
Citation: Zhou, X.; Chen, J.; Yang, G.;

Lin, Z.-F.; Hong, W. An

Authentication Method for AMBTC

Compressed Images Using Dual

Embedding Strategies. Appl. Sci.

2023, 13, 1402. https://doi.org/

10.3390/app13031402

Academic Editor: Andrea Prati

Received: 24 October 2022

Revised: 6 January 2023

Accepted: 11 January 2023

Published: 20 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

An Authentication Method for AMBTC Compressed Images
Using Dual Embedding Strategies
Xiaoyu Zhou 1, Jeanne Chen 2,*, Guangsong Yang 1 , Zheng-Feng Lin 2 and Wien Hong 2,*

1 School of Ocean Information Engineering, Jimei University, Xiamen 361021, China
2 Department Computer Science and Information Engineering, National Taichung University of Science and

Technology, Taichung City 404, Taiwan
* Correspondence: jeanne@nutc.edu.tw (J.C.); wienhong@nutc.edu.tw (W.H.)

Abstract: In this paper, we proposed an efficient authentication method with dual embedment strate-
gies for absolute moment block truncation coding (AMBTC) compressed images. Prior authentication
works did not take the smoothness of blocks into account and only used single embedding strategies
for embedment, thereby limiting image quality. In the proposed method, blocks were classified as
either smooth or complex ones, and dual embedding strategies used for embedment. Respectively,
bitmaps and quantized values were embedded with authentication codes, while recognizing that em-
bedment in bitmaps of complex blocks resulted in higher distortion than in smooth blocks. Therefore,
authentication codes were embedded into bitmaps of smooth blocks and quantized values of complex
blocks. In addition, our method exploited to-be-protected contents to generate authentication codes,
thereby providing satisfactory detection results. Experimental results showed that some special
tampering, undetected by prior works, were detected by the proposed method and the averaged
image quality was significantly improved by at least 1.39 dB.

Keywords: AMBTC; authentication; matrix encoding; APPM

1. Introduction

With the progress and development of Internet, digital images are increasingly easy
to be transmitted over the network. However, these images are likely to be tampered
with either with malicious intent or otherwise, resulting in unauthentic images being
received. Therefore, authentication of images has become an important issue. Fragile
watermarking [1–5] is a common technique used in image authentication by embedding
watermark data into images. If pixels were tampered with, the embedded data could be
retrieved to authenticate the image.

The fragile watermarking technique can be applied to images in spatial [6–10] or com-
pressed [11–13] domains. In the spatial domain, data are embedded directly by modifying
pixel values. Since images of spatial domain have many redundancies for embedding,
higher payloads are expected. However, in recent years, most images are stored and trans-
mitted in compressed formats. This is because compressed images have lower storage space
and transmission bandwidth requirements. At present, vector quantization (VQ) [14–16],
joint photographic expert group (JPEG) [17–19], and absolute moment block truncation
coding (AMBTC) [20,21] are some commonly used compression techniques. Amongst these
techniques, AMBTC requires the least computational cost. Therefore, several authentication
techniques based on AMBTC images [22–27] have been proposed.

AMBTC was proposed by Lema and Mitchell [28], where blocks were compressed into
quantized values and bitmaps. In 2013, ref. [22] proposed an AMBTC image authentication
method with joint image coding. This method used pseudo random sequence to generate
authentication codes which were embedded into the bitmaps. The embedded bitmaps
together with the quantized values were, then, losslessly compressed to obtain the final

Appl. Sci. 2023, 13, 1402. https://doi.org/10.3390/app13031402 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13031402
https://doi.org/10.3390/app13031402
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1489-9841
https://doi.org/10.3390/app13031402
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031402?type=check_update&version=2

Appl. Sci. 2023, 13, 1402 2 of 16

bitstream. The advantage of their method was that it required less storage and achieved
good detection accuracy. To improve image quality, ref. [23] in 2016 proposed a novel
image authentication method based on a reference matrix. The matrix was employed to
embed authentication codes into quantized values. The length of authentication codes was
determined by the size of the matrix. Ref. [23] achieved a higher image quality compare
to [22]. However, this method could not detect tampering in the bitmaps which were
independently generated from the authentication codes. To improve security, ref. [24] also
proposed an authentication method that used bitmaps to generate authentication codes.
Furthermore, the resulting image had equivalent quality and higher detection accuracy
to [23].

In 2018, ref. [25] proposed a tamper detection method for AMBTC images. The most
significant bits (MSBs) of quantized values and bitmaps were hashed to generate the
authentication codes. The codes were embedded into the least significant bits (LSBs) of
the quantized values using the LSB embedding method. To obtain higher image quality,
the MSBs of quantized values were perturbed within a small range and used to generate a
set of authentication codes. The code with the smallest embedding error was selected for
embedment to provide a higher image quality than [22–24].

In 2018, ref. [26] also proposed an AMBTC authentication method using adaptive pixel
pair matching (APPM). Bitmaps and the position information were employed to generate
the authentication codes, which were embedded in the quantized values using APPM. A
threshold was used to classify blocks into edge and nonedge ones. If the difference of
quantized values was larger than the threshold, the block was considered as an edge one;
or otherwise, a nonedge block. Edges in an image were considered more informative than
the nonedges; therefore, more bits were embedded in edge blocks than nonedge ones to
provide more protection to edges.

In 2019, ref. [27] proposed a high-precision authentication method for AMBTC images
using matrix encoding (ME). Bitmaps and position information were used to generate 6-bit
authentication codes. The generated codes were divided into two equal parts of 3 bits,
and embedded into the bitmaps using matrix encoding. To avoid damages to the bitmaps
caused by embedding, the positions of to-be-flipped bits in the bitmap were recorded and
embedded into the quantized values. This method resulted in higher image quality as well
as higher detection accuracy.

Methods [25–27] could detect most tampering and also provided satisfactory image
quality. However, some special tampering might escape detection using these methods.
For example, the generation of authentication codes in [25] was independent of block
position information. Therefore, tampering could not be detected when two blocks were
interchanged. In addition, the embedding techniques of these methods did not take the
smoothness of blocks into account, which resulted in low image quality. To improve image
quality and security, this paper proposes an authentication method for AMBTC images
using dual embedding strategies. Blocks are classified into smooth and complex ones
according to a predefined threshold, and appropriate embedding strategies are employed
based on their smoothness. Blocks are classified as smooth blocks for quantized values less
than the threshold, or otherwise, as complex ones. Both quantized values and bitmaps are
used to carry authentication codes. However, the difference of quantized values of complex
blocks can be large and flipping bits of bitmaps can result in significant distortion. Therefore,
the authentication codes of complex blocks will be embedded into the quantized values.
In contrast, smooth blocks have lower distortion from flipping bits of bitmaps, and thus
authentication codes will be embedded into bitmaps. Since the dual embedding strategies
are based on block smoothness, the aim is to obtain higher image qualities. Moreover, the
generation of authentication codes in the proposed method is related to the to-be-protected
contents, which will increase the probability of detecting some special tampering.

The rest of this paper is organized as follows. Section 2 describes related works and
Section 3 presents the proposed method. Sections 4 and 5 show the experimental results
and conclusions, respectively.

Appl. Sci. 2023, 13, 1402 3 of 16

2. Related Works

This section briefly introduces the concepts of AMBTC compression technique. The
APPM and matrix encoding techniques used in the proposed method are also presented.
The specific procedures are described in the following three subsections.

