MSE
between predicted and FEA values. Based on the comparisons, the DNN models require
at least 100 epochs for all cases of the number of neurons for reasonable estimations from
Figure 12. Furthermore, the predicted Fbr of the test sets were also compared using various
performance criteria, as summarized in Table 10. The DNN model with five hidden layers,
50 neurons, and 100 epochs (H5N50E100) shows the best prediction results, based on
the comparisons. In this model, the performance values in terms of the coefficient of
determination are 0.997 and the minimum values for RMSE, MSE, and MAE, respectively.
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Figure 12. Comparisons of training and validation loss of bracing forces (Fbr): (a) 3-50-200; (b) 3-
100-200; (c) 3-200-200; (d) 4-50-200; (e) 4-100-200; (f) 4-200-200; (g) 5-50-200; (h) 5-100-200; and (i)
5-200-200 (in which 3-50-200 means a DNN model with 3 hidden layers, 50 neurons for each hidden
layer, and 200 epochs).

Table 10. Accuracy of DNN models for Fbr using various performance criteria.

Model Hidden
Layers Neurons Epochs R2 RMSE MSE MAE

H3N50E100 3 50 100 0.997 30.2 910.4 19.0
H3N50E200 3 50 200 0.95 109.6 12,004.7 76.2

H3N100E100 3 100 100 0.99 48.9 2388.8 33.1
H3N100E200 3 100 200 0.991 56.7 3211.6 39.1
H3N200E100 3 200 100 0.996 32.3 1043.4 20.6
H3N200E200 3 200 200 0.995 34.8 1212.5 22.8
H4N50E100 4 50 100 0.996 33.4 1116.5 19.3
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Table 10. Cont.

Model Hidden
Layers Neurons Epochs R2 RMSE MSE MAE

H4N50E200 4 50 200 0.988 65.3 4267.5 45.3
H4N100E100 4 100 100 0.995 35.8 1284.7 24.2
H4N100E200 4 100 200 0.993 41.0 1683.5 26.0
H4N200E100 4 200 100 0.995 35.8 1284.0 23.1
H4N200E200 4 200 200 0.962 122.0 14891.1 68.8
H5N50E100 5 50 100 0.997 25.4 643.8 15.2
H5N50E200 5 50 200 0.993 41.7 1736.5 29.3

H5N100E100 5 100 100 0.995 35.4 1256.4 22.7
H5N100E200 5 100 200 0.995 35.8 1284.4 21.4
H5N200E100 5 200 100 0.992 44.0 1931.8 24.7
H5N200E200 5 200 200 0.995 35.3 1249.3 20.2

Note that the best prediction model for Fbr is H5N50E100.

Figure 13 compares the predicted bracing forces (Fbr) with the FEA results, which
served as training and validation data in this study. For all cases, the prediction values
show good correlations with the FEA results. Based on the FEA results, the magnitude of
the bracing forces is relatively low compared to the bracing moments, as the maximum
bracing force acting on the bracing elements is 3421.2 N, as seen in Table 6. Although
the bracing forces are relatively small compared to the bracing moments, a more accurate
prediction may be possible if we use the bracing force prediction model derived from
this study.
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Figure 13. Comparisons of predicted bracing forces (Fbr) of training and validation data sets: (a) train-
ing data and (b) test data.

6. Conclusions

This study investigated the application of DNN algorithms to estimate internal forces,
with two design variables, namely bracing moments (Mbr) and bracing force (Fbr), respec-
tively. Based on this study, DNN-based prediction models were proposed for estimating
the internal forces acting along the bracing elements in steel I-girder bracing systems. The
conclusions are summarized below.

• This study constructed structural response data based on three-dimensional geometri-
cally nonlinear analysis with imperfections. The structural response data include the
bracing moments (Mbr) and bracing forces (Fbr) acting on the bracing elements at the
states in which LTB behavior occurs. This study introduces critical imperfections at
the target bracing element to ensure that the maximum bracing internal forces occur
in the bracing elements of the steel I-girder bracing systems.
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• The bracing moments obtained from FEA were compared to the design equation stip-
ulated in the AISC provisions [1]. The FEA results indicate that the design provisions
provide considerably conservative design values for torsional bracing steel I-girder
systems, regardless of the types of loading conditions. The built-up sections provide
more conservative results compared to the W-sections. It may be concluded that the
design bracing moments computed by AISC [1] provide conservative design values
when it has wide flange sections, compared to the girder sections that have relatively
smaller flange widths.

• This study proposed DNN models to estimate the bracing moments and forces acting
along the bracing elements. Based on the parametric study of the hyperparameters,
such as the hidden layers, neurons, and epochs, several DNN models, which exhibit
the best prediction results, were proposed. The accuracy of the presented DNN models
was evaluated based on four different statistical performance indices (i.e., RMSE, MSE,
MAE, and R2). For estimating bracing moments, the DNN models require five hidden
layers with 200 neurons and 200 epochs to ensure the higher accuracy of the models.
For bracing force estimations, the DNN models require five hidden layers with 50
neurons and 100 epochs to show the best prediction results compared to other models.

• Although the bracing forces have minor effects on the bracing internal forces, it was
concluded that using a prediction model for bracing forces may lead to a more accurate
prediction of the internal forces acting on the bracing elements. Furthermore, the
proposed models can be used for preliminary design phases to determine reasonable
bridge layouts. It is recommended that the simultaneous use of the DNN models for
bracing moments and forces may provide a more accurate estimation of the bracing
internal forces.

• The proposed DNN models were constructed for twin steel I-girder bracing systems.
Thus, future research works on multi-girder systems are required.
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Appendix A

This section provides validation of the FEA models utilized in this study. In this
preliminary analysis, the W920 × 201 section was chosen for the geometrically nonlinear
finite element analysis with imperfections. The model has a flange width of 305 mm, a
height of 902 mm, a flange thickness of 20.6 mm, a web thickness of 15.9 mm, and an
unbraced length of 22.55 m. An initial imperfection of a half-sine shape was applied to
simulate between the unbraced length of the girder. The maximum value of Lb/2000 is
applied in the mid-span. The number of the element was 8 for flange width directions, and
the same element length was utilized along the web height and longitudinal directions.
Based on the geometrically nonlinear analysis, the deformed shape of the girder shows
typical LTB behavior with a lateral displacement and rotation. In addition, the comparison
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between the FEA results (FEA in Figure A1c) and theoretical LTB strength (Theory in
Figure A1c) shows similar LTB strength, as shown in Figure A1c.
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