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Abstract: The task of complex scene semantic segmentation is to classify and label the scene image
pixel by pixel. For the complex image information in autonomous driving scenes, its characteristics
such as many kinds of targets and various scene changes make the segmentation task more diffi-
cult, making various kinds of FCN-based networks unable to restore the image information well.
In contrast, the encoder–decoder network structure represented by SegNet and UNet uses jump
connections and other methods to restore image information. Still, its extraction of shallow details is
simple and unfocused. In this paper, we propose a U-shaped convolutional neural network with a
jump attention mechanism, which is an improved encoder plus decoder structure to achieve semantic
segmentation by four times of convolutional downsampling and four transposed convolutional
upsamplings while adding a jump attention module in the upsampling process to realize selective ex-
traction of contextual information from high-dimensional features to guide low-dimensional features,
improve the fusion of deep and shallow features, and ensure the consistency of the same type of pixel
prediction. The CamVid and Cityscapes datasets are sampled for the experiments, and the model
ground mIoU evaluation metrics can reach 66.3% and 69.1%. Compared with other mainstream
semantic segmentation algorithms, this method is competitive in terms of segmentation performance
and model size.

Keywords: semantic segmentation; convolutional neural network; autopilot

1. Introduction

Image semantic segmentation techniques are widely used in artificial parsing, virtual
reality, self-driving cars and other fields. According to relevant statistics, by the end
of 2020, only 10% of the 1 billion cars in use worldwide will have installed advanced
driver assistance systems (ADAS) features. Therefore, autonomous driving technology
has a wide market and a strong development prospect. Among the many technologies of
autonomous driving, the detection of the surrounding environment in the process of vehicle
driving is the basis for achieving intelligent vehicle driving. With the rapid development of
convolutional neural networks (CNNs), a fully convolutional network (FCN) method is
gradually replacing the traditional image segmentation method. Because of its hierarchical
feature extraction and implementation of an end-to-end training structure, many later
full convolutional neural network-based approaches have achieved satisfactory results in
pixel-level semantic segmentation tasks.

Classical road detection methods focus on extracting texture and edge information
from images. The most basic texture extraction method is the Gabor filter [1]. Gabor
features are more sensitive to edges, can extract the direction of edges, are less affected by
illumination, and have scale invariance, which can be used to distinguish roads from other
different areas. In addition, for road targets with obvious edge demarcation, extracting
the edge demarcation of these roads can segment the road surface, and the commonly
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used edge detection operators are Sobel, Prewitt, and other operators. After calculating the
texture or edge features of the road, threshold segmentation can be used to obtain the road
segmentation results. In addition, support vector machines and other methods can be used
to achieve better segmentation results. Since parallel straight lines exist at the edges of
standard roadways, the intersection points of multiple pairs of parallel straight lines (road
edge lines and lane lines) can be extracted, and the center positions of these intersection
points can be obtained to approximate the extinction points to segment the roadway from
other scenes.

With the rapid development of convolutional neural networks (CNNs) [2,3], their
excellent hierarchical feature extraction capabilities and end-to-end training structure have
led to significant advances in CNNs for pixel-level semantic segmentation tasks as well [4,5].
Long et al. proposed fully convolutional neural networks (FCN) in 2014 [6]. In the FCN
model, the fully-connected layer used for classification is changed to a convolutional layer,
followed by upsampling of the feature maps using transposed convolution [7]. Finally,
a series of classification output maps equal in size to the original image are output, and
the maximum value is taken as the prediction class after passing through the Softmax
layer. In this way, the FCN model can classify images at the pixel level and complete the
semantic segmentation task. The FCN method has achieved superior results in semantic
segmentation tasks after its emergence due to its superior results and end-to-end training
structure, which, in turn, gradually replaced the traditional image segmentation methods.
Wang et al. also used FCN’s decoder network for tasks such as optimizing transmission
systems [8]. In the following years, to solve the problem of special detection learning
for multi-scale targets, Chen et al. designed the Deeplab network architecture [4,9]. Its
multi-scale feature extraction is achieved by using different null convolutions (atrous conv).
PSPNet [10] designed a spatial pyramid pooling (SPP) structure to pool different size targets
onto the same feature space. MLNet [11] and MANet [12] also use multi-scale feature fusion
models to optimize image segmentation tasks. Song et al. also involved a two-branch
network model for image segmentation [13]. These network architectures can optimize the
semantic segmentation effect very well, but a large amount of computation and a complex
network structure also become the disadvantages of such methods.

As the network layer deepens, the feature map resolution decreases and contains less
spatial detail information, and the reconstruction of the resolution has to be carried out
before obtaining the segmentation results. It is difficult for the ordinary FCN network to
restore the spatial detail information of the image better, which becomes another difficulty in
the semantic segmentation task. Some U-shape structures (i.e., encoder–decoder structures)
can better restore the spatial information of images, such as the UNet structure proposed
by Ronneberger et al. [14] and the SegNet structure extracted by Badrinarayanan et al. [15].
Such structures use low-level information to assist higher-level features in recovering image
details through an encoder–decoder structure. However, this type of network structure
also has certain drawbacks. SegNet only passes the pooling index of the lower layer to the
higher layer for upsampling while UNet directly superimposes the lower layer features
onto the higher layer features without more processing, which may lead to inconsistent
segmentation results of the network for the same target. Networks that also use encoder–
decoder structures, such as GCN [16] and DDSC [17], have chosen to use more complex
decoder structures to enhance the segmentation, but this also increases the complexity of
the network.