2.1. AMBTC Compression Technique

AMBTC is a lossy compression technique [28] that uses low and high quantized values
and a bitmap to represent a block. The proposed method is to embed the authentication
codes into quantized values and bitmaps to protect the AMBTC images, and the limitations
of AMBTC is that the compression ratio and image quality are both relatively low. Let I be
the original image. Divide I into N blocks I = {Ii}N−1

i=0 of size n× n, and Ii = {Ii,j}n×n−1
j=0 ,

where Ii,j represents the j-th pixel of Ii. Then, scan each block Ii of {Ii}N−1
i=0 . To compress

block Ii, calculate the mean value mi of Ii. Average pixels in Ii that are smaller than mi,
and record the result as the low quantized value ai. On the other hand, the high quantized
value bi is the average of pixels greater than or equal to mi. Compare mi and the pixel Ii,j
to obtain the bitmap Bi of block Ii. If Ii,j ≥ mi, then Bi,j = 1; otherwise, Bi,j = 0, where Bi,j
represents the j-th bit of Bi. Thus, the compressed code is Ci = (ai, bi, Bi) of Ii. All blocks
are compressed in the same way, and the result is the AMBTC compressed codes of image
I, which is denoted by C = {ai, bi, Bi}N−1

i=0 . To decompress Ci = (ai, bi, Bi), prepare an
empty block Di with the same size of Ii, and Di,j is the j-th pixel of Di. If Bi,j = 0, then
Di,j = ai; otherwise, Di,j = bi. All codes C = {ai, bi, Bi}N−1

i=0 are decompressed using the
same procedures where the decompressed image is D = {Di}N−1

i=0 .
A simple example is given to introduce the procedures of AMBTC compression

technique. Let Ii = [36, 34, 41, 42; 37, 35, 43, 46; 35, 39, 44, 41; 36, 41, 42, 48] be the original
block of size 4× 4. Calculate the mean value of Ii, and mi = 40 is obtained. Pixels in Ii
less than 40 are 36, 34, 37, 35, 35, 39 and 36, and the average of these pixels is ai = 36.
Similarly, bi = 43 is calculated. To obtain Bi, if Ii,j ≥ 40, then Bi,j = 1; otherwise, Bi,j = 0.
Therefore, Bi = [0011; 0011; 0011; 0111]. Finally, the AMBTC compressed code Ci = (36, 43,
[0011; 0011; 0011; 0111]) is obtained. To decompress Ci, bits 0 and 1 in Bi are decoded by
quantized values ai = 36 and bi = 43, respectively, and Di = [36, 36, 43, 43; 36, 36, 43, 43;
36, 36, 43, 43; 36, 43, 43, 43].

2.2. The Adaptive Pixel Pair Matching (APPM) Technique

In the proposed method, we use the APPM embedding technique to embed the
authentication codes into quantized values of complex blocks. The limitation of APPM
is that it can only embed at most 8 bits into a pair of quantized values, fortunately only
6 bits are required in our method. The principle of APPM [29] is to embed a digit of base λ
into a pixel pair by referring to the reference table Rλ, where Rλ is a table of size 256× 256
filled with elements of integers in the range [0, λ− 1]. Let Rλ(a, b) be the element located
in a-th row and b-th column of Rλ. Rλ(a, b) can be calculated by the following equation:

Rλ(a, b) = (cλ × a + b) mod λ, (1)

where cλ is a constant, and c64 = 14 in this paper. To embed a digit dλ into (a, b), first
locate a pixel pair (â, b̂) in the vicinity of Rλ(a, b) that satisfies Rλ(â, b̂) = dλ and has the
minimum distance to (a, b). The located (â, b̂) is then employed to replace (a, b) and a
marked pixel pair is obtained. When extracting the embedded digit dλ, since Rλ and (â, b̂)
are known, dλ can be calculated by dλ = Rλ(â, b̂). The schematic diagram of APPM is as
shown in Figure 1a.

Appl. Sci. 2023, 13, 1402 4 of 16

Appl. Sci. 2023, 13, 1402 4 of 16

and 𝑎, 𝑏 are known, 𝑑 can be calculated by 𝑑 = 𝑅 𝑎, 𝑏 . The schematic diagram of
APPM is as shown in Figure 1a.

Following is a simple example to illustrate the APPM embedding procedures. Figure
1b shows a partial reference table 𝑅 . Let (𝑎, 𝑏) = (53, 64) be the original pixel pair used
to carry the digit 𝑑 = 26 of base 64. Since (52, 66) satisfies 𝑅 (52, 66) = 26 and has
the minimum distance to (53, 64), the marked pixel pair 𝑎, 𝑏 = (52, 66) is located. To
extract the embedded digit, we only need to locate the coordinate (52, 66) in 𝑅 , and 𝑑 = 𝑅 (52, 66) = 26 can be obtained (see Figure 1b).

(a) (b)

Figure 1. The examples of APPM embedding method. (a) The schematic diagram of the APPM; (b)
An example of 𝑅 .

2.3. The Matrix Encoding
The Matrix encoding is used to embed the authentication codes into bitmaps of

smooth blocks. The limitation of Matrix encoding is that only 3 bits can be embedded at a
time, and our method requires 6 bits to be embedded, thus a block has to be embedded 2
times. Matrix encoding (𝛽, 𝑘) is an efficient embedding method [30] based on Hamming
code, which is a linear error correction code proposed by Richard Wesley Hamming [31]. (𝛽, 𝑘) represents the 𝑘 secret bits 𝑠 embedded into the vector 𝑉 = {𝑉 } of length 𝛽.
Matrix encoding (𝛽, 𝑘) is embedded based on a parity matrix 𝐻. To embed 𝑠 into 𝑉, 𝑝 = (𝐻 × 𝑉T)mod 2 ⨁ 𝑠T is calculated, where T, ⨁ and mod represent transpose, ex-
clusive-or and modulo-2 operations, respectively. Note that 𝑝 is column vector of length 𝑘. Let (𝑝) be the decimal value of 𝑝 and initialize 𝑉M = 𝑉 as the marked vector of 𝑉.
If (𝑝) = 0, then no bit is required to be flipped in 𝑉M. Otherwise, flip the ((𝑝) − 1)-th
bit of 𝑉M. The secret bits can be extracted directly by calculating 𝑠 = 𝐻 × 𝑉M

T mod 2.
Next, an example of (𝛽, 𝑘) = (7, 3) is taken to introduce the embedding and extrac-

tion procedures of matrix encoding. Following equation shows the 𝐻 of (7, 3):

𝐻 = 0 0 00 1 11 0 1 1 1 10 0 10 1 0 111 . (2)

Let 𝑉 =[1, 1, 1, 1, 1, 0, 0] be the original vector used to embed the secret bits 𝑠 = [1, 0, 0].
Calculate 𝑝 = (𝐻 × 𝑉T)mod 2 ⨁ 𝑠T to get 𝑝 = [1, 0, 1]T . Convert 𝑝 to its decimal
value, and (𝑝) = 5. Then, flip the 5 − 1 = 4-th bit of the initialized marked vector 𝑉 ,
and 𝑉M = [1, 1, 1, 1, 0, 0, 0]. The embedded secret bits can be extracted by 𝑠 =𝐻 × 𝑉M

T mod 2 = [1, 0, 0].

Figure 1. The examples of APPM embedding method. (a) The schematic diagram of the APPM;
(b) An example of R64.

Following is a simple example to illustrate the APPM embedding procedures.
Figure 1b shows a partial reference table R64. Let (a, b) = (53, 64) be the original pixel pair
used to carry the digit d64 = 26 of base 64. Since (52, 66) satisfies R64(52, 66) = 26 and
has the minimum distance to (53, 64), the marked pixel pair (â, b̂) = (52, 66) is located.
To extract the embedded digit, we only need to locate the coordinate (52, 66) in R64, and
d64 = R64(52, 66) = 26 can be obtained (see Figure 1b).

2.3. The Matrix Encoding

The Matrix encoding is used to embed the authentication codes into bitmaps of smooth
blocks. The limitation of Matrix encoding is that only 3 bits can be embedded at a time, and
our method requires 6 bits to be embedded, thus a block has to be embedded 2 times. Matrix
encoding (β, k) is an efficient embedding method [30] based on Hamming code, which is a
linear error correction code proposed by Richard Wesley Hamming [31]. (β, k) represents
the k secret bits s embedded into the vector V = {Vi}

β−1
i=0 of length β. Matrix encoding (β, k)

is embedded based on a parity matrix H. To embed s into V, p = ((H ×VT)mod 2)
⊕

sT is
calculated, where T,

⊕
and mod represent transpose, exclusive-or and modulo-2 operations,

respectively. Note that p is column vector of length k. Let (p)10 be the decimal value of p
and initialize VM = V as the marked vector of V. If (p)10 = 0, then no bit is required to be
flipped in VM. Otherwise, flip the ((p)10 − 1)-th bit of VM. The secret bits can be extracted

directly by calculating s = (H ×VM
T)

Tmod 2.
Next, an example of (β, k) = (7, 3) is taken to introduce the embedding and extraction

procedures of matrix encoding. Following equation shows the H of (7, 3):

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

. (2)

Let V = [1, 1, 1, 1, 1, 0, 0] be the original vector used to embed the secret bits s = [1, 0, 0].
Calculate p = ((H ×VT)mod 2)

⊕
sT to get p = [1, 0, 1]T. Convert p to its decimal value,

and (p)10 = 5. Then, flip the 5− 1 = 4-th bit of the initialized marked vector VM, and VM =

[1, 1, 1, 1, 0, 0, 0]. The embedded secret bits can be extracted by s = (H ×VM
T)

Tmod 2 =
[1, 0, 0].

