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Abstract: Monte-Carlo tree search (MCTS) is a widely used heuristic search algorithm. In model-
based reinforcement learning, MCTS is often utilized to improve action selection process. However,
model-based reinforcement learning methods need to process large number of observations during
the training. If MCTS is involved, it is necessary to run one instance of MCTS for each observation
in every iteration of training. Therefore, there is a need for efficient method to process multiple
instances of MCTS. We propose a MCTS implementation that can process batch of observations in
fully parallel fashion on a single GPU using tensor operations. We demonstrate efficiency of the
proposed approach on a MuZero reinforcement learning algorithm. Empirical results have shown
that our method outperforms other approaches and scale well with increasing number of observations
and simulations.

Keywords: Monte-Carlo tree search; reinforcement learning; MuZero; parallel computations; tensor
GPU implementation; model-based reinforcement learning

1. Introduction

Reinforcement learning (RL) is a core machine learning topic that is concerned with
how agents should perform actions in an environment in order to maximize the total
cumulative reward. The agent learns by interacting with the environment through trial
and error and uses feedback from its own actions and experiences. Its purpose is to find
optimal or nearly-optimal strategy that maximizes the reward function. This strategy is
referred to as policy. RL based methods has achieved outstanding accomplishments in a
number of domains, e.g., games [1,2], autonomous driving [3], UAVs [4–6], robotics [7],
and traffic signal control [8].

RL may be divided into two fundamental categories: model-free, and model-based.
Model-free approaches directly learns a value function or a policy by interacting with the
environment. Model-based RL uses model of environment in order to perform decision
making through planning. This model is commonly represented by a Markov decision
process (MDP) [9] consisting of two components: a state transition function, and a reward
function. MDP is widely used in artificial intelligence for modeling sequential decision-
making scenarios with probabilistic dynamics [10–12].

One of the most employed planning techniques is Monte-Carlo tree search (MCTS).
MCTS combines the precision of tree search with the generality of random sampling [13]. It
is a well-established approach to look-ahead search in context of model-based RL to extend
and improve decision making process by building and traversing a tree. It was utilized in
AlphaGO [1], the first program to achieve superhuman performance in GO, and in many of
its successors [2,14,15].

MCTS is very challenging to parallelize due to its inherent sequential nature where
each rollout depends on the statistics computed from previous simulations [16]. This
problem is even more challenging when GPU architecture is involved. One of the problems
is the SIMD execution scheme within GPU which causes that a standard CPU parallel
implementation such as root-parallelism fail [17].
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In this paper, we propose a parallel implementation that aims to evaluate multiple
unique MCTS trees and is fully implemented on a graphics processing unit (GPU). A
common way to use MCTS is to gradually build one large tree. This tree is continuously
used and updated for the needs of the task at hand. We focus on a different type of tasks,
namely tasks that need to evaluate a large number of unique trees instead of building one
tree gradually. We show that the GPU tensor implementation of MCTS is suitable for this
task and can outperform CPU and CPU-GPU implementations despite the atomic nature of
the operations in MCTS. As an example of such task, we present a model-based RL, which
was our prime motivation in developing this implementation. Here, a large number of
different states (observations) need to be evaluated in each training iteration. Each state
is represented as a root in a unique tree, which is then processed by MCTS. These trees
are built in order to obtain actual training data and are then discarded and rebuilt from
new states in a subsequent training iteration. Efficient generation and evaluation of new
trees during the training is the key to the performance of these methods. Therefore, our
implementation can dramatically speed up the training process through more efficient
evaluation of large number of observations.

To fully exploit GPU’s capabilities, an environment model should also be implemented
on the GPU. This is crucially important for overall GPU implementation of MCTS. Model-
based RL can be divided into methods with an explicitly given model and with a learned
model. For methods with an explicitly given model, the possibility of implementing the
model on GPU as well as its complexity is highly application dependent. In the case of
methods with a learned model, the feasibility and efficiency of the implementation depends
on the employed learning algorithm to learn model dynamics.

Inspired by the recent success of MuZero [2], we demonstrate efficiency of the pro-
posed MCTS implementation on a MuZero algorithm. MuZero is a model-based RL method
that learns dynamics model within its search. We show that the proposed implementation
can be easily integrated with a learned dynamics model represented by deep neural net-
work (DNN). Although in this paper we focus on a parallel implementation of MCTS in
conjuction with MuZero, our implementation is broadly applicable to all model-based RL
methods that utilized MCTS. The contribution of this work is the following:

• We propose fully parallel GPU implementation of MCTS that can simultaneously
evaluate MCTS on large number of observations. We used number of observations
50 - 750 for our evaluation and show that the proposed method scales well with the
increasing number of observations. The code is available at https://github.com/
marrekb/MuZero (accessed on 11 December 2022).

• We compare our method with existing MCTS implementations on a use case inspired
by the MuZero and Atari games domain. The choice of DNN architecture used
in RL agent is application dependent and have a significant impact on the overall
performance. Therefore, we also report results for setup without using DNN. A
pattern can be seen in the results which shows that the proposed method is the most
computationally efficient.

The rest of the paper is organized as follows. The upcoming Section 2 contains an
overview of related work. We discuss important role of MCTS in RL methods on example of
MuZero, and existing parallel approaches to MCTS. In Section 3 we describe our proposed
parallel implementation of MCTS. Section 4 is devoted to experiments and their evaluation.
We summarize our conclusions in Section 5.

2. Related Work
2.1. Mcts and Reinforcement Learning

RL agents are usually divided into two categories—model-based, and model-free. One
of the most important parts of model-based agents is the model of the environment. By
environment model, we mean a function that predicts the next state and reward given a
combination of the current state and action. In other words, the model allows inferences
to be made about how the environment will behave [18]. Therefore, these models are

https://github.com/marrekb/MuZero
https://github.com/marrekb/MuZero
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frequently used for planning, e.g., in combination with MCTS. Agents such as AlphaGO
and AlphaZero use a given model of the environment in the form of game simulators to
achieve the best results. Other model-based agents such as MuZero, SimPLE [19], and
I2A [20] do not require a given model and instead incorporate a learned model into the
training procedure.