Combined with the above methods, although the traditional road segmentation meth-
ods are simple to calculate and have fair results, the color and texture information cannot
further help us segment the image in the face of the complex road scenes in the actual
driving process. In contrast, methods based on image filtering, graph theory, or clustering
cannot extract further image features, and the segmentation accuracy does not meet the
demand well. In addition, because of the high segmentation requirements for off-road
targets in today’s autonomous driving scenarios, as well as the need to obtain the class
to which each segment belongs, traditional methods are no longer adequate for today’s
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autonomous driving scenarios. For FCN and Deeplab, although better segmentation results
can be obtained, the network structure is more complex, and the deep network ignores
the shallow feature information, so the final segmentation results are blurred at the edge
contour. Although SegNet and UNet fuse the low-level features with the high-level features,
they do not process the low-level features, which may bring a lot of useless information
to the high-level features and affect the final segmentation results. In order to solve the
problem of combining low-level features and high-level features, this paper draws on
attention mechanisms such as SE-Net [18] and CBAM [19], which are improved based on
UNet and GAU structures [20], and use high-level features to generate channel attention
weights to assist low-level features for feature extraction. We also add the ConvLSTM
module [21] for extracting temporal contextual information between images to obtain better
segmentation results.

2. Materials and Methods

The overall framework of the model is shown in Figure 1, which is divided into
2 processes, encoding and decoding, where the input image is extracted with different levels
of features through the underlying network in the encoder. Then it arrives at the ConvLSTM
module for temporal information extraction, and subsequently enters the decoder section
for upsampling and feature fusion through the jump attention module to finally obtain
the prediction results. The encoder in the network uses VGG16 [22] as the base network
structure, using a 3 × 3 convolution, a batch normalization and a relu activation for each
downsampling, and, finally, a maximum pooling operation to reduce the feature map size
to 1/4 of the original. In this paper, the fully connected layer of VGG16 is removed, which
makes the JAUNet encoder network smaller and easier to train than many other recent
architectures [23,24]. After going through four times of downsampling, the number of
feature map channels is 1024 and the length and width of the feature map is 1/16 of the
input image. In addition, in the upsampling process, the feature map size is scaled up to
twice at the time, using transposed convolution, followed by connecting the lower-level
features that have been processed with jump attention. After convolutional normalization,
the next upsampling is performed, and the image is restored to its original size after four
upsamplings, and the number of channels is the predicted number of classes N.
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2.1. UNet Network Structure

UNet was originally designed to be used for the task of semantic segmentation of
medical images. Ronneberger designed this network in 2015 and won the ISBI Cell Tracking
Challenge that year by a huge margin with the network structure shown in Figure 2. UNet
is a convolutional neural network based on the basic network structure of FCN, which
uses an encoder–decoder structure. The encoder part of UNet adopts a 4 convolutional
downsampling structure, and the decoder part adopts a 4-transposition convolutional
upsampling structure. In addition, the shallow features in the downsampling process are
combined with the deep features in the upsampling process using a jump connection, so
that the deep features can be used for localization and the shallow features can be used
for accurate segmentation of the image. After the encoder–decoder structure, the last
convolutional layer is used for the output, and the output feature map size is the same
as the input image size and the number of channels is the same as the desired number of
classifications, and the final segmentation result can be calculated after passing Softmax.
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2.2. Convolutional LSTM (ConvLSTM) Network Structure

The Convolutional LSTM (ConvLSTM) [21] network structure changes the input to
an M × N grid with P number of channels per grid compared to the traditional LSTM
network, so the input to the network is a 3D tensor. The authors of this paper also gave the
formula for the ConvLSTM structure, as in Equation (1).

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi)

ft = σ
(

Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f

)
Ct = ft ◦ ct−1 + it ◦ tanh

(
Wxc ∗ Xt + Wgc ∗ Ht−1 + bc

)
ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo)

Ct = ot ◦ tanh(Ct)

(1)

In the formula, the asterisk represents the convolution operation. ConvLSTM combines
the advantages of convolutional neural networks and recurrent neural networks, which
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makes it suitable for spatio-temporal data and can be used in video ground semantic
segmentation tasks. Its structure is shown in Figure 3.
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2.3. Jump Attention Module (JAM)

In deep learning application scenarios, we often need to deal with exceptionally
large amounts of data, but only a small fraction of most of the data is important, and
attention mechanisms are used for extracting the highlights from large amounts of data in
deep learning tasks. In image processing, the attention mechanism can also play a good
role, mainly by further feature extraction of the feature map, calculating the attention
weights on the image channel or space, and re-acting on the original feature map to
selectively extract image information. This has been previously used by networks such
as SE-Net [18] and CBAM [19]. In this case, SE-Net first performs a Squeeze operation
on the feature map, which uses global pooling to synthesize the input features of size
2C × H × W into a C × 1 × 1 feature description. After the above Squeeze operation,
the network only gets a global description, which cannot be used as the weight of the
channel. Therefore, the authors proposed the Excitation operation, which contains two
fully connected layers, and the Sigmoid activation function, to obtain the channel attention
weights for processing the original feature map. Attention mechanisms are also often used
in the field of weather image segmentation [25–27]. We design the jump attention module to
address the problem that the commonly used U-shaped network structure does not further
process the low-dimensional features during the jump connection process, considering that
the high-dimensional features have rich semantic information, which can help guide the
selection of low-dimensional information, so as to achieve the selection of more accurate
resolution information, and, finally, combine the processed feature maps to the high-level
features for upsampling operations. Its structure is shown in Figure 4.