Appl. Sci. 2023, 13, 1402 5 of 16

3. The Proposed Method

In methods [25–27], authentication codes are generated independently of position
information and MSBs of quantized values, which can result in some tampering that
cannot be detected. Moreover, these embedding techniques are not designed based on
block smoothness, leading to a relatively high image distortion. In this paper, the to-be-
protected contents, such as quantized values, are used to generate authentication codes
to enhance the security of the image. In addition, different embedding strategies based
on block smoothness are used to improve image quality. The smoothness is determined
by a predefined threshold T. Given an AMBTC compressed code Ci = (ai, bi, Bi) of block
Ii. If |bi − ai| < T, the block Ii is smooth; otherwise, it is complex. In our method, the
authentication codes of smooth blocks are embedded in bitmaps using the matrix encoding,
while complex blocks are embedded in quantized values using the APPM. The detailed
embedding and authentication procedures are presented in the following subsections.
Notice that the detection result is related to the length of authentication codes. In the
proposed method, smooth and complex blocks are embedded with the same length of
authentication codes, thus they have identical detection performance.

3.1. The Embedment Algorithm of Smooth Blocks

Let Ci = (ai, bi, Bi) be the AMBTC compressed code of a smooth block Ii. Following
gives the embedment algorithm of a smooth block Ii.

• Step 1: Divide Bi into {Bi,j}1
j=0 and {Bi,j}15

j=2, which are employed to generate and
carry aci, respectively.

• Step 2: Use the bitmap {Bi,j}1
j=0, low quantized value ai, high quantized value bi, and

position information i to generate aci using the following equation:

aci = hash6({Bi,j}1
j=0, ai, bi, i), (3)

where hash6(x) is the function that hashes x using the MD5 [32] and reduces the
hashed results to 6-bit aci using the xor operation.

• Step 3: The 6-bit aci is divided into 2 groups of 3 bits denoted as ac0
i and ac1

i . The
matrix encoding described in Section 2.3 is then employed to embed ac0

i and ac1
i into

{Bi,j }8
j=2 and {Bi,j }15

j=9, and we obtain {B̂i,j}
8
j=2 and {B̂i,j}

15
j=9, respectively.

• Step 4: Concatenate {Bi,j }1
j=0, {B̂i,j}

8
j=2, and {B̂i,j}

15
j=9, and we have the marked bitmap

B̂i. Finally, the marked compressed code Ĉi = (âi, b̂i, B̂i) is outputted, where (âi, b̂i) =
(ai, bi).

A simple example is given to illustrate the procedure of generating an authentication
code using the hash function hash6(x). Suppose the hashed result of x is a 32-bit string
‘00110110101101001100010000101100’. Then the first 16 bits are xor-ed with the last 16 bits
to create a 16 bits ‘1111001010011000’. Repeat this xor-ed procedure one more time, and
we obtain an 8 bits ‘01101010’. Since our method only requires 6 bits, the last 2 bits are
discarded. Therefore, the authentication code ‘011010’ is obtained.

3.2. The Embedment Algorithm of Complex Blocks

For a compressed code Ci = (ai, bi, Bi), if (bi − ai) ≥ T, the block Ii is a complex one
and embed the authentication code aci into the quantized values (ai, bi) using APPM with
the following algorithm.

• Step 1: Use the following equation to construct the reference table R‖i
64:

R‖i
64(ai, bi) = ((c64 × ai + bi) + ‖i) mod 64, (4)

where ‖i is an random integer generated by a key K, and c64 = 14.

Appl. Sci. 2023, 13, 1402 6 of 16

• Step 2: Use the bitmap Bi and position information i to generate the 6-bit aci by

aci = hash6(Bi, i). (5)

• Step 3: Once aci is obtained, (aci)10 of base 64 is embedded into the quantized values
(ai, bi) using APPM to obtain the marked quantized values âi and b̂i, where (aci)10 is
the decimal value of aci.

In comparison to Equation (1), Equation (4) adds an additional integer ‖i to generate
the reference table. Actually, the image quality obtained by referring to R‖i

64 is equal
to that of R64. However, if aci is embedded based on R64, it can be extracted publicly
by Equation (1). Therefore, one can tamper with (âi, b̂i) by finding an alternative pixel
pair (

.
ai,

.
bi) that satisfies (c64 ×

.
ai +

.
bi) mod 64 = (c64 × âi + b̂i) mod 64 = aci to escape

detection. In contrast, aci in Equation (4) can be obtained only if ‖i is known. Thus, the
embedment using R‖i

64 is not only more secure than just using R64, but also maintains the
same image quality.

3.3. Embedding of Smoothness-Changed Blocks

Since the aci of complex block Ii is embedded into the quantized values (ai, bi), the
smoothness of Ii may change to the smooth one if

∣∣∣b̂i − âi

∣∣∣< T . In this case, it can be
processed using the following procedures. Firstly, alter the value of ai and bi by one,
and the altered results a′i = {ai − 1, ai, ai + 1} and b′i = {bi − 1, bi, bi + 1} are obtained.
If
∣∣b′i − a′i

∣∣ < T, use the embedding technique described in Section 3.1 to perform the
embedment on (a′i, b′i , Bi) and obtain (a∗i , b∗i , B∗i), where (a∗i , b∗i) = (a′i, b′i). Otherwise,
the embedment of (a′i, b′i , Bi) is performed using the embedding technique of complex
block described in Section 3.2 to obtain (a∗i , b∗i , B∗i), where B∗i = Bi. From all possible
codes of (a∗i , b∗i , B∗i), the code with the smallest embedding error is selected as the final
output (âi, b̂i, B̂i). Figure 2 shows the embedding framework of the proposed method.

Appl. Sci. 2023, 13, 1402 6 of 16

• Step 3: Once 𝑎𝑐 is obtained, (𝑎𝑐) of base 64 is embedded into the quantized val-
ues (𝑎 , 𝑏) using APPM to obtain the marked quantized values 𝑎 and 𝑏 , where (𝑎𝑐) is the decimal value of 𝑎𝑐 .
In comparison to Equation (1), Equation (4) adds an additional integer 𝓀 to gener-

ate the reference table. Actually, the image quality obtained by referring to 𝑅𝓀 is equal
to that of 𝑅 . However, if 𝑎𝑐 is embedded based on 𝑅 , it can be extracted publicly by
Equation (1). Therefore, one can tamper with 𝑎 , 𝑏 by finding an alternative pixel pair 𝑎 , 𝑏 that satisfies 𝑐 × 𝑎 + 𝑏 mod 64 = 𝑐 × 𝑎 + 𝑏 mod 64 = 𝑎𝑐 to escape de-
tection. In contrast, 𝑎𝑐 in Equation (4) can be obtained only if 𝓀 is known. Thus, the
embedment using 𝑅𝓀 is not only more secure than just using 𝑅 , but also maintains the
same image quality.

3.3. Embedding of Smoothness-Changed Blocks
Since the 𝑎𝑐 of complex block 𝐼 is embedded into the quantized values (𝑎 , 𝑏), the

smoothness of 𝐼 may change to the smooth one if 𝑏 − 𝑎 < 𝑇. In this case, it can be
processed using the following procedures. Firstly, alter the value of 𝑎 and 𝑏 by one,
and the altered results 𝑎 = {𝑎 − 1, 𝑎 , 𝑎 + 1} and 𝑏 = {𝑏 − 1, 𝑏 , 𝑏 + 1} are obtained. If |𝑏 − 𝑎 | < 𝑇, use the embedding technique described in Section 3.1 to perform the em-
bedment on (𝑎 , 𝑏 , 𝐵) and obtain (𝑎∗, 𝑏∗, 𝐵∗), where (𝑎∗, 𝑏∗) = (𝑎 , 𝑏). Otherwise, the
embedment of (𝑎 , 𝑏 , 𝐵) is performed using the embedding technique of complex block
described in Section 3.2 to obtain (𝑎∗, 𝑏∗, 𝐵∗), where 𝐵∗ = 𝐵 . From all possible codes of (𝑎∗, 𝑏∗, 𝐵∗), the code with the smallest embedding error is selected as the final output 𝑎 , 𝑏 , 𝐵 . Figure 2 shows the embedding framework of the proposed method.