Model-free agents do not use a model of the environment, so they cannot reason about
how their environments will change based on a given state and action [18]. Model-free
agents rely on a trial-and-error approach. They tend to be easier to implement and tune.
Model-free agents are divided by their learning approach into Q-learning agents (e.g.,
DQN [21]) and policy optimization agents (e.g., A2C [22], PPO [23]).

In 2016, the algorithm AlphaGO defeated world champion Lee Sedol in game GO [1].
This event was another milestone in the dominance of artificial intelligence against human
players. Last generation of algorithms based on AlphaGO is MuZero. It is model-based
RL algorithm that combines MCTS and DNN [2]. It is useful in domain without own copy
of environment, e.g., domain of Atari games. Due to this approach, MuZero has achieved
SOTA results in several Atari games [24]. Atari games are often used as benchmarks for
RL algorithms [21,25]. In addition of Atari games, MuZero has been applied in real-world
tasks such as autonomous defense of SDN Networks [26] or air traffic optimization [27].

The DNN in MuZero consists of three connected components for representation,
dynamics and prediction. The representation function fr(o|θr) takes past observation (e.g.,
the Go board or Atari screen) and transforms it into hidden state s. The hidden state s is a
representation of the real environmental state by DNN. Because we do not have a copy of
environment, we use hidden states in MCTS instead of environment observations.

Given a state st and an action at, the dynamics function fd(s, a|θd) predicts an imme-
diate reward R(st|θd) and a new state st+1. In each state, the prediction function fp(s|θp)
proposes probability distribution of actions P(s, ·|θp) and state value V(s|θp). State value is
expected return of rewards from the current state.

MCTS is used to build tree of possible actions (represented as edges) and hidden
states (nodes) in order to support decision making process. Tree is build by process called
simulation. Simulation consists of four base MCTS phases (selection, expansion, simulation
and backpropagation). Each simulation explores existing tree, finds next unexplored
combination of state s and action a, and extends the tree by adding new node (state s).
Simulations are executed sequentially. One simulation consists of following phases:

• Phase of selection—the tree is traversed from the root to find next unexplored combina-
tion of state and action. In each node (assigned to specific state), the edges (represent
actions) are chosen by the PUCT (Predictor + Upper Confidence Bound applied to
trees) (Equation (1)). PUCT represents trade-off between exploitation and exploration.
Exploitation is solved via q values. Q(st, a) is expected value of future rewards after
taking action a [18]. In our case, it could be computed as a sum of immediate reward
rt and state value of next state V(st+1|θp) discounted by discount factor γ ∈ [0, 1]
(Equation (2)). In board games, rewards usually mean results of games (1 for a win, 0
for a draw and −1 for a loss). In domain of Atari games, rewards are obtained either
during or at the end of the game. Rest of Equation (1) forms the exploration part.
P(st, a|θp) represents predicted probability of action a by the prediction function, c1
and c2 are exploration constants.

• Phase of expansion—After selection of unexplored combination of state st and at, new
node (with state st+1) is added to the tree structure. State st+1 is obtained by using
dynamic function with selected combination st and at as an input.

• Phase of simulation—during the phase of simulation, DNN is called again, specifically
prediction function to obtain probability distribution (used in PUCT equation) and
state value (used to compute q values). These variables are assigned to new node.

• Phase of backpropagation—q value computed from state value is back propagated
through trajectory composed of each traversed node during the phase of selection.
Each traversed node’s number of visits N(st, at) is increased by one.
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at = argmax
a

Q(st, a) + P(st, a|θp) ·
√

∑b N(st, b)
1 + N(st, a)

·
(

c1 + log
(∑b N(st, b) + c2 + 1

c2

)) (1)

Q(st, at) = E
[
rt + γ ·V(st+1|θp)

]
(2)

Unlike the original MCTS, MuZero creates new tree of specific size in each step of the
game to avoid a cumulative error of predicted states. The size of the tree depends on the
number of simulations CS (e.g., 800 simulations per state in board games or 50 simulations
in the domain of Atari games [2]).

Each MCTS node stores following values:

• State s
• Predicted probability distribution of actions P(s, ·|θp)
• Vector N(s, ·) representing the number of visits of each action
• Vector Q(s, ·) of q values for each action
• Vector R(s, ·) of rewards for each action
• Set of children nodes

In the theory, most of RL papers explain MCTS as a single tree. However, in practice it
is appropriate to play many games in multiple processes in order to collect data as soon
as possible. As we mentioned before, in case of MuZero, new tree is build in each step of
game. Therefore, multiple trees are build at the same time in many processes separately.
Also each process uses DNN with the same weights.

2.2. Parallel Approaches to MCTS

In the last two decades, different approaches have been proposed to obtain parallel
implementation of MCTS phases. Parallelization via CPU is useful, if high performance
shared-memory machines are available [28]. According to [29], we can divide the basic
methods into leaf parallelization, root parallelization and tree parallelization. Leaf paral-
lelization methods are easiest to implement. Each time a node is expanded, multiple parallel
simulations (playouts) are performed. After all playouts are completed, the combined score
is propagated to improve the accuracy of the node value. In root parallelization, multiple
search trees are constructed by separate threads and combined together occasionally. The
most frequently used methods to combine the values from different trees are average voting
and majority voting [30]. These methods tend to have the least communication overhead.
Tree parallelization uses multiple threads to update a single search tree at different nodes.
Since multiple threads can update the same node, data corruption can occur.

Steinmetz and Gini [30] compared the benefits of root parallelization to tree paralleliza-
tion and measured both against a baseline of building a larger tree utilizing more time. They
obtained the results in the Go domain on CPU hardware and show that parallel algorithms
keep pace with or may exceed the performance gained by increasing the amount of time.
Soejima et al. [31] analyzed the performance of two root parallelization strategies: average
voting and majority voting. Their results with 64 CPU cores and computer Go programs
showed that majority voting outperforms average voting. Rocki and Suda [17] proposed
a hybrid CPU-GPU parallel MCTS based on the Block-parallel scheme. The method runs
several trees in root parallel fashion on the CPU and blocks of leaf parallel playouts on the
GPU. In this approach, the GPU kernel is called asynchronously and the control is given
back to CPU. Barriga et al. [32] proposed Multiblock Parallel algorithm. The method is
similar to the [17], but instead of running simulations only for one child of the selected
node, they run simulations for all children. The goal is to take full utilization of GPU.
Świechowski and Mańdziuk [33] investigate the concept of parallelization of MCTS on
general game playing framework. They proposed Limited Hybrid Root-Tree Parallelization
method. The idea is to combine root and tree parallelization approaches. They use tree par-
allelization within one CPU machine which is then mixed by root parallelization between
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the machines. Liu et al. [34] proposed parallelization of MCTS with UCT modification -
Balance Unobserved in UCT (BU-UCT). BU-UCT is designed to efficiently divide nodes
during the selection phase into multiple process workers. These workers are responsible
for implementing the next three phases.

The mentioned approaches focus on parallelization of operations in one huge MCTS
tree. However, our goal is to implement fully GPU parallelization which focuses on
processing a large number of relatively small MCTS trees instead of single large one.
The proposed implementation deals directly with parallelization of multiple MCTS trees
in conditions with one or small number of GPUs. Implementations that address the
parallelization of multiple MCTS trees are based on fully CPU or semi-GPU parallelization.
The closest to our work are Werner [35] and EfficientZero [36] implementations.

Werner’s open-source implementation of MuZero uses multiprocessing during data
collection. In each process, the copy of DNN is held. Only one game runs per process, so
the parallelization of MCTS is designed as one MCTS per process. The implementation
uses Ray library utilizing a single GPU per process. Therefore, in computers with a lower
number of GPUs it is better to use fully CPU implementation. Werner’s implementation
has been widely used [26,27,37,38] and there are many other implementations based on the
same principle available on GitHub [39–44].

EfficientZero is more sample efficient version of original MuZero. In their implemen-
tation, each process also holds current copy of the DNN on GPU. Each process collects data
from multiple games. MCTS method is applied to all observations simultaneously, so that
multiple trees are built in method (one tree per game). During MCTS simulation, phase of
selection is executed sequentially for each tree. Selected states and actions are sent as batch
into DNN. New nodes are sequentially created based on the obtained data (new states
with probability distributions and state values). During backpropagation phase, nodes of
traversed trajectories are also updated sequentially.

3. Proposed Implementation

In the case of Werner implementation, the inefficient parts are computation of predic-
tion for each tree separately and higher communication overhead (e.g., sending collected
data to the main process, and updating the DNNs in child processes). In the case of the
EfficientZero, the disadvantage is the sequential processing of most MCTS phases in each
processed tree.

Our implementation is based on tensor operations because they can be automatically
parallelized on the GPU. Therefore, in each phase all trees are processed in parallel. We
used Python library for deep learning—PyTorch [45]. However, the proposed method can
be easilly implemented in other libraries such as TensorFlow [46].

3.1. Data Structure and Notation

In this section we introduce data structure and the established notations. Our data
structure consists of the multiple tensors to store different attributes of MCTS nodes.

During the design, we were inspired by the structure of the Q table. Q table is a matrix
holding q values. Rows represent states and columns possible actions in environment.
Although Q table stores all possible states, we need to store significantly smaller number of
states. MCTS method is applied on batch which consists of CT observations (i.e., running
environments) with CS MCTS simulations per observation. Therefore, we need to store
CT + CS × CT states. First CT states are roots obtained from observations via representation
function. Next CS × CT states will be explored and stored during the MCTS simulations
(CT states per simulation). In our implementation we have to leave the zero row empty
for implementation reasons (explained later), so the total number of rows in each tensor is
CR = CT + CS × CT + 1.

Data structure of proposed method (shown in Figure 1) consists of following tensors:

• Tensor S—all states are held in tensor S. The number of dimensions of tensor S is
equal to the number of dimensions of the state +1. The index of the first dimension
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represents unique IDs that are shared across all tensors. States are added into tensor S
during the initialization (roots) and simulations (explored states) in order that they
were visited (roots have indices from 1 to CT , explored states from the first simulation
have indices between CT + 1 and 2× CT and so on).

• Tensor Q—q values are stored in tensor Q, similar to the Q table. First index (of the
row) is the same unique ID of the node as we mentioned in tensor S. The size of tensor
is CR × |A|. At the beginning of MCTS method, all values in tensor Q are initialized to
zeros. During the phase of backpropagation, q values of traversed nodes are updated.

• Tensor R—holds the predicted rewards by dynamics function. It works on the same
principle as tensor Q and has the same size CR × |A|. Rewards are put into tensor
during phase of expansion.

• Tensor P—stores the predicted probabilities computed by prediction function. The
size is similar like previous two tensors CR × |A|.

• Tensor N—unlike the previous tensors composed by real numbers, tensor N consists
of integers. It stores the numbers of visits of nodes (executed combinations of states
and actions). The size of tensor is again CR × |A|.

• Tensor E—the last tensor E (with the size CR × |A|) holds IDs of children nodes. For
example, if there is an edge from the parent node ID = i after taking action a to the
children node ID = j, then E(i, a) = j. If there is no edge between two nodes, the
value in tensor is zero. For that reason, zeroth row is empty in each tensor.

ID 𝒂𝟎 ⋯ 𝒂 𝑨 −𝟏

0 − ⋯ −

1 𝑄(𝑠1, 𝑎0) ⋯ 𝑄(𝑠1, 𝑎 𝐴 −1)

2 𝑄(𝑠2, 𝑎0) ⋯ 𝑄(𝑠2, 𝑎 𝐴 −1)

⋮ ⋮ ⋱ ⋮

𝐶𝑅 𝑄(𝑠|𝐶𝑅|, 𝑎0) ⋯ 𝑄(𝑠|𝐶𝑅|, 𝑎 𝐴 −1)

ID 𝐬𝐭𝐚𝐭𝐞

0 −

1 𝑠1

2 𝑠2

⋮ ⋮

𝐶𝑅 𝑠|𝐶𝑅|

ID 𝒂𝟎 ⋯ 𝒂 𝑨 −𝟏

0 − ⋯ −

1 R(𝑠1, 𝑎0) ⋯ R(𝑠1, 𝑎 𝐴 −1)

2 R(𝑠2, 𝑎0) ⋯ R(𝑠2, 𝑎 𝐴 −1)

⋮ ⋮ ⋱ ⋮

𝐶𝑅 R(𝑠|𝐶𝑅|, 𝑎0) ⋯ R(𝑠|𝐶𝑅|, 𝑎 𝐴 −1)

ID 𝒂𝟎 ⋯ 𝒂 𝑨 −𝟏

0 − ⋯ −

1 𝑃(𝑠1, 𝑎0) ⋯ 𝑃(𝑠1, 𝑎 𝐴 −1)

2 P(𝑠2, 𝑎0) ⋯ 𝑃(𝑠2, 𝑎 𝐴 −1)

⋮ ⋮ ⋱ ⋮

𝐶𝑅 P(𝑠|𝐶𝑅|, 𝑎0) ⋯ 𝑃(𝑠|𝐶𝑅|, 𝑎 𝐴 −1)

ID 𝒂𝟎 ⋯ 𝒂 𝑨 −𝟏

0 − ⋯ −

1 𝑁(𝑠1, 𝑎0) ⋯ 𝑁(𝑠1, 𝑎 𝐴 −1)

2 𝑁(𝑠2, 𝑎0) ⋯ 𝑁(𝑠2, 𝑎 𝐴 −1)

⋮ ⋮ ⋱ ⋮

𝐶𝑅 𝑁(𝑠|𝐶𝑅|, 𝑎0) ⋯ 𝑁(𝑠|𝐶𝑅|, 𝑎 𝐴 −1)

ID 𝒂𝟎 ⋯ 𝒂 𝑨 −𝟏

0 − ⋯ −

1 𝐸(𝑠1, 𝑎0) ⋯ 𝐸(𝑠1, 𝑎 𝐴 −1)

2 𝐸(𝑠2, 𝑎0) ⋯ 𝐸(𝑠2, 𝑎 𝐴 −1)

⋮ ⋮ ⋱ ⋮

𝐶𝑅 𝐸(𝑠|𝐶𝑅|, 𝑎0) ⋯ 𝐸(𝑠|𝐶𝑅|, 𝑎 𝐴 −1)

𝑆 𝑄 𝑅

𝑃 𝑁 𝐸

Tensor consists of real numbers
Tensor consists of integers

Tensor consists of multidimensional tensors

Figure 1. Data structure—the data of each node is stored in 6 tensors. IDs represent indices of nodes
(they are not stored as tensor values). For example, the highlighted rows represent all stored data of a
node with ID = 1.

The complete data structure consists of the above mentioned 6 tensors. The first index
of each tensor is the ID of the node (index of the row). In the tensor S, index i returns i-th
state (of the node with ID = i) whereas in other tensors i-th vector is returned instead. E.g.,
in tensor Q, the index i returns vector of q values Q(i) = [Q(i, 0), Q(i, 1), · · · , Q(i, |A| − 1)].
On the other hand, index i in combination with action index a returns scalar q value Q(i, a).

In our implementation, we often index via vectors (as a part of tensor operations). E.g.,
combination of node index i and vector of actions~a = [a0, a15, a17], where a0, a15 and a17 rep-
resent integer numbers, applied to tensor Q results in Q(i,~a) = [Q(i, a0), Q(i, a15), Q(i, a17)].
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Indexing by combination of two vectors~i = [i2, i5, i1, i25] and~a = [a10, a5, a17, a10] applied
to tensor Q lead to Q(~i,~a) = [Q(i2, a10), Q(i5, a5), Q(i1, a17), Q(i25, a10)].

3.2. Initialization and Preprocessing

At the beginning of the method, local variables are initialized (Algorithm 1, lines
1–9) based on the obtained parameters o, CS, and |A|. Vector of unique root indices
~iR = [1, 2, 3, · · · , CT − 1, CT ] is generated. These indices are utilized as unique identifiers
across all tensors.

The tensor of root states s is computed from the obtained batch of observations by
representation function. The tensor of probabilities and vector of values are predicted by
the prediction function. Dirichlet noise is added to the tensor of probabilities in order to
support the exploration of MuZero. States and tensors of probabilities are inserted into
tensors S and P via a vector of root indices (Algorithm 1, lines 14–15).

Algorithm 1 Initialization

Require: batch of observations o
Require: the number of MCTS simulations CS
Require: the number of actions |A|

1: CT ← |o|
2: CN ← CS + 1
3: CR ← 1 + CT × CN
4: S← tensor of zeros with size CR × state dim
5: P← tensor of zeros with size CR × |A|
6: Q← tensor of zeros with size CR × |A|
7: R← tensor of zeros with size CR × |A|
8: N ← integer tensor of zeros with size CR × |A|
9: E← integer tensor of zeros with size CR × |A|

10: ~iR ← integers from the interval [1, CT ]
11: s← fr(o |θr)
12: p,~v← fp(s |θp)
13: p← p + Dirichlet noise
14: S(~iR)← s
15: P(~iR)← p

3.3. Phase of Selection

The pseudocode of the phase of selection is given in Algorithm 2, and the flowchart is
shown in Figure 2. During one iteration of MCTS, each tree is traversed to find the leaf node.
Let the L-step trajectory consists of combinations of traversed nodes and edges (actions) in-
order, then we can write trajectory as τ = [(ID0, a0), (ID1, a1), (ID2, a2), · · · , (IDL−1, aL−1)].
Tensor I holds IDs of traversed nodes and tensor A indices of selected actions chosen by
the PUCT method. Both tensors have size CN × CT . CN is the number of simulations
increased by one because the first ID and action in trajectory belong to the root of a tree.
Each tree has its trajectory stored in one column whose index corresponds to a particular
tree. Therefore, the number of columns is CT . Vector~l stores the indices of the last elements
of each trajectory. Information stored in all three tensors are used in the next phases.

Each trajectory starts from the root. Root indices (IDs) are inserted into the zero row of
tensor I (Algorithm 2, line 4).

Indices of active trajectories are stored in vector ~iN . In other words, vector ~iN remem-
bers indices of trees that are still active in the phase of selection. At the beginning of each
selection phase, vector is filled by vector of all tree indices because each tree takes a part in
the selection phase.

The loop of the selection phase starts with condition ~iN 6= ∅. Condition checks
whether the vector of active trajectories is empty. If there is no active trajectory, the phase of
selection is finished. Otherwise, IDs of nodes in active trajectories are assigned to vector~i by
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indexing via the current step and vector ~iN in the tensor I (Algorithm 2, line 8). Computing
of the PUCT method (Equation (1)) for current nodes is fully executed by tensor operations
of adding, multiplying, dividing, etc. The method returns vector of selected actions of
current nodes.

Indices of the last items in active trajectories are updated (Algorithm 2, line 11).
The IDs of the nodes accessed using the actions~a in current nodes~i are obtained from

tensor E. As we mentioned before, if there is no children node for combination ((ID, a)), 0
is returned instead. Obtained IDs and possible zero indices are inserted into a new row of
the tensor I.

For simplicity’s sake, let the number of trees CT = 4, number of active trajectories
|~iN | = 3, indices of active trajectories ~iN = [0, 1, 3], node IDs~i = [5, 7, 8], selected actions
~a = [3, 1, 0] and IDs of children nodes E(~i,~a) = [E(5, 3) = 15, E(7, 1) = 0, E(8, 0) = 21] =
[15, 0, 21]. Since I(step, ~iN) = [15, 0, 21], updated row of the tensor is I(step) = [15, 0, 0, 21].
I(step, 0) = 15 and I(step, 3) = 21 indicate active trajectories. I(step, 1) = 0 represents
inactive trajectory. This trajectory has been terminated in the current step because the node
with ID = 7 has no children, e.g., E(7, 1) = 0. I(step, 2) = 0 represents a trajectory that
was already inactive.

Finally, we update the indices of nonzero values from the current row of I. If there is
no nonzero value, the phase of selection is completed. On the other hand, if there is at least
one nonzero value (active trajectory), the next phase of the MCTS simulation begins.

Algorithm 2 Phase of selection

1: I ← integer tensor of zeros with size CN × CT
2: A← integer tensor of zeros with size CN × CT

3: ~l ← integer vector of zeros with length CT
4: I(0)←~iR
5: step← 0
6: ~iN ← integers from the interval [0, CT)

7: while ~iN 6= ∅ do
8: ~i← I(step, ~iN)

9: ~a← apply PUCT on nodes~i
10: A(step, ~iN )←~a
11: ~l(~iN )← step
12: step← step + 1
13: I(step, ~iN)← E(~i,~a)
14: ~iN ← return indices of nonzero values from I(step)
15: end while
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Start

Initialize memory tensors to store IDs, 

actions and length of each trajectory

Store IDs of the root nodes as first 

elements of trajectories

Initialize vector of active trajectories

Are any 

trajectories still 

active?

Apply PUCT to last nodes and select 

actions

Store selected actions and update 

lengths of active trajectories

If there are any accessible nodes from 

the last nodes and actions, store their 

IDs into memory

Update vector of active trajectories

EndNo

Yes

Figure 2. Flowchart of the phase of selection.

3.4. Phase of Expansion and Simulation

We joined phases of expansion and simulation (Algorithm 3 and Figure 3) because
both phases are interconnected and it is effective to implement them together. Based on
the vector of last indices~l, combinations of last nodes and actions are identified for all
trajectories (Algorithm 3, lines 1–3). Tensor of new states s and vector of obtained rewards
~r are computed by dynamics function. The new states are then used in the prediction
function to predict tensor of probabilities p and vector of values ~v.

IDs of new nodes are computed from the vector of roots ~iR. Tensors of children nodes
E and rewards R are updated by new data.

At the end of the expansion phase, predicted tensors of states s and probability
distributions p are added to the tensors S and P as data of new nodes (Algorithm 3, lines
9–10).
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Start

Get ID of last node and action for each 

trajectory

Predict new states and rewards from last 

nodes and actions by dynamic function

Predict probabilities and values from new  

states by prediction function

Compute IDs of new nodes

Store transitions, rewards, states and 

probabilities 

End

Figure 3. Flowchart of the phase of expansion and simulation.

Algorithm 3 Phase of expansion and simulation

Require: current number of simulation CI
1: ~k← integers from the interval [0, CT − 1]
2: ~i← I(~l,~k)
3: ~a← A(~l,~k)
4: s,~r ← fd(S(~i ),~a|θd)
5: p,~v← fp(s |θp)

6: ~inew ← ~iR + CT × (CI + 1)
7: E(~i,~a)← ~inew

8: R(~i,~a)←~r
9: S( ~inew)← s

10: P( ~inew)← p

3.5. Phase of Backpropagation

During the phase of backpropagation (Algorithm 4 and Figure 4), trajectories are
traversed from the end to the start to update q values and numbers of visits. At the
beginning of the backpropagation phase, the local variable step stores the length of the
longest trajectory obtained in the selection phase. Therefore, the loop of backpropagation
starts from step− 1.
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We first select the trajectory indices that were active in the selection phase during the
actual step. Based on the obtained indices, IDs and actions in actual step are identified from
tensors I and A (Algorithm 4, lines 3–4).

Values of active trajectories ~v(~iN) are used to update q values of parent nodes (values
of non-active trajectories remain unchanged). In the end, tensors Q and N are updated by
standard formulas (Equation (4) of [2]).

The loop of backpropagation ends by updating q values and the number of visits of
root nodes.

Start

Decrement step by 1

step > -1

Get nodes and actions of active 

trajectories at current step

Recalculate vector of values for obtained 

nodes and actions

Recalculate tensor of Q values for 

obtained nodes and actions

Increment number of visits for obtained 

nodes and actions

Yes

EndNo

Decrement step by 1

Figure 4. Flowchart of the phase of backpropagation.

Algorithm 4 Phase of backpropagation

1: for step← decrement from step− 1 to 0 do
2: ~iN ← return indices of nonzero values from I(step)
3: ~i← I(step, ~iN)

4: ~a← A(step, ~iN)

5: ~v(~iN)← R(~i,~a) + γ×~v(~iN)

6: Q(~i,~a)← Q(~i,~a)×N(~i,~a)+~v(~iN)
N(i,~a)+1

7: N(~i,~a)← N(~i,~a) + 1
8: end for
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3.6. Post Processing

The MCTS method completes after CS simulations have been executed. At the end
of the MCTS method, it is necessary to calculate the probability distribution and the state
value of each root state. Probability of root action a is computed as N(sroot ,a)

∑b N(sroot ,b)
. The values

of the root states are computed as a weighted arithmetic mean of root q values and their
probability distributions. All computations are carried out on GPU exploiting tensor
operations for adding, multiplication and division.

4. Experiments

The proposed implementation aims at the evaluation of a large number of MCTS
instances in parallel. We demonstrate this capability with an example from the RL domain
where a large number of observations need to be processed at the same time. Each observa-
tion represents the state in the environment (root state in MCTS tree) in which we want to
perform an action. MCTS algorithm is utilized in RL to improve action selection process.

We compared proposed implementation to three MCTS implementations used in
model-based RL methods. We measured the performance of individual implementations in
terms of how long it takes to simultaneously evaluate MCTS on batch of observations. For
each experiment, we report the mean and standard deviation calculated from 100 replica-
tions. All experiments were carried out on a single NVIDIA GeForce RTX 2080 Ti graphics
card and 16-core Intel(R) Xeon(R) CPU E5-2643 @ 3.30GHz processor.

The list of compared implementations together with their designation is as follows:

• GPU—The proposed method fully implemented on GPU using tensor operations and
described in Section 3.

• CPUGPU_P—Implementation inspired by EfficientZero [36] which uses multiple pro-
cesses. Each process builds multiple trees and stores copy of DNN on GPU. However,
maintaining a copy of DNN by children processes is memory inefficient which limits
their use especially in single GPU scenarios. Therefore, in our modification, only the
parent process stores a DNN on GPU.
At the beginning of MCTS method, batch of observations is given to representation
and prediction functions (on GPU) to predict states, probability distributions and
state values in roots. Predicted data are split and sent to the children processes in
which trees are initialized (one tree per root’s state). MCTS simulations are executed
in each process. Phase of selection is executed sequentially on CPU. States of selected
nodes and actions are sent back into parent process. After receiving data from all
children processes, new states, rewards, probabilities and values are predicted by one
forward of dynamics and prediction functions (on GPU). Predicted data are split and
sent again into children processes in which phases of expansion and backpropagation
are performed (also on CPU). After executing MCTS simulations, the parent process
receives and post-processes the results.

• CPUGPU_S—A sequential implementation of CPUGPU_P method without multi-
processing. Phases of selection, expansion and backpropagation are performed on
CPU inorder. As in the previous implementation, all data is processed as a batch by
DNN on GPU. Both CPUGPU_P and CPUGPU_S were implemented by our team and
used as a part of AlphaZero in [47].

• CPU—Last approach represents Werner’s MCTS implementation. We used the source
code from author’s GitHub repository [35].

4.1. Model of Environment

We chose MuZero algorithm as an example of model-based RL method that utilize
MCTS. Our experimental setup was inspired by the domain of Atari games. One observa-
tion (state of the environment) was represented by 128× 96× 96 tensor. The number of
possible actions was set to 18, which is the maximum amount of possible actions in domain
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of Atari games. MuZero algorithm uses DNN to approximate representation, dynamics and
prediction function. We use original MuZero’s architecture [2] with a few modifications.

The kernel size is 3× 3 for all operations. The convolution operations padding is set
to 1. Representation function is identical copy of MuZero’s original function. It consists of:

• 1 convolution with stride 2 and 128 kernels, output resolution 48× 48
• 2 residual blocks with 128 kernels
• 1 convolution with stride 2 and 256 kernels, output resolution 24× 24
• 3 residual blocks with 256 kernels
• average pooling with stride 2, output resolution 12× 12
• 3 residual blocks with 256 kernels
• average pooling with stride 2, output resolution 6× 6

Output size of representation function, i.e., state size is 256× 6× 6.
The input to the dynamics function is 257× 6× 6 dimensional tensor consisted of state

and action. Action represents tensor 1× 6× 6 filled by value at
count o f actions . The dynamics

function provides two outputs. The first is the new state and the second is the reward.
The reward in original MuZero implementation was computed as a linear combination of
categorical output. We formulated reward prediction problem as a regression task instead.
The second change from the original implementation is in the structure of hidden layers of
reward head as they were not described in the documentation.

Layers of dynamics functions are:

• 1 convolution with 256 kernels, output resolution 6× 6
• 8 residual blocks with 256 kernels, output resolution 6× 6 (the last residual block is

also used as a representation of the new state)
• flattening, number of output neurons is 9216
• fully connected layer with 512 neurons
• fully connected layer with 1 neuron (reward output)

Outputs of representation and dynamics functions are used as inputs for prediction
function. It also provides two outputs—probability distribution and state value. The
common part is composed of flattening and linear layer with 512 neurons. Each output head
consists of one linear layer with 512 neurons. Last linear layer of probability distribution
has 18 neurons. As in the case of the reward head, last output layer of the state value head
has one neuron. Again, the categorical task has been reformulated into a regression task.

Our goal was not to train MuZero agent but to compare the computational speed of
individual MCTS implementations. Therefore, we used a randomly initialized DNN model
to simulate all necessary computations.

4.2. MCTS Parameters

Batch of observations is generated as a random tensor of size CT . Each of these
observations is processed by a unique instance of MCTS with the number of simulations
set to CS.

Although MCTS uses PUCT formula to select action, we modified the action selection
mechanism to test the edge cases of tree formation based on the following scenarios:

1. Random action—in this scenario, the action is selected randomly. This scenario causes
the tree to build in breadth (tree resembles a balanced tree). The scenario reflects, for
example, the behavior at the beginning of RL agent training, when the DNN produces
approximately uniform probability distribution of actions.

2. Constant action—in this scenario, the selected action is replaced by a constant action.
This scenario causes the tree to build in depth (tree resembles a linked list). The
scenario reflects, for example, the behavior of the trained or overfitted agent, when
the DNN produces one dominant action.
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The use of scenarios is implemented by changing the value of probability distribution
function according to the given scenario and setting the scalar values (e.g., state value and
reward) to zero.

4.3. Results

We report results for two sets of experiments. In the first set, we measured the
performance of MCTS adjusted for the effect of DNN model used by MuZero. Architecture
of DNN utilized by MuZero is strongly dependent on the application. Therefore we first
provide performance of compared implementations without the DNN model. Second set of
experiments shows results on the use case of MuZero with DNN model described earlier.

Results for experiments without DNN model are shown in Tables 1 and 2. We fixed
the number of simulation CS to 50. Batch of observations size CT was set to 50, 100, 250,
500 and 750. In the case of CPUGPU_P implementation, we report results for number of
processes set to 2, 5, 10 and 25. For CPU implementation, we report results with number
of processes set to 5, 10 and 15. In both cases, a larger and smaller number of processes
resulted in higher computation time.

Table 1. Effect of number of observations on computation time. Results of experiments for random
action without DNN model (CS = 50).

CT GPU
CPUGPU_P

CPUGPU_S
CPU

2 5 10 25 5 10 15

50 0.225 1.721 2.045 2.891 5.576 4.09 7.62 15.147 22.999
±0.001 ±0.013 ±0.01 ±0.017 ±0.038 ±0.003 ±0.112 ±0.223 ±0.183

100 0.234 2.855 2.832 3.749 6.282 8.001 20.849 33.206 44.956
±0.001 ±0.009 ±0.011 ±0.016 ±0.032 ±0.005 ±0.036 ±0.139 ±0.635

250 0.243 6.27 4.869 5.103 7.224 19.865 68.015 90.801 116.284
±0.001 ±0.016 ±0.022 ±0.014 ±0.035 ±0.008 ±0.158 ±0.427 ±0.755

500 0.253 11.421 7.447 7.299 8.811 39.61 174.611 193.741 248.905
±0.001 ±0.022 ±0.029 ±0.026 ±0.031 ±0.015 ±0.361 ±0.239 ±0.738

750 0.262 16.131 9.791 9.118 10.368 60.344 303.172 323.785 396.275
±0.001 ±0.045 ±0.041 ±0.022 ±0.038 ±0.015 ±0.536 ±1.458 ±0.724

Table 2. Effect of number of observations on computation time. Results of experiments for constant
action without DNN model (CS = 50).

CT GPU
CPUGPU_P

CPUGPU_S
CPU

2 5 10 25 5 10 15

50 1.686 7.519 5.194 5.095 7.096 35.175 14.941 14.49 17.266
±0.008 ±0.012 ±0.028 ±0.019 ±0.028 ±0.064 ±0.119 ±0.143 ±0.127

100 1.704 13.575 7.825 7.24 8.812 69.282 28.769 28.142 47.295
±0.006 ±0.012 ±0.03 ±0.018 ±0.033 ±0.116 ±0.044 ±0.035 ±0.12

250 1.732 31.876 15.257 13.037 12.975 170.135 72.939 72.173 147.788
±0.005 ±0.027 ±0.031 ±0.028 ±0.033 ±0.163 ±0.067 ±0.152 ±0.395

500 1.766 63.233 28.529 22.916 20.886 340.716 144.271 140.942 374.888
±0.004 ±0.041 ±0.033 ±0.044 ±0.037 ±0.474 ±0.205 ±0.088 ±0.753

750 1.787 94.143 41.317 31.937 28.512 500.181 218.951 207.96 685.497
±0.003 ±0.087 ±0.042 ±0.031 ±0.046 ±0.479 ±0.395 ±0.137 ±1.611

In both random action and constant action scenarios we see a similar pattern. Pro-
posed GPU implementations is the fastest for all tested values of the CT parameter. The
difference in speed increases with increasing number of observations. In Figure 5 we show
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detail comparison between two best performing implementations for both scenarios. For
CT = 750, proposed GPU implementations is 34.8 times faster for random action scenario
and 16 times faster for constant action scenario than the second best performing CPUGPU_P
implementations (with 10 and 25 processes respectively). In the constant action scenario
(Table 2), the computational time increased for most of the investigated implementations
and their settings. This increase is due to a growing trajectories obtained by the phase of
selection in MCTS.
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Figure 5. Comparison of execution time of the two best performing implementations with respect to
the number of observations. Results for both scenarios without DNN.

We further investigated influence of the number of MCTS simulations CS and report
results for two best performing implementations in Tables 3, 4 and Figure 6. The CT
parameter was set to 100. We can observe that the computation time increases significantly
as the number of simulations increases, especially in constant action scenario. Proposed
GPU implementation is 12.1 times faster for CS = 50 and 8.7 times faster for CS = 400 in
random action scenario. In constant action scenario, GPU implementation is 4.2 times faster
for CS = 50 and 2 times faster for CS = 400.
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Figure 6. Comparison of execution time of the two best performing implementations with respect to
the number of simulations. Results for both scenarios without DNN.
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Table 3. Effect of number of simulations on computation time. Results of experiments for random
action without DNN (CT = 100).

CS GPU
CPUGPU_P

5 10 25

50 0.234 2.832 3.749 6.282
±0.001 ±0.011 ±0.016 ±0.032

100 0.481 4.906 5.454 9.945
±0.006 ±0.015 ±0.019 ±0.032

200 1.068 9.908 10.225 18.109
±0.001 ±0.028 ±0.023 ±0.034

400 2.294 20.422 19.844 34.562
±0.002 ±0.134 ±0.031 ±0.082

Table 4. Effect of number of simulations on computation time. Results of experiments for constant
action without DNN (CT = 100).

CS GPU
CPUGPU_P

5 10 25

50 1.704 7.825 7.24 8.812
±0.006 ±0.03 ±0.018 ±0.033

100 6.371 22.36 19.344 19.734
±0.029 ±0.072 ±0.03 ±0.037

200 24.281 75.867 61.968 60.144
±0.135 ±0.095 ±0.066 ±0.099

400 95.291 285.212 217.657 193.77
±0.571 ±0.216 ±0.139 ±0.1

Last experiments measured performance with DNN model. We omitted CPU method
from results due to the high computation requirements associated with the execution of
DNN model (e.g., 338 s for CS = 50, and CT = 50). Similarly to previous experiments, we
fixed CS to 50 and set CT to 50, 100, 250, 500 and 750. Results presented in Tables 5, 6 and
Figure 7 show similar trend as in experiments without DNN. Proposed GPU is the best
performing implementation for all values of parameter CT . Even with the DNN model,
which consumes most of the computation, GPU implementation is 4.7 times faster for
random action scenario and 7.7 times faster for constant action scenario than the second
best performing CPUGPU_P implementations (with 10 and 25 processes respectively), for
CT = 750.
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Figure 7. Comparison of execution time of the two best performing implementations with respect to
the number of observations. Results for both scenarios with DNN.
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Table 5. Effect of number of observations on computation time. Results of experiments for random
action with DNN model (CS = 50).

CT GPU
CPUGPU_P

CPUGPU_S
2 5 10 25

50 0.383 1.962 2.269 3.285 5.634 6.091
±0.001 ±0.007 ±0.008 ±0.016 ±0.047 ±0.004

100 0.539 3.053 3.091 3.919 6.442 10.001
±0.001 ±0.006 ±0.008 ±0.015 ±0.037 ±0.005

250 0.946 6.909 5.574 5.757 7.868 21.864
±0.001 ±0.012 ±0.014 ±0.021 ±0.026 ±0.009

500 1.714 12.607 9.144 8.787 10.254 41.61
±0.002 ±0.019 ±0.044 ±0.023 ±0.03 ±0.018

750 2.466 18.185 11.857 11.47 12.571 62.345
±0.003 ±0.024 ±0.055 ±0.039 ±0.031 ±0.016

Table 6. Effect of number of observations on computation time. Results of experiments for constant
action with DNN model (CS = 50).

CT GPU
CPUGPU_P

CPUGPU_S
2 5 10 25

50 1.909 7.942 5.332 5.296 7.309 33.371
±0.008 ±0.011 ±0.023 ±0.019 ±0.028 ±0.05

100 2.074 14.182 8.426 7.849 9.201 67.45
±0.007 ±0.022 ±0.028 ±0.023 ±0.026 ±0.105

250 2.507 32.975 16.207 14.054 14.231 168.301
±0.005 ±0.028 ±0.028 ±0.035 ±0.033 ±0.142

500 3.232 65.08 29.884 24.283 22.527 338.874
±0.004 ±0.053 ±0.035 ±0.035 ±0.048 ±0.423

750 3.984 97.403 43.776 34.896 30.752 501.425
±0.004 ±0.092 ±0.041 ±0.04 ±0.046 ±0.351

5. Conclusions

In this paper, we proposed a parallel implementation of MCTS that efficiently evaluates
large number of MCTS trees at once. It utilizes tensor operations and is fully implemented
on GPU. We show that the atomic nature of MCTS operations can be transformed into
vector operations suitable for GPU. We demonstrated this capability using the example
of MuZero model-based RL agent in Atari game domain. Model-based RL agents often
combine DNN and MCTS approaches to improve action selection. During the offline
training, these RL agents requires to process a huge amount of observations in parallel.
These observations are represented by unique root nodes in MCTS.

We compared our implementation with approaches based on the Werner and Effi-
cientZero implementations. We show that the proposed approach gives the best results
and scales well with the number of observations and number of simulations. We tested
two scenarios of tree formations: random action and constant action. For both scenarios
the proposed implementations yield the best results. In experiments without DNN, the
proposed implementation is 34.8 times faster for the random action and 16 times faster for
the constant action scenario than the second best performing CPUGPU_P implementation
(CT = 750 and CS = 50).

We further investigated the effect of DNN in RL agent. In experiments with DNN and
for the random action, the proposed implementation is 4.7 times faster than the second best
performing CPUGPU_P for the value of parameters CT = 750 and CS = 50. In the case
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of the constant action, this difference is 7.7 fold. Therefore, we observed a performance
improvement over the benchmark implementations in both non-DNN and DNN settings.

Although we report results when MCTS is utilized within the MuZero RL agent,
the proposed implementation can be used wherever a large number of MCTS instances
need to be processed in parallel. The closest example to us is the use in the model-based
RL. We show an example of model-based MuZero agent which uses DNN to learn model
dynamics. The proposed implementation can also be utilized in model-based RL agent with
an explicitly given model of environment. In this case the overall performance depends on
the complexity of environment and its implementation.

Our implementation was tested using a single GPU. We see no restrictions for deploy-
ment on a larger number of GPUs. However, for more complex computing infrastructures,
we expect that directly tailored methods will yield better results, as they can exploit the
specifics of a given infrastructure.
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