As shown in the figure, the attention structure in this paper utilizes both high-
dimensional features and low-dimensional features as a way to compensate for the UNet
network’s lack of any processing of low-level jump connections afterwards. The feature
map size of the upsampling process is 2C × H × W, which is converted to C × 1 × 1
channel attention weights after a series of pooling and feature extraction, and feature fusion
processing with low-dimensional features of size C × 2H × 2W. The method is to first
convolve the low-dimensional features by 3 × 3, followed by matrix multiplication with
the channel attention weights extracted from the high-dimensional features to obtain the
attention-processed feature map for subsequent upsampling with the high-dimensional
feature evaluation for the next step. The formula for the jump attention module is given in
Equation (2).

Mc(L) = Mc(H)× Conv3×3(L) (2)
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In the formula, Mc(H) represents the attention weight calculated from the high−
dimensional feature map. Conv3×3 represents the 3 × 3 convolutions, L represents the
low−dimensional feature map, and Mc(L) represents the feature map after JAM processing.
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Adding the attention mechanism on image channels was proposed in 2018 by
Hu et al.’s SE-Net model [18]. This paper adds a parallel maximum pooling layer compared
to the channel attention mechanism in SE-Net. A three-layer perceptron is also used, instead
of the original 1 × 1 convolution, to extract the channel attention information, and, finally,
the channel attention weights with the same number of channels and low-dimensional
features are output. The structure of the channel attention mechanism designed in this
paper is shown in Figure 5.
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The channel attention mechanism computes the maximum pooling and average pool-
ing of the input features and feeds them to the MLP unit, a two-layer neural network for
computing the attention weights on the picture channels. The formula for the channel
attention mechanism is given in Equation (3).

Mc(H) = σ(Conv(MLP(AvgPool(H)) + MLP(MaxPool(H))))
= σ(Conv(W1(W0(Hc

avg)) + W1(W0(Hc
max))))

(3)

According to Equation (4), the number of feature vector channels is reduced by half
after passing the last convolution layer. Input high-dimensional features of size 2C × H ×W
for the high-level features, generating C × 1 × 1 attention weights with the same number
of channels as the low-dimensional features. Finally, after passing the low-level channels
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through a 3 × 3 convolutional layer, the attention-processed feature map is obtained by
multiplying it with the attention weights, calculated as in Equation (4).

Mc(L) = σ(Conv(W1(W0(Hc
avg)) + W1(W0(Hc

max))))× Conv3×3(L) (4)

At this point, the size of the generated jump feature map is C × 2H × 2W, which is the
same size as the high-dimensional features after one upsampling, and the low-dimensional
features and high-dimensional features after channel attention processing are stitched
together to obtain the feature map obtained from this round of upsampling and the feature
map used in the next round of upsampling, as in Equation (5).

Hnext = Upsample(H) + Mc(L) (5)

In summary, the output feature map of the attention module in this paper has exactly
the same size and number of channels as the low-level feature map, and there are not
too many weights, so it can be easily added to the existing network and can effectively
extract the picture ground channel and spatial attention information, which can well save
hardware resources.

3. Results
3.1. Benchmark Dataset
3.1.1. CamVid Dataset

Semantic segmentation models based on deep learning require a large number of
datasets for model training, and the datasets used vary in the face of different semantic
segmentation tasks; for instance, in the semantic segmentation task of medical images,
3D medical image datasets are often used. The CamVid dataset [28] can be used to meet
the needs of this paper, which requires time series images or video datasets. This is an RGB
street view dataset developed and labeled by the University of Cambridge. The CamVid
raw dataset contains a total of 701 photos with a resolution of 720 × 960, containing a
total of 32 raw categories that can be grouped into 11 major categories, including vehicles,
pedestrians, roads, and buildings. The dataset, consisting of a series of sequential images,
was taken under different lighting conditions and was taken while the car was in motion,
which is well suited to the environment of autonomous driving use. It can meet the
dataset needs of this paper. We followed the official CamVid data divisions of training set,
validation set, and test set. The number of images in the training set, validation set, and
test set are 367, 101 and 233, respectively. Figure 6 shows an example of the comparison
between the original image and the labeled image.
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3.1.2. Cityscapes Dataset

The Cityscapes dataset [29] is a large cityscape dataset that contains high-resolution
images of driving scenes taken in more than fifty different cities, in different contexts and in
different seasons. It includes three seasons of street scenes in spring, summer and autumn,
and uses a binocular camera to obtain a stereoscopic video sequence. The dataset has
a large number of well-labeled street images, including 5000 finely labeled images and
20,000 coarsely labeled images with resolutions up to 1024 × 2048. The Cityscapes dataset
does not supply data labels for the Test set. Therefore, we have re-segmented the training
and validation sets for a total of 3475 images. The dataset was generated in the ratio of 6:2:2
for the training, validation, and test sets. The Cityscapes dataset is labeled with 19 different
categories, and the correspondence between the original images and the classification labels
is shown in Figure 7.
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3.2. Experimental Platform and Environment

The CPU used for the experiments is INTEL CORE I7-12700 (INTEL, Santa Clara,
CA, USA, with 32 GByte of memory), the GPU used for the experiments is NVIDIA
Geforce RTX3070 (NVIDIA, Santa Clara, CA, USA, with 8 GByte of memory), and the
software is Pytorch, a deep learning framework. Data is processed using the Numpy library
and visualised using libraries such as PIL and Plotly. Detailed hardware and software
parameters are shown in Tables 1 and 2.

Table 1. Experimental hardware model.

Hardware Manufacturer Model

CPU INTEL, Santa Clara, CA, USA Core i7-12700
GPU NVIDIA, Santa Clara, CA, USA Geforce RTX3070

Memory G. SKILL, Taipei, Taiwan, China F4-3200C16D 8 GB × 4
SSD Samsung, Yongin, Gyeonggi-do, Korea 980pro 1TB

Table 2. Experimental software and version.

Software Version

Windows 11 22H2
Conda 4.13.0
Python 3.9.12
Pytorch 1.12.0

Cudatoolkit 11.3.1
Matplotlib 3.5.1

Numpy 1.22.3
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The experiments use the small batch stochastic gradient descent (SGD) method with
a momentum setting of 0.9 and a weight decay of 10−2, using “poly” as the learning rate
decay strategy, where the initial learning rate is set to 0.05 and the exponential coefficient is
0.9. During the training process, the max epoch is set to 200. In the Cityscapes dataset, the
resolution of the images was randomly cropped to 512 × 1024 during the training phase in
order to make a fair comparison with different semantic segmentation network models;
For the CamVid dataset, experiments were conducted using a resolution of 360 × 480. It
should be noted that the new network model proposed in this paper does not use pre-
training operations.

3.3. Evaluation Indicators

The PA represents the proportion of correctly classified pixels to all pixels and is
calculated as in Equation (6).

PA =
∑k

i=1 pii

∑k
i=0 ∑k

j=0 pij
(6)

where k denotes that there are k classes of all pixel points, pij denotes the number of pixel
points in class i that are predicted as class j, and pii denotes the number of pixel points in
class i that are correctly predicted as class i. In the confusion matrix, pij can be found in the
i-th column and j-th row, and pii in the same way. Therefore, after calculating the confusion
matrix, we can easily calculate the pixel classification accuracy.

MPA is a boost to PA, which is calculated by figuring out the proportion of correctly
classified pixel points of each class to the pixel points of the whole class, and then calculating
the average value of pixel classification accuracy for all classes, which is calculated as in
Equation (7).

MPA =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij

(7)

As the name suggests, IoU represents the ratio of the intersection of the target region
and the predicted region to the concurrent set, expressing the overlap between the target
region and the predicted region, and the higher the intersection ratio indicates, the higher
the accuracy of the segmentation is, as calculated in Equation (8).

IoU =
pii

∑k
j=1 pij + ∑k

j=1 pji − pii
(8)

Like IoU, MIoU is also the ratio of the intersection of the target region and the predicted
region to the concatenated set, which is calculated for each pixel category and then for the
average value of the intersection ratio for all categories. The higher the value indicates, the
higher the accuracy of the segmentation is, and the formula is as in Equation (9).

MIoU =
1

k + 1

k

∑
i=0

IoU (9)

FWIoU is a boost for MIoU. This method uses the frequency of occurrence of each
class as a weight to calculate the mean value of IoU, which can better represent the accuracy
of semantic segmentation, which is calculated as in Equation (10).

FWIoU =
1

∑k
i=0 ∑k

j=0 pij

ak

∑
i=0

pii

∑k
j=1 pij + ∑k

j=1 pji − pii
(10)

3.4. Loss Function

The basic loss function used in this paper is the NLLLoss loss function provided by
Pytorch, which can be used with the Softmax function to achieve the need for fast descent
in the case of high error and close to the optimal solution. The optimal solution of the
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model turns to be better and faster. Since the experimental dataset belongs to the complex
scene segmentation dataset, the samples have the characteristics of containing many target
categories and an unbalanced number, which leads to the fact that the model cannot learn
the features of each category equally and guarantee the segmentation accuracy of each
category. In this paper, the category balance method is used to calculate the occurrence
frequency f qi of each category, which is the number of pixels in that category divided by
the total number of pixels in the data, where i represents the i-th category. In addition, the
median value of the occurrence frequency f qs of all categories is found and divided by the
corresponding frequency of that category to obtain the weight of that category, which is
calculated as in Equation (11).

weighti = median( f qs)/ f qi (11)

The generated category weights are used to act on the loss function to make it more
sensitive to the categories that occur less frequently, and the formula of the loss function
after increasing the weights is shown in Equation (12).

Loss = −
N

∑
i=1

wi NLLoss(yi, pi) (12)

The wi in the formula is the weight of class i; yi and pi are the label values and
predicted values of all class i in the image respectively.

Also, this paper introduces the Dice Loss function as an auxiliary loss function, which
is a loss value calculated from the Dice coefficient, an ensemble similarity measure function
usually used to calculate the similarity of two sample points with the formula in Equation (13).

S =
2|X ∩Y|
|X|+ |Y| (13)

where |X ∩Y| denotes the intersection between X and Y; |X| and |Y| denote the number of
elements of X and Y, respectively. The factor 2 in the numerator is due to the existence of
double counting the common elements between X and Y in the denominator. If the Dice
coefficient is larger, it indicates that the more similar the set is, the smaller the Loss is; and
vice versa. Therefore, the Dice Loss is calculated as in Equation (14).

DiceLoss = 1− 2|X ∩Y|
|X|+ |Y| (14)

|X ∩Y| denotes the dot product of the corresponding elements of two sets and then
sums the results of the element-by-element multiplication.

Dice Loss and NLLLoss are often used together and in this paper, they are weighted
as the overall Loss, calculated as in Equation (15).

Final Loss = α× NLLLoss + β× DiceLoss (15)

FCN-ResNet18 was used in advance as the base model to test both weights on the
CamVid dataset, and each combination of weights was trained with 100 epochs. Finally,
the test set mIoU was calculated to evaluate the training effect of each weight. The test
results are shown in Table 3. Since it is unfavorable to small samples when using DiceLoss
completely, the cases of α = 0 and β = 1 are not considered.

It can be seen that the test set performs best when α is taken as 0.6 and β is taken as
0.4, so this combination of weights is chosen as the weights for subsequent experiments.

The gradient descent algorithm used in this paper is stochastic gradient descent (SGD).
This gradient descent algorithm can sample a portion of the training set data, which is
a mini-batch. This parameter can be set by itself. After the forward propagation of the
network is completed, SGD gradient descent then uses the loss function calculated from
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this batch of the training set to calculate the optimal value of the weights until the model
converges or the algorithm is stopped manually. SGD has been shown to have better
performance in various experiments [30].

Table 3. Effect of different weight loss functions on segmentation performance. The bolded part
indicates the best performance of each indicator at this parameter.

α β PA MPA FWIoU

1 0 80.7 64.4 72.3
0.8 0.2 82.5 64.2 74.0
0.6 0.4 83.0 63.1 74.2
0.4 0.6 79.3 64.2 70.5
0.2 0.8 77.3 64.5 69.4

3.5. Experimental Evaluation

In this section, the actual segmentation performance of the trained networks on the
two datasets will be presented. The segmentation images generated by each network
will be presented for evaluating the visual segmentation effect, and the objective evalua-
tion metrics calculated for comparing the segmentation effect of each network will also
be presented.

3.5.1. Ablation Experiments

We conducted ablation experiments on the CamVid dataset for both the JAM module
and the ConvLSTM module. We tested combinations of different numbers of JAM modules
and ConvLSTM modules. The test results are shown in Table 4.

Table 4. Results of ablation experiments for JAM module and ConvLSTM module. The bolded part
indicates the best performance of each indicator at this parameter.

Network Speed/fps Params/M MIoU FWIoU

UNet [14] 39.51 7.76 63.7 72.6
UNet + ConvLSTM 25.39 26.58 64.1 70.1

UNet + 1 × JAM 38.95 9.34 63.9 72.5
UNet + 2 × JAM 37.60 11.22 64.5 72.1
UNet + 3 × JAM 36.34 15.31 65.5 73.1
UNet + 4 × JAM 31.22 18.50 65.3 72.8

UNet + 3 × JAM + ConvLSTM 35.23 33.91 66.3 74.2

Table 4 shows that the ConvLSTM module alone does not improve the MIoU much,
and the effect even decreases in the metric FWIoU. In contrast, the JAM module alone has
a significant improvement on both MIoU and FWIoU for the native UNet network. The
segmentation accuracy of the UNet network gradually improves as more JAM modules
are used. However, when we added JAM modules at the bottom layer of the network, the
effect was not obvious and even degraded in the evaluation metrics, so our final network
structure used only three JAM modules. In addition, after using three JAM modules and
the ConvLSTM module, the JAUNet network shows a significant improvement compared
with the base UNet network, which proves the good cooperation between the ConvLSTM
and JAM modules.

3.5.2. CamVid Dataset Results

We tested some networks to compare with JAUNet, and Figure 8 gives the change
process of the loss function during the training of some networks.

As shown in the figure, the losses of each network gradually converge after 100 rounds
of training, and finally they all stabilize at about 0.04. Among them, UNet converges faster,
while SegNet and JAUNet converge slightly slower.
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The objective evaluation metrics of the four models on the CamVid dataset are shown
in Table 5.

Table 5. Evaluation metrics for each model on the CamVid dataset.

Network Input Size Speed/fps Params/M MIoU FWIoU GFLOPs

ALE [31] 360 × 480 - - 53.6 62.1 -
SuperParsing [32] 360 × 480 - - 42.0 52.0 -

FCN-ResNet34 360 × 480 157.10 21.34 49.1 60.5 55.89
ENet [33] 360 × 480 135.4 0.37 51.3 63.2 3.83

SegNet [15] 360 × 480 46.18 29.45 55.6 66.9 104.54
ESPNet [34] 360 × 480 132.00 0.36 55.6 67.2 3.31

PSPNet-ResNet18 360 × 480 25.98 46.64 57.1 68.8 123.69
GAU [20] 360 × 480 38.15 7.94 64.5 72.3 81.64

DeepLab-LFOV [4] 360 × 480 122.53 15.31 61.6 69.3 125.00
ICNet [35] 360 × 480 27.8 26.5 67.1 74.5 28.3

DFANet A [36] 360 × 480 120 7.8 64.7 72.8 3.4
DFANet B [36] 360 × 480 160 4.8 59.3 69.0 2.1

BiSeNetV1_X [37] 720 × 960 175.00 49.00 65.6 73.1 8.70
BiSeNetV1_R [37] 720 × 960 116.30 5.8 68.7 75.9 32.4

JAUNet 360 × 480 35.23 33.91 66.3 74.2 137.76

As shown in Table 5, compared with other types of network structures, JAUNet
has advantages over most other network structures with a fixed input size of 360 × 480.
Compared with the basic semantic segmentation network structure of FCN, JAUNet also
achieves excellent segmentation results owing to the encoder–decoder network structure.
Compared with SegNet and UNet, which are also encoder–decoder networks, the segmen-
tation accuracy of JAUNet is significantly improved, and its edge segmentation results for
small targets are even better due to the cross-channel feature fusion mechanism of JAM.
Compared with small networks such as ENet and ESPNet, JAUNet has significantly better
segmentation accuracy, although it is inferior to such networks in terms of inference speed
and model complexity. Compared with DeepLab, which uses the same basic network
structure, JAUNet also has an obvious advantage in segmentation accuracy. Compared
with ICNet and DFANet, which are newer networks, JAUNet is more balanced in terms
of accuracy and speed. For a large network structure such as PSPNet, JAUNet not only
has an advantage in segmentation accuracy but also has a certain advantage in inference
speed. Meanwhile, compared with BiSeNetV1 with an input size of 720 × 960, JAUNet is
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slightly inferior to its segmentation results based on ResNet18 due to its inference speed
and segmentation accuracy after using Xception39 or ResNet18 as the backbone network
and pre-training on ImageNet, but because it needs to perform pre-training, JAUNet is
slightly inferior to its segmentation results based on ResNet18. However, since JAUNet
needs to perform pre-training, the computational cost is higher, and its model paramet-
ric number is also larger (up to 49 M) compared to other network models. JAUNet can
achieve better segmentation accuracy with smaller input images than BiSeNet. Figure 9
also shows the variation of the test machine accuracy with the number of training rounds
during training.
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Similar to the change of loss function during the training process, the mIoU of JAUNet
on the test set rises slowly with the number of training rounds and stabilizes after 100 epochs.
According to the change curve of mIoU, it can be found that JAUNet has a significant accuracy
advantage on the test set compared to other U-shaped networks by virtue of the JAM attention
module, which demonstrates the effectiveness of the JAM module.

A comparison of the semantic segmentation results of the four networks on the
CamVid dataset with the original and labeled images is shown in Figure 10. In the figure,
images from left to right are the input images, and labeled images and segmentation results
of each network are presented in order.

As shown in Figure 10, where the first group of images has one vehicle target and
several pedestrian targets, FCN can recognize pedestrians and vehicles, but the edge
segmentation and that of the road are blurred. The UNet-GAU can recognize the pedestrian
target on the left side, but mis-segmentation occurs in the building part on the right side.
The second image shows multi-vehicle and multi-pedestrian targets, and each network can
recognize the vehicle targets, but the pedestrian targets are not well recognized. UNet and
UNet-GAU are not effective in the overlapping part of pedestrians and buildings on the
left side, while the best segmentation for overlapping targets is JAUNet network and the
worst segmentation is FCN.

The third set of images are some continuous vehicle targets and a small pedestrian
target, from which we can see that JAUNet can roughly identify the location of the traveler,
while ordinary UNet is not able to accomplish it, with the appearance of a lot of noise. The
fourth group of images is a bright scene of a bend and there are several vehicle targets in the
distance. It can be seen that the networks can basically segment the bend contours well and
the distant vehicle targets can be effectively identified. The edges of the vehicle contours are
shown in detail. The fifth group of pictures is an intersection scene. There is an intentional
pedestrian target in the intersection and a pet in the hand of the pedestrian obscures the
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road. It can be seen that JAUNet has the best segmentation effect on pedestrians and roads
among the four networks. The last picture is a straight road scene and there is a line of
people on the left side obscuring part of the vehicle. Among the four networks, FCN and
JAUNet can identify the vehicle and pedestrian targets. FCN can recognize the situation
that the traveler obscures the vehicle, but the segmentation of the contour is not good,
and some mis-segmentation of the pedestrian’s leg occurs in the segmentation result of
JAUNet, and the segmentation results are good for other targets. The other networks are
all inferior to JAUNet for overlapping targets, and UNet-GAU appears to mis-segment
the pedestrian as a bicycle. Combining the above images, JAUNet has better results in
edge segmentation and small targets in the CamVid dataset compared to other semantic
segmentation networks.
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Details of the segmentation results for the CamVid dataset are shown in Figure 11. As
can be seen, the differences in the segmentation results of the four networks are outlined in
yellow areas in the figure.

After looking closely at the yellow boxed part of the picture, we can see that the first
set of images shows the noise that appears in the building and plant parts of UNet, SegNet,
and JAUNet, and JAUNet performs the best. All three U-shape network structures can
identify the travelers. However, some local missegmentation also occurs in all of them.
JAUNet’s mis-segmentation part is smaller, and the edges are more complete, while FCN
fails to identify the traveler target at all and is not effective. The second group of images
focuses on the segmentation details of the top of the vehicle. All three networks except
FCN can segment the vehicle outline well while JAUNet has some small noise. The third
group of images focuses on the segmentation details of the continuous vehicles on the left
side. Both UNet and UNet-GAU have mis-segmentation of the background part. However,
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JAUNet has better noise suppression and edge processing in this group of images. For
the pedestrian target at the intersection in the fifth group of images, FCN identifies the
pedestrian, but the edge segmentation is poor. UNet and UNet-GAU hardly identify the
pedestrian, and mis-segmentation occurs. JAUNet can recognize pedestrian targets in the
middle of the road and does not divide the pets of pedestrians into roads by mistake. The
last set of images shows the details of the pedestrian obscuring the vehicle target. The
FCN mis-segments the legs of pedestrians as vehicles, while the UNet and UNet-GAU
mis-segment a portion of pedestrians as background. The JAUNet network can recognize
the traveler and the vehicle. Although the part of the leg is mis-segmented into the vehicle,
it is better than the other networks.
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To sum up, during the classification segmentation of CamVid dataset 11, FCN could not
segment the object edges well, both UNet and SegNet show much noise in the background,
and JAUNet segmentation results are relatively cleaner and had clear edges. In terms of
visual effect, the JAUNet network outperforms other networks.
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3.5.3. Cityscape Dataset Results

The variation of loss function for the training process of Cityscape dataset is shown in
Figure 12.
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In the Cityscape dataset, the loss function of JAUNet is slightly higher than the
other networks, which may be due to the higher complexity of the network making the
convergence slower after the learning rate decreases. Similar to the training of the CamVid
dataset, there were some fluctuations in the loss function during the training process, but
they all basically leveled off after 100 epochs in the end.

The objective evaluation metrics of the four models on the Cityscape dataset are shown
in Table 6.

Table 6. Evaluation metrics for each model on the Cityscape dataset.

Network Pretrain Speed/fps Params/M MIoU FWIoU GFLOPs

FCN-ResNet34 No 157.10 21.34 49.1 62.1 55.89
ENet No 41.70 0.36 58.3 65.3 4.35

SegNet No 35.13 29.45 56.1 65.1 104.54
FastSCNN No 198.41 1.10 62.8 67.8 1.76

ContextNet [38] No 176.60 0.88 65.5 71.2 1.78
PSPNet-ResNet18 No 18.73 46.64 63.4 69.6 123.69

GAU No 35.23 7.94 66.5 73.2 81.64
CGNet [39] No 44.70 0.50 65.6 71.1 7.00

EDANet No 105.50 0.68 67.3 73.2 9.00
ICNet No 30.3 26.5 69.0 76.3 28.3

DFANet A’ No 100 7.8 70.3 77.1 3.4
DFANet B No 120 4.8 67.1 71.9 2.1

BiSeNetV1_X ImageNet 105.80 5.80 68.4 75.8 14.90
BiSeNetV1_R ImageNet 65.50 49.00 74.7 81.3 55.3

UNet No 36.73 7.76 64.3 70.5 119.03
ConvLSTM_UNet No 19.23 26.58 64.9 70.1 137.53

JAUNet No 28.51 33.91 69.1 76.3 137.76

The JAUNet proposed in this paper achieves 69.1% mIoU with 33.91 M parameters
on the Cityscapes test set. Owing to more training images and higher resolution input
images, better segmentation results could be achieved than on the CamVid dataset but
accompanied by a decrease in inference speed. Compared to other neural networks,
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JAUNet can obtain better segmentation accuracy. Like the test results on the CamVid
dataset, JAUNet’s segmentation accuracy is higher than that of lightweight networks such
as ENet and ContextNet, although the inference speed is slower. Compared with other
encoder–decoder network structures, some inference speed is lost, but higher segmentation
accuracy is obtained. The segmentation performance of JAUNet is still better than that
of GAU, which also adds an attention mechanism, which means that the JAM module is
better at extracting channel attention. The segmentation accuracy of JAUNet is similar to
that of the Xception39-based network but inferior to that of the ResNet18-based network
when compared to the BiSeNetV1 network pre-trained on ImageNet, which is already very
good without pre-training on a large dataset. We also give results on the Cityscape dataset
using ConvLSTM and UNet alone. Similar to CamVid, using the ConvLSTM module alone
does not show much improvement for UNet, and we speculate that the slow convergence
may be caused by too many parameters. The simultaneous use of the ConvLSTM and JAM
modules also has a better performance on the Cityscape dataset.

Figure 13 shows the variation of the validation set mIoU with the number of training
rounds on the Cityscape dataset. On this dataset, SegNet’s mIoU differs more from other
UNet-based networks due to its use of only pooled index-assisted upsampling. JAUNet, on
the other hand, has a higher segmentation accuracy than the UNet network after training
110 epochs, although its upsampling speed is slower. This is the same as the results obtained
from testing on the CamVid dataset, which further illustrates the effectiveness of the JAM
attention module.
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Figure 13. Cityscape MIoU.

The second set of images is an intersection scene, where there are some side-by-side
vehicles in opposite directions, and the segmentation effect of each network on vehicle
targets is good. Compared with other networks, JAUNet has a complete segmentation effect
on rod-shaped objects and an advantageous effect on small targets such as pedestrians. The
third and fourth groups of images are road scenes and several opposite vehicle targets, and
we can pay attention to the processing of vehicle edges and rod-shaped objects. JAUNet
has the best results.

In the Figure 14, it can also be seen that JAUNet has mis-segmented some of the road
markings as car targets, probably because JAUNet is more sensitive to small targets and the
markings are not labelled. At the same time, JAUNet classifies the signage target shown
as background in the label on the right as a wayfinding sign as well, while the rest of the
network would classify the target as a building. This shows that JAUNet classification
results seem to be closer to human perception in the classification of targets without labels.
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The fifth group of images is mainly roads. The segmentation of road edges by FCN is
completely blurred. SegNet can recognize part of the edges but mistakenly segmented
part of the sidewalks as roads. UNet and JAUNet can segment road edges better, but
UNet has poor recognition of the right-side streetlights, and JAUNet with added attention
mechanism can be well recognized.
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The segmentation details of the Cityscapes dataset are shown in Figure 15. The yellow
boxes in the figure mark the parts of the segmentation results that are significantly different.
In the detailed diagram, it is obvious to see the mis-segmentation of vehicles on the right
side of the first set of images, and JAUNet has the best overall performance. At the same
time, other networks classified part of the person target on the left into a car, while UNet can
recognize person’s outlines, and JAUNet tends to highlight small target person more. From
the second row in the figure, it can be seen that, compared with the network shown, JAUNet
can successfully segment the detailed information in the fine objects; in other words, the
light pole of the streetlight is successfully recovered, mainly due to the multi-scale fusion
of deep and shallow features by the JAM module in the network. Moreover, the results
from the first, third, and fourth rows in the figure show that JAUNet is able to perform
more accurately, such as the classification of large areas of foliage and ground, as well as
the classification of walls and pavements, further demonstrating the enhanced effect of the
JAM module for multi-scale information fusion. Compared with other models, JAUNet
is able to segment not only objects with fine edges but also larger objects more accurately
with significant segmentation effects, indicating that JAUNet has some enhancement in
real-time semantic segmentation for different scales of objects.

3.6. Summary of Segmentation Results

Based on the semantic segmentation results and objective evaluation metrics in the
previous section, we can find that the basic FCN network performs similarly in both
datasets with good objective evaluation metrics, but the actual visual segmentation is poor.
FCN can only recognize the target but cannot distinguish the outline. SegNet, on the other
hand, can recognize the edges of objects to a certain extent, but there are often cases of
mis-segmentation and burrs on the segmented edges. The edge segmentation of UNet
is smoother, but mis-segmentation occurs in the background part. Finally, the JAUNet
network structure designed in this paper shows that there are differences in the performance
of the network in the two datasets. The performance in the CamVid dataset is better, as the
object edges can be extracted well, there are few mis-segmentations in the background part,
and the objective evaluation index of the test set is also the highest. However, its substantial
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number of parameters and slower inference speed remain weaknesses in autonomous
driving scenarios, which will be the direction of our future research. It can also be found in
the segmentation results of each group that JAUNet is more sensitive to the recognition of
small targets, which is in line with our expectations for JAM. It should be noted that the
final upsampling of JAM compresses the number of channels to the number of categories
(19 for Cityscapes and 11 for CamVid), resulting in a slight difference in the number of
parameters between the Cityscapes and CamVid datasets.
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4. Conclusions

Segmentation technology of traffic road images, as an important part of autonomous
driving technology, plays a significant role in new energy vehicles and new travel modes
and has received extensive attention from major car companies in various countries with
good prospects. Although the traditional image segmentation technology can extract the
target to a certain extent, it cannot meet the requirements of autonomous driving scenarios
due to the need for manual feature extraction, poor generalization ability of the model, and
the inability of the clustering algorithm to label the pixel points with semantic information.
In addition, with the rapid development of computer hardware and software level, artificial
intelligence technology has been updated rapidly in recent years, and deep learning seman-
tic segmentation technology has become the mainstream of image segmentation technology.
In this paper, starting from the actual application scenario, combining the characteristics of
continuous images obtained in the automatic interpretation process and targeting at the
mining of contextual information in continuous images, the basic technical principles of



Appl. Sci. 2023, 13, 1493 20 of 21

deep learning semantic segmentation, JAM attention mechanism, and ConvLSTM network
structure are integrated to systematically study and design the JAUNet semantic segmen-
tation network model. Compared with other existing methods, the proposed method in
this paper performs more outstandingly on mIoU evaluation. Compared with the common
UNet, this paper improves its jump connection part to make up for the lack of processing
of low-dimensional features, so that the upsampling process can better figure-restore the
image features and the model ground mIoU evaluation index can reach 63.7% and 73.2%,
respectively. The experimental results on the CamVid dataset and the Cityscapes dataset
show that this model has high average detection accuracy.
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