Figure 2. The embedding framework of the proposed method.

Following is a simple example to illustrate the case where a complex block changes
to a smooth one after embedment. Let (𝑎 , 𝑏 , 𝐵) = (67, 73, [0011; 0011; 0011; 0101]) be the
original AMBTC code with 𝑛 = 4, and 𝑇 = 6. Since |𝑏 − 𝑎 | = |73 − 67| = 6 ≥ 𝑇, the 𝐼
is classified as a complex block. Then, use 𝐵 and 𝑖 to generate the authentication code 𝑎𝑐 using Equation (5), and employ APPM to embed 𝑎𝑐 into (𝑎 , 𝑏) to obtain 𝑎 , 𝑏 .
Suppose the marked quantized values 𝑎 , 𝑏 = (68, 73). Since 𝑏 − 𝑎 = 73 − 68 = 5 <𝑇, the smoothness of 𝑎 , 𝑏 is different from that of (𝑎 , 𝑏). Thus, the embedment of (𝑎 , 𝑏 , 𝐵) requires additional processing. Alter the values of (𝑎 , 𝑏) by one unit, and the
altered results (𝑎 , 𝑏) are (66, 72), (66, 73), (66, 74), (67, 72), (67, 73), (67, 74), (68, 72), (68,
73) and (68, 74). The differences of 𝑎 and 𝑏 less than 𝑇 = 6 are (67, 72), (68, 72) and
(68, 73), and the technique described in Section 3.1 is used to embed them. The differences
of 𝑎 and 𝑏 larger than or equal to 6 are (66, 72), (66, 73), (66, 74), (67, 73), (67, 74) and
(68, 74), and employ the technique described in Section 3.2 to embed them. Let (67, 72,

Figure 2. The embedding framework of the proposed method.

Following is a simple example to illustrate the case where a complex block changes to
a smooth one after embedment. Let (ai, bi, Bi) = (67, 73, [0011; 0011; 0011; 0101]) be the
original AMBTC code with n = 4, and T = 6. Since |bi − ai| = |73− 67| = 6 ≥ T, the Ii is
classified as a complex block. Then, use Bi and i to generate the authentication code aci
using Equation (5), and employ APPM to embed aci into (ai, bi) to obtain (âi, b̂i). Suppose
the marked quantized values (âi, b̂i) = (68, 73). Since b̂i − âi = 73− 68 = 5 < T, the
smoothness of (âi, b̂i) is different from that of (ai, bi). Thus, the embedment of (ai, bi, Bi)
requires additional processing. Alter the values of (ai, bi) by one unit, and the altered
results (a′i, b′i) are (66, 72), (66, 73), (66, 74), (67, 72), (67, 73), (67, 74), (68, 72), (68, 73) and

Appl. Sci. 2023, 13, 1402 7 of 16

(68, 74). The differences of a′i and b′i less than T = 6 are (67, 72), (68, 72) and (68, 73), and the
technique described in Section 3.1 is used to embed them. The differences of a′i and b′i larger
than or equal to 6 are (66, 72), (66, 73), (66, 74), (67, 73), (67, 74) and (68, 74), and employ
the technique described in Section 3.2 to embed them. Let (67, 72, [0011; 0111; 0011; 0001]),
(68, 72, [0011; 0010; 0011; 0111]), and (68, 73, [0010; 0011; 0011; 1101]) are the embedded
codes with differences of quantified values less than 6, where the underlined bits are the
flipped bits. Suppose that (65, 73, Bi), (67, 76, Bi), (66, 73, Bi), (67, 75, Bi), (66, 74, Bi) and
(68, 75, Bi) are the codes with differences of quantified values larger than or equal to 6.
Decompress these codes and the original codes (ai, bi, Bi) using AMBTC to obtain the
decompress block D∗i and Di. Then, calculate the squared differences of D∗i and Di, which
are 68, 64, 68, 32, 72, 8, 32, 16 and 40. Since the code (66, 73, Bi) has the least embedding
distortion 8, it can be selected and outputted as the final code (âi, b̂i, B̂i) = (66, 73, Bi).

3.4. The Embedding Procedures

In this section, the embedding procedures of the proposed method are described in
the following algorithm. Let C = {ai, bi, Bi}N−1

i=0 be the AMBTC codes used to embed the
authentication codes. The embedding procedures are listed below.

• Input: AMBTC compressed codes C = {ai, bi, Bi}N−1
i=0 , key K, and parameters n

and T.
• Output: Marked AMBTC codes {âi, b̂i, B̂i}

N−1
i=0 .

• Step 1: Scan each code (ai, bi, Bi) in {ai, bi, Bi}N−1
i=0 and calculate the difference of ai

and bi.
• Step 2: If |bi − ai| < T, use Equation (3) to hash {Bi,j}1

j=0, ai, bi and i to generate the

6-bit aci. Embed aci into {Bi,j}15
j=2 using the matrix encoding described in Section 2.3

to obtain {B̂i,j}
15
j=2. Concatenate {Bi,j}1

j=0 and {B̂i,j}
15
j=2, and the marked bitmap B̂i is

obtained. Then, we have the marked code (âi, b̂i, B̂i), where (âi, b̂i) = (ai, bi).
• Step 3: If |bi − ai| ≥ T, use the key K to generate ‖i, and construct the reference

table R‖i
64 using Equation (4). Then, use the APPM to embed aci into (ai, bi), and we

have (âi, b̂i). If
∣∣∣b̂i − âi

∣∣∣ ≥ T, the marked code (âi, b̂i, B̂i) is outputted and B̂i = Bi.
Otherwise, (ai, bi, Bi) is embedded using the technique described in Section 3.3 to
obtain (âi, b̂i, B̂i).

• Step 4: Repeat Steps 1–3 until all codes are embedded and output the marked codes

{âi, b̂i, B̂i}
N−1
i=0 , key K, and parameters n and T.

3.5. The Authentication Procedures

To authenticate whether the codes {ãi, b̃i, B̃i}
N−1
i=0 have been tampered with, we first

regenerate the authentication code ãci using either Equations (3) or (5) according to the
difference of ãi and b̃i. Then, extract the code ẽaci embedded in (ãi, b̃i, B̃i), and compare
ẽac with ãci. If ẽac = ãci, the code (ãi, b̃i, B̃i) is untampered with; otherwise, it is tampered
with. The detailed authentication procedures are listed as follows.

• Input: To-be-authenticated codes {ãi, b̃i, B̃i}
N−1
i=0 , key K, and parameters n and T.

• Output: The detection result.

• Step 1: Scan each code (ãi, b̃i, B̃i) in {ãi, b̃i, B̃i}
N−1
i=0 and calculate the difference of ãi

and b̃i.
• Step 2: If

∣∣∣ b̃i − ãi

∣∣∣ < T, use Equation (3) to hash {B̃i,j}
1
j=0, ãi, b̃i and i to regenerate

6-bit ãci. The matrix encoding is employed to extract ẽaci from {B̃i,j}
15
j=2.

Appl. Sci. 2023, 13, 1402 8 of 16

• Step 3: If
∣∣∣ b̃i − ãi

∣∣∣ ≥ T, employ K to generate ‖i, and construct the R‖i
64 by Equation

(4). Besides, B̃i and i are employed to regenerate ãci by Equation (5). Then, use APPM
to extract ẽaci embedded in (ãi, b̃i).

• Step 4: Compare ãci and ẽaci to judge whether the code (ãi, b̃i, B̃i) has been tampered
with. If ãci = ẽaci, the code is untampered with. Otherwise, it is tampered with.

• Step 5: Repeat Steps 1–4 until all blocks have been detected, which refers to the coarse
detection in our method.

• Step 6: The refined detection, described here, is used to improve detection accuracy. If
the top and bottom, left and right, top left and bottom right, or top right and bottom
left blocks of an untampered block have been determined as tampered with, the
untampered block is redetermined to be a tampered one. Repeat this procedure until
no other blocks are redetermined and we have finished the authentication procedures.

4. Experimental Results

To evaluate the effectiveness of our method, we perform several experiments on a set
of grayscale images. Eight images of size 512 × 512, namely, Lena, Jet, Baboon, Tiffany,
Sailboat, Splash, Peppers, and House are used as test images for the experiments, as shown
in Figure 3. These test images can be obtained from the USC-SIPI image database [33].
Comparisons of image quality and detectability between prior works [25–27] and the
proposed method are also shown in this section. In the experiments, the peak signal-to-
noise ratio (PSNR) is employed to measure the marked image quality:

PSNR = 10× log10
2552

MSE
(6)

where MSE is the mean square error of the marked image and the original image. Equation (6)
shows that the smaller the MSE is, the larger is the PSNR. The structural similarity (SSIM)
metric [34] is also employed to measure the similarity between the marked and original
images. The SSIM is calculated by:

SSIM(x, y) =
(2µx µy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(7)

where x and y represent the original and marked images. µx, µy and σx, σy are the mean
value and standard deviation of x, y, respectively. σxy is the covariance of x and y, and C1
and C2 are constants. The value of SSIM is within the range [0, 1], and the larger the SSIM
is, the higher the visual quality of the marked image is.

4.1. The Performance of the Proposed Method

In this paper, we use a threshold T to classify blocks into smooth and complex ones
and embed them using different techniques. The PSNR and SSIM are related to the value
of T. Table 1 shows the comparisons between PSNR and SSIM for the test images when
the threshold T is set from 0 to 10. As shown in the table, the highest PSNR is achieved
when T = 6 or T = 7. As T becomes smaller or larger, the PSNR decreases gradually.
For example, the Jet image has a PSNR of 43.32 dB for T = 6, which is higher than when
T = 5 and T = 7. Besides, the peak values of SSIM are achieved when T = 6. Thus T = 6
is adopted in the proposed method. This experiment was performed using the Python
programming language, and the average time required to embed an image is less than one
second when T = 6.

Appl. Sci. 2023, 13, 1402 9 of 16

Appl. Sci. 2023, 13, 1402 8 of 16

• Step 6: The refined detection, described here, is used to improve detection accuracy.
If the top and bottom, left and right, top left and bottom right, or top right and bottom
left blocks of an untampered block have been determined as tampered with, the un-
tampered block is redetermined to be a tampered one. Repeat this procedure until no
other blocks are redetermined and we have finished the authentication procedures.

4. Experimental Results
To evaluate the effectiveness of our method, we perform several experiments on a set

of grayscale images. Eight images of size 512 × 512, namely, Lena, Jet, Baboon, Tiffany,
Sailboat, Splash, Peppers, and House are used as test images for the experiments, as
shown in Figure 3. These test images can be obtained from the USC-SIPI image database
[33]. Comparisons of image quality and detectability between prior works [25–27] and the
proposed method are also shown in this section. In the experiments, the peak signal-to-
noise ratio (PSNR) is employed to measure the marked image quality: PSNR = 10 × log (6)

where MSE is the mean square error of the marked image and the original image. Equa-
tion (6) shows that the smaller the MSE is, the larger is the PSNR. The structural similarity
(SSIM) metric [34] is also employed to measure the similarity between the marked and
original images. The SSIM is calculated by: SSIM(𝑥, 𝑦) = (7)

where 𝑥 and 𝑦 represent the original and marked images. 𝜇 , 𝜇 and 𝜎 , 𝜎 are the
mean value and standard deviation of 𝑥, 𝑦, respectively. 𝜎 is the covariance of 𝑥 and 𝑦, and 𝐶 and 𝐶 are constants. The value of SSIM is within the range [0, 1], and the
larger the SSIM is, the higher the visual quality of the marked image is.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Eight test images. (a) Lena; (b) Jet; (c) Baboon; (d) Tiffany; (e) Sailboat; (f) Splash; (g) Pep-
pers; (h) House.

Figure 3. Eight test images. (a) Lena; (b) Jet; (c) Baboon; (d) Tiffany; (e) Sailboat; (f) Splash; (g) Peppers;
(h) House.

Table 1. PSNR and SSIM comparisons with various T value.

T Metric Lena Jet Baboon Tiffany Sailboat Splash Peppers House

T = 0
PSNR 41.02 41.02 41.00 41.01 41.05 41.02 41.02 41.06

SSIM 0.9564 0.9505 0.9867 0.9612 0.9723 0.9501 0.9613 0.9654

T = 1
PSNR 41.08 41.14 41.01 41.09 41.07 41.11 41.06 41.12

SSIM 0.9574 0.9523 0.9867 0.9622 0.9727 0.9514 0.9618 0.9664

T = 2
PSNR 41.31 41.80 41.01 41.45 41.21 41.63 41.18 41.84

SSIM 0.9613 0.9638 0.9867 0.9666 0.9746 0.9580 0.9637 0.9788

T = 3
PSNR 41.62 42.39 41.02 41.80 41.34 42.04 41.34 42.02

SSIM 0.9660 0.9727 0.9868 0.9709 0.9764 0.9626 0.9657 0.9810

T = 4
PSNR 42.03 42.94 41.03 42.32 41.49 42.61 41.57 42.22

SSIM 0.9710 0.9784 0.9870 0.9756 0.9780 0.9679 0.9683 0.9828

T = 5
PSNR 42.31 43.19 41.04 42.64 41.59 43.06 41.79 42.39

SSIM 0.9738 0.9805 0.9870 0.9780 0.9792 0.9714 0.9707 0.9844

T = 6
PSNR 42.48 43.32 41.05 42.78 41.64 43.31 41.93 42.48

SSIM 0.9748 0.9808 0.9871 0.9786 0.9797 0.9727 0.9716 0.9849

T = 7
PSNR 42.49 43.31 41.04 42.77 41.63 43.33 41.94 42.47

SSIM 0.9741 0.9806 0.9870 0.9783 0.9793 0.9722 0.9711 0.9847

T = 8
PSNR 42.39 43.26 40.99 42.70 41.53 43.24 41.83 42.43

SSIM 0.97301 0.9798 0.9865 0.9776 0.9783 0.9711 0.9696 0.9843

T = 9
PSNR 42.24 43.17 40.90 42.55 41.37 43.09 41.65 42.35

SSIM 0.9719 0.9793 0.9855 0.9766 0.9765 0.9698 0.9675 0.9837

T = 10
PSNR 42.06 43.02 40.78 42.33 41.13 42.93 41.41 42.22

SSIM 0.9705 0.9786 0.9843 0.9753 0.9747 0.9688 0.9654 0.9830

Appl. Sci. 2023, 13, 1402 10 of 16

Figure 4 shows the plot of threshold T versus PSNR for various test images. When
T = 0, the PSNRs of the eight test images are around 41 dB. Among these images at T = 6,
Jet has the highest PSNR, while Baboon achieves the lowest PSNR, which is about 2 dB
lower than that of Jet. This is because image quality is dependent on the ratio of smooth
blocks for a given threshold, which is demonstrated in the following experiments.

Appl. Sci. 2023, 13, 1402 10 of 16

Figure 4. The plot of threshold 𝑇 versus PSNR for various test images.

Table 2 shows the ratio of smooth blocks and the PSNR of images when 𝑇 = 6. We
observe that under the same threshold, the larger the ratio of smooth blocks, the higher
the PSNR, implying that the proposed method is more effective. The reason is that the
differences of quantized values of smooth blocks are close to each other, thus the error
caused by flipping bits of bitmaps is also small. For example, Lena, Jet, Tiffany, Splash
and House contain more than 40% smooth blocks, and the PSNR of these images can reach
more than 42 dB. However, the PSNR of Baboon is the lowest (41.04 dB), which is due to
the fact that it has only 6.99% smooth blocks. PSNR is a metric to measure an embedding
method, and higher PSNR means that the embedding method is more effective. In these 8
test images, the PSNRs of all images are higher than 41 dB, implying the effectiveness of
our method.

Table 2. The relation between the ratio of smooth blocks and the PSNR of images.

Image Number of Smooth Blocks Ratio of Smooth Blocks PSNR
Lena 8695 53.07% 42.49

Jet 9758 59.56% 43.31
Baboon 1146 6.99% 41.04
Tiffany 9518 58.09% 42.78
Sailboat 3638 22.20% 41.64
Splash 11820 72.14% 43.33

Peppers 5524 33.71% 41.91
House 6616 40.38% 42.47

The following experiment demonstrates the detectability of the proposed method.
The marked codes of Lena are tampered such that the tampered decompressed image
shows a daisy on Lena’s hat, as shown in Figure 5a. Figure 5b shows the tampered region
indicated by black blocks, while Figure 5c,d present the coarse and refined detection re-
sults of Figure 5a. An image contains a total of (512 × 512) (4 × 4) = 16384⁄ blocks, and
this experiment tampers with 2176 blocks with a tampering rate of 13.28%. Figure 5c
shows that a few scattered blocks are not detected in the coarse detection. Nevertheless,
those undetected blocks can be detected in the refined detection, as shown in Figure 5d.

Figure 4. The plot of threshold T versus PSNR for various test images.

Table 2 shows the ratio of smooth blocks and the PSNR of images when T = 6. We
observe that under the same threshold, the larger the ratio of smooth blocks, the higher
the PSNR, implying that the proposed method is more effective. The reason is that the
differences of quantized values of smooth blocks are close to each other, thus the error
caused by flipping bits of bitmaps is also small. For example, Lena, Jet, Tiffany, Splash and
House contain more than 40% smooth blocks, and the PSNR of these images can reach
more than 42 dB. However, the PSNR of Baboon is the lowest (41.04 dB), which is due to
the fact that it has only 6.99% smooth blocks. PSNR is a metric to measure an embedding
method, and higher PSNR means that the embedding method is more effective. In these
8 test images, the PSNRs of all images are higher than 41 dB, implying the effectiveness of
our method.

Table 2. The relation between the ratio of smooth blocks and the PSNR of images.

Image Number of Smooth Blocks Ratio of Smooth Blocks PSNR

Lena 8695 53.07% 42.49

Jet 9758 59.56% 43.31

Baboon 1146 6.99% 41.04

Tiffany 9518 58.09% 42.78

Sailboat 3638 22.20% 41.64

Splash 11,820 72.14% 43.33

Peppers 5524 33.71% 41.91

House 6616 40.38% 42.47

The following experiment demonstrates the detectability of the proposed method.
The marked codes of Lena are tampered such that the tampered decompressed image
shows a daisy on Lena’s hat, as shown in Figure 5a. Figure 5b shows the tampered region
indicated by black blocks, while Figure 5c,d present the coarse and refined detection results
of Figure 5a. An image contains a total of (512× 512)/(4× 4) = 16384 blocks, and this

Appl. Sci. 2023, 13, 1402 11 of 16

experiment tampers with 2176 blocks with a tampering rate of 13.28%. Figure 5c shows
that a few scattered blocks are not detected in the coarse detection. Nevertheless, those
undetected blocks can be detected in the refined detection, as shown in Figure 5d.

Appl. Sci. 2023, 13, 1402 11 of 16

(a) (b)

(c) (d)

Figure 5. The tampered and detection results. (a) The tampered image; (b) The tampered region; (c)
The coarse detection result; (d) The refined detection result.

4.2. PSNR Comparisons with Prior Works
In this section, we compare the PSNR between [25–27] and the proposed method, as

shown in Table 3. In this experiment, 6-bit authentication code is embedded in all meth-
ods, and 𝑇 = 6 is used in the proposed method. As shown in the table, the PSNR of the
proposed method is the highest compared to [25–27]. The averaged PSNR of our method
is 42.36 dB, which is 42.36 − 39.71 = 2.65 , 42.36 − 40.97 = 1.39 and 42.36 − 40.35 =2.01 dB higher than [25–27], respectively. Moreover, if an image contains a larger ratio of
smooth blocks, the improvement of PSNR obtained by our method is higher. For example,
compared to [27], the improvement of Baboon is 41.04 − 40.69 = 0.35 dB, while Splash
is 43.33 − 40.13 = 3.20 dB, reflecting the effectiveness of the proposed method.

Table 3. PSNR comparisons with [25–27] (in dB).

Method Lena Jet Baboon Tiffany Sailboat Splash Peppers House Average
[25] 39.71 39.69 39.73 39.76 39.67 39.67 39.70 39.70 39.71
[26] 40.98 41.08 40.96 40.89 40.96 40.98 40.99 40.93 40.97
[27] 40.32 40.07 40.69 40.22 40.55 40.13 40.49 40.25 40.35

Proposed 42.49 43.31 41.04 42.78 41.64 43.33 41.94 42.47 42.36

An additional 200 images of sized 512 × 512 obtained from BOWS-2 image data-
base [35] are used to explore the applicability of the compared methods influenced by
image smoothness. To better evaluate the performance, we sort 200 images according to
the number of smooth blocks of images in the ascending order, as shown in Figure 6. The
figure shows that when the number of smooth blocks is close to 0, the PSNR improvement
of our method is not significant compared to [25–27]. However, as the number of smooth
blocks increases, the improvement becomes more obvious, as shown in Figure 6. From the
above analysis, the proposed method is more suitable for smooth images compared to
complex ones.

Figure 5. The tampered and detection results. (a) The tampered image; (b) The tampered region;
(c) The coarse detection result; (d) The refined detection result.

4.2. PSNR Comparisons with Prior Works

In this section, we compare the PSNR between [25–27] and the proposed method, as
shown in Table 3. In this experiment, 6-bit authentication code is embedded in all methods,
and T = 6 is used in the proposed method. As shown in the table, the PSNR of the proposed
method is the highest compared to [25–27]. The averaged PSNR of our method is 42.36 dB,
which is 42.36− 39.71 = 2.65, 42.36− 40.97 = 1.39 and 42.36− 40.35 = 2.01 dB higher
than [25–27], respectively. Moreover, if an image contains a larger ratio of smooth blocks, the
improvement of PSNR obtained by our method is higher. For example, compared to [27], the
improvement of Baboon is 41.04− 40.69 = 0.35 dB, while Splash is 43.33− 40.13 = 3.20 dB,
reflecting the effectiveness of the proposed method.

Table 3. PSNR comparisons with [25–27] (in dB).

Method Lena Jet Baboon Tiffany Sailboat Splash Peppers House Average

[25] 39.71 39.69 39.73 39.76 39.67 39.67 39.70 39.70 39.71

[26] 40.98 41.08 40.96 40.89 40.96 40.98 40.99 40.93 40.97

[27] 40.32 40.07 40.69 40.22 40.55 40.13 40.49 40.25 40.35

Proposed 42.49 43.31 41.04 42.78 41.64 43.33 41.94 42.47 42.36

An additional 200 images of sized 512× 512 obtained from BOWS-2 image database [35]
are used to explore the applicability of the compared methods influenced by image smooth-
ness. To better evaluate the performance, we sort 200 images according to the number of
smooth blocks of images in the ascending order, as shown in Figure 6. The figure shows

Appl. Sci. 2023, 13, 1402 12 of 16

that when the number of smooth blocks is close to 0, the PSNR improvement of our method
is not significant compared to [25–27]. However, as the number of smooth blocks increases,
the improvement becomes more obvious, as shown in Figure 6. From the above analysis,
the proposed method is more suitable for smooth images compared to complex ones.

Appl. Sci. 2023, 13, 1402 12 of 16

Figure 6. Comparisons between PSNR and the number of smooth blocks for 200 images.

4.3. Detectability Comparisons with Prior Works
This section shows the detectability comparisons of [25–27] and the proposed

method. In this experiment, the marked compressed codes of Sailboat are tampered with
by adding a bird. Figure 7a,b show the tampered image and the region of tamper, while
Figure 7c–f present the detection results of [25–27] and the proposed method. The results
show all methods can achieve a satisfactory detection result.

(a) (b) (c)

(d) (e) (f)

Figure 7. The tampered and detection results of [25–27] and the proposed method. (a) The tampered
image; (b) The tampered region; (c) Detection result of [25]; (d) Detection result of [26]; (e) Detection
result of [27]; (f) Detection result of the proposed method.

Different metrics are used to measure the detection results of Figure 7, as shown in
Table 4. The number of tampered pixels (NTB) in Figure 7a is 19,712, and the tampering
rate is 19712 (512 × 512) ⁄ = 7.52%, where. True positive (TP) represents the number of

Figure 6. Comparisons between PSNR and the number of smooth blocks for 200 images.

4.3. Detectability Comparisons with Prior Works

This section shows the detectability comparisons of [25–27] and the proposed method.
In this experiment, the marked compressed codes of Sailboat are tampered with by adding
a bird. Figure 7a,b show the tampered image and the region of tamper, while Figure 7c–f
present the detection results of [25–27] and the proposed method. The results show all
methods can achieve a satisfactory detection result.

Different metrics are used to measure the detection results of Figure 7, as shown in
Table 4. The number of tampered pixels (NTB) in Figure 7a is 19,712, and the tampering
rate is 19712/(512× 512) = 7.52%, where. True positive (TP) represents the number of
tampered pixels detected as tampered ones, while false negative (FN) is the number of
tampered pixels incorrectly detected as untampered ones. The refined detection rate is
calculated by TP/(NTB). In all methods, the length of authentication codes embedded in
each block is 6. Therefore, the collision probability is 1/26 = 1.56%, i.e., the coarse detection
rate is as high as 100%− 1.56% = 98.44%. The table shows that the refined detection
rates of [25–27] and the proposed method are up to 99%, which are better than the coarse
detection rates and meet the theoretical values.

Table 4. Detectability comparisons using different metrics.

Method [25] [26] [27] Proposed

Number of tampered blocks (NTB) 19,712

Tampering rate 7.52%

True positive (TP) 19,680 19,696 19,696 19,712

False negative (FN) 32 16 16 0

The refined detection rate 99.83% 99.91% 99.91% 100%

Appl. Sci. 2023, 13, 1402 13 of 16

Appl. Sci. 2023, 13, 1402 12 of 16

Figure 6. Comparisons between PSNR and the number of smooth blocks for 200 images.

4.3. Detectability Comparisons with Prior Works
This section shows the detectability comparisons of [25–27] and the proposed

method. In this experiment, the marked compressed codes of Sailboat are tampered with
by adding a bird. Figure 7a,b show the tampered image and the region of tamper, while
Figure 7c–f present the detection results of [25–27] and the proposed method. The results
show all methods can achieve a satisfactory detection result.

(a) (b) (c)

(d) (e) (f)

Figure 7. The tampered and detection results of [25–27] and the proposed method. (a) The tampered
image; (b) The tampered region; (c) Detection result of [25]; (d) Detection result of [26]; (e) Detection
result of [27]; (f) Detection result of the proposed method.

Different metrics are used to measure the detection results of Figure 7, as shown in
Table 4. The number of tampered pixels (NTB) in Figure 7a is 19,712, and the tampering
rate is 19712 (512 × 512) ⁄ = 7.52%, where. True positive (TP) represents the number of

Figure 7. The tampered and detection results of [25–27] and the proposed method. (a) The tampered
image; (b) The tampered region; (c) Detection result of [25]; (d) Detection result of [26]; (e) Detection
result of [27]; (f) Detection result of the proposed method.

A good detection method should be able to detect any kind of tampering. The fol-
lowing experiments are performed with some special tampering to further compare the
detectability of [25–27] and the proposed method. The special tampering consisted of the
marked codes of Peppers by adding bananas, orange and watermelon, and Figure 8a,b present

the tampered image and regions. Let {âi, b̂i, B̂i}
N−1
i=0 be the marked codes of Peppers.

Suppose {aB
i , bB

i , BB
i }

NB−1
i=0 , {aO

i , bO
i , BO

i }
NO−1
i=0 and {aW

i , bW
i , BW

i }
NW−1
i=0 are the codes of the

bananas, orange and watermelon, and NB, NO and NW represent the number of blocks of

these images, respectively. For tampering with bananas, codes {aB
i , bB

i , BB
i }

NB−1
i=0 are used to

replace {âi, b̂i, B̂i}
NB−1
i=0 . Then, from {âi, b̂i, B̂i}

N−1
i=0 , find the codes {âB

i , b̂B
i , B̂B

i }
NB−1
i=0 which

are the closest to {aB
i , bB

i , BB
i }

NB−1
i=0 , and the found codes are used to replace {aB

i , bB
i , BB

i }
NB−1
i=0 .

For orange’s tampering, the codes {aO
i , bO

i , BO
i }

NO−1
i=0 are used to replace {âi, b̂i, B̂i}

NO−1
i=0 .

Then, the pixel pair (
.
aO

i ,
.
b

O
i) that satisfy (14× .

aO
i +

.
b

O
i) mod 64 = (14× âi + b̂i) mod 64

and has the minimum distance to (aO
i , bO

i) is found. Finally, we use (
.
aO

i ,
.
b

O
i) to replace

(aO
i , bO

i) for 0 ≤ i ≤ NO − 1. To achieve the tampering of watermelon, the 5 MSBs of

{aW
i , bW

i }
NW−1
i=0 are use to replace that of {âi, b̂i}

NW−1
i=0 .

Figure 9 shows the refined detection results of [25–27] and the proposed method.
Figure 9a–c show that [25–27] do not detect the tampering of bananas, orange and water-
melon, respectively. This is because the generation of authentication codes of [25–27] is
independent of the protected contents, e.g., position information and MSBs of quantized
values. However, the proposed method can detect these tampering, as shown in Figure 9d,
demonstrating the superiority of our method against other works.

Appl. Sci. 2023, 13, 1402 14 of 16

Appl. Sci. 2023, 13, 1402 13 of 16

tampered pixels detected as tampered ones, while false negative (FN) is the number of
tampered pixels incorrectly detected as untampered ones. The refined detection rate is
calculated by TP (NTB)⁄ . In all methods, the length of authentication codes embedded in
each block is 6. Therefore, the collision probability is 1 2⁄ = 1.56%, i.e., the coarse detec-
tion rate is as high as 100% − 1.56% = 98.44%. The table shows that the refined detection
rates of [25–27] and the proposed method are up to 99%, which are better than the coarse
detection rates and meet the theoretical values.

Table 4. Detectability comparisons using different metrics.

Method [25] [26] [27] Proposed
Number of tampered blocks (NTB) 19,712

Tampering rate 7.52%
True positive (TP) 19,680 19,696 19,696 19,712

False negative (FN) 32 16 16 0
The refined detection rate 99.83% 99.91% 99.91% 100%

A good detection method should be able to detect any kind of tampering. The fol-
lowing experiments are performed with some special tampering to further compare the
detectability of [25–27] and the proposed method. The special tampering consisted of the
marked codes of Peppers by adding bananas, orange and watermelon, and Figure 8a,b
present the tampered image and regions. Let 𝑎 , 𝑏 , 𝐵 be the marked codes of Pep-

pers. Suppose 𝑎 , 𝑏 , 𝐵 , 𝑎 , 𝑏 , 𝐵 and 𝑎 , 𝑏 , 𝐵 are the codes of
the bananas, orange and watermelon, and 𝑁 , 𝑁 and 𝑁 represent the number of

blocks of these images, respectively. For tampering with bananas, codes 𝑎 , 𝑏 , 𝐵

are used to replace 𝑎 , 𝑏 , 𝐵 . Then, from 𝑎 , 𝑏 , 𝐵 , find the codes 𝑎 , 𝑏 , 𝐵 which are the closest to 𝑎 , 𝑏 , 𝐵 , and the found codes are used to

replace 𝑎 , 𝑏 , 𝐵 . For orange’s tampering, the codes 𝑎 , 𝑏 , 𝐵 are used to

replace 𝑎 , 𝑏 , 𝐵 . Then, the pixel pair 𝑎 , 𝑏 that satisfy 14 × 𝑎 + 𝑏 mod 64 = 14 × 𝑎 + 𝑏 mod 64 and has the minimum distance to 𝑎 , 𝑏 is found.
Finally, we use 𝑎 , 𝑏 to replace 𝑎 , 𝑏 for 0 𝑖 𝑁 − 1. To achieve the tamper-

ing of watermelon, the 5 MSBs of 𝑎 , 𝑏 are use to replace that of 𝑎 , 𝑏 .

(a) (b)

Figure 8. The tampering of Peppers image. (a) The tampered image; (b) The tampered regions.

Figure 9 shows the refined detection results of [25–27] and the proposed method.
Figure 9a–c show that [25–27] do not detect the tampering of bananas, orange and water-
melon, respectively. This is because the generation of authentication codes of [25–27] is

Figure 8. The tampering of Peppers image. (a) The tampered image; (b) The tampered regions.

Appl. Sci. 2023, 13, 1402 14 of 16

independent of the protected contents, e.g., position information and MSBs of quantized
values. However, the proposed method can detect these tampering, as shown in Figure
9d, demonstrating the superiority of our method against other works.

(a) (b)

(c) (d)

Figure 9. Detectability comparisons between [25–27] and the proposed method. (a) Detection result
of [25]; (b) Detection result of [26]; (c) Detection result of [27]; (d) Detection result of the proposed
method.

The components for generating authentication codes, embedding techniques and de-
tectability of methods [25–27] and the proposed method are summarized in Table 5. Fur-
thermore, the performance in recovery domain for methods [20,21] are also compared.
Comparisons are made between the various detection methods for “Detection of bana-
nas”, “Detection of orange” and “Detection of watermelon” with tampering collages of
banana, orange and watermelon, respectively. The table shows that methods [20,25–27]
cannot detect all these types of tampering. The reason is that the components used for
generating authentication codes are not included in all to-be-protected contents. In con-
trast, method [20] and the proposed method use contents that need to be protected to
generate authentication codes, and thus they are able to detect these tampering.

Figure 9. Detectability comparisons between [25–27] and the proposed method. (a) Detection
result of [25]; (b) Detection result of [26]; (c) Detection result of [27]; (d) Detection result of the
proposed method.

The components for generating authentication codes, embedding techniques and
detectability of methods [25–27] and the proposed method are summarized in Table 5.
Furthermore, the performance in recovery domain for methods [20,21] are also compared.
Comparisons are made between the various detection methods for “Detection of bananas”,
“Detection of orange” and “Detection of watermelon” with tampering collages of banana,
orange and watermelon, respectively. The table shows that methods [20,25–27] cannot
detect all these types of tampering. The reason is that the components used for gener-
ating authentication codes are not included in all to-be-protected contents. In contrast,

Appl. Sci. 2023, 13, 1402 15 of 16

method [20] and the proposed method use contents that need to be protected to generate
authentication codes, and thus they are able to detect these tampering.

Table 5. Comparisons between prior works and the proposed method.

Method
Components for

Generating
Authentication Codes

Embedding
Techniques

Detection
of Bananas

Detection
of Orange

Detection of
Watermelon

[20] Bitmaps and position APPM Yes No Yes

[21] Recovery codes
and position Turtle Shell Yes Yes Yes

[25] MSBs of quantized
values and bitmaps LSB No Yes Yes

[26] Bitmaps and position APPM Yes No Yes

[27] Bitmaps and position Matrix
encoding Yes Yes No

Proposed quantized values,
bitmaps and position

APPM and
matrix

encoding
Yes Yes Yes

5. Conclusions

In this paper, we proposed an efficient authentication method with a high image
quality for AMBTC images. Based on the smoothness of blocks, blocks are classified into
smooth and complex ones. To enhance the security, to-be-protected contents including
position information, bitmaps and quantized values are employed to generate the authen-
tication codes. Moreover, a key is added to construct the reference table used in APPM
to further protect the authentication codes. According to the smoothness of blocks, the
authentication codes are embedded into the bitmap using matrix encoding for smooth
block and in the quantized values using APPM for complex blocks. Experimental results
show that in comparisons to prior works, the proposed method achieves a better detection
results and higher image quality.

Author Contributions: X.Z., J.C. and W.H. contributed to the conceptualization, methodology, and
writing of this paper. Z.-F.L. and G.Y. conceived the simulation setup, formal analysis and conducted
the investigation. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jasra, B.; Moon, A.H. Color image encryption and authentication using dynamic DNA encoding and hyper chaotic system. Expert

Syst. Appl. 2022, 206, 117861. [CrossRef]
2. Hossain, M.S.; Islam, M.T.; Akhtar, Z. Incorporating deep learning into capacitive images for smartphone user authentication.

J. Inf. Secur. Appl. 2022, 69, 103290. [CrossRef]
3. Qin, C.; Ji, P.; Zhang, X.; Dong, J.; Wang, J. Fragile image watermarking with pixel-wise recovery based on overlapping embedding

strategy. Signal Process. 2017, 138, 280–293. [CrossRef]
4. You, C.; Zheng, H.; Guo, Z.; Wang, T.; Wu, X. Tampering detection and localization base on sample guidance and individual

camera device convolutional neural network features. Expert Syst. 2022, 40, e13102. [CrossRef]
5. Hussan, M.; Parah, S.A.; Jan, A.; Qureshi, G.J. Hash-based image watermarking technique for tamper detection and localization.

Health Technol. 2022, 12, 385–400. [CrossRef]
6. Zhao, D.; Tian, X. A Multiscale Fusion Lightweight Image-Splicing Tamper-Detection Model. Electronics 2022, 11, 2621. [CrossRef]
7. Hussan, M.; Parah, S.A.; Jan, A.; Qureshi, G.J. Self-embedding framework for tamper detection and restoration of color images.

Multimed. Tools Appl. 2022, 81, 18563–18594. [CrossRef]

http://doi.org/10.1016/j.eswa.2022.117861
http://doi.org/10.1016/j.jisa.2022.103290
http://doi.org/10.1016/j.sigpro.2017.03.033
http://doi.org/10.1111/exsy.13102
http://doi.org/10.1007/s12553-021-00632-9
http://doi.org/10.3390/electronics11162621
http://doi.org/10.1007/s11042-022-12545-4

Appl. Sci. 2023, 13, 1402 16 of 16

8. Zhou, X.; Hong, W.; Weng, S.; Chen, T.S.; Chen, J. Reversible and recoverable authentication method for demosaiced images
using adaptive coding technique. J. Inf. Secur. Appl. 2020, 55, 102629. [CrossRef]

9. Wang, Q.; Xiong, D.; Alfalou, A.; Brosseau, C. Optical image authentication scheme using dual polarization decoding configuration.
Opt. Lasers Eng. 2019, 112, 151–161. [CrossRef]

10. Molina, J.; Ponomaryov, V.; Reyes, R.; Sadovnychiy, S.; Cruz, C. Watermarking framework for authentication and self-recovery of
tampered colour images. IEEE Lat. Am. Trans. 2020, 18, 631–638. [CrossRef]

11. Wu, X.; Yang, C. Invertible secret image sharing with steganography and authentication for AMBTC compressed images. Signal
Process. Image 2019, 78, 437–447. [CrossRef]

12. Zhang, X.; Wang, S.; Qian, Z.; Feng, G. Reversible fragile watermarking for locating tampered blocks in JPEG images. Signal
Process. 2010, 90, 3026–3036. [CrossRef]

13. Hong, W.; Wu, J.; Lou, D.C.; Zhou, X.; Chen, J. An AMBTC authentication scheme with recoverability using matrix encoding and
side match. IEEE Access 2021, 9, 133746–133761. [CrossRef]

14. Zhang, T.; Weng, S.; Wu, Z.; Lin, J.; Hong, W. Adaptive encoding based lossless data hiding method for VQ compressed images
using tabu search. Inform. Sci. 2022, 602, 128–142. [CrossRef]

15. Pan, Z.; Wang, L. Novel reversible data hiding scheme for two-stage VQ compressed images based on search-order coding. J. Vis.
Commun. Image R. 2018, 50, 186–198. [CrossRef]

16. Li, Y.; Chang, C.C.; Mingxing, H. High capacity reversible data hiding for VQ-compressed images based on difference transforma-
tion and mapping technique. IEEE Access 2020, 8, 32226–32245. [CrossRef]

17. Battiato, S.; Giudice, O.; Guarnera, F.; Puglisi, G. CNN-based first quantization estimation of double compressed JPEG images.
J. Vis. Commun. Image R. 2022, 89, 103635. [CrossRef]

18. Yao, H.; Mao, F.; Qin, C.; Tang, Z. Dual-JPEG-image reversible data hiding. Inform. Sci. 2021, 563, 130–149. [CrossRef]
19. Cogranne, R.; Giboulot, Q.; Bas, P. Efficient steganography in JPEG images by minimizing performance of optimal detector. IEEE

Trans. Inf. Foren. Sec. 2022, 17, 1328–1343. [CrossRef]
20. Chen, T.S.; Zhou, X.; Chen, R.; Hong, W.; Chen, K. A high fidelity authentication scheme for AMBTC compressed image using

reference table encoding. Mathematics 2021, 9, 2610. [CrossRef]
21. Lin, C.C.; Liu, X.; Zhou, J.; Tang, C.Y. An image authentication and recovery scheme based on turtle Shell algorithm and

AMBTC-compression. Multimed. Tools Appl. 2022, 81, 39431–39452. [CrossRef]
22. Hu, Y.C.; Lo, C.C.; Chen, W.L.; Wen, C.H. Joint image coding and image authentication based on absolute moment block

truncation coding. J. Electron. Imaging 2013, 22, 013012. [CrossRef]
23. Li, W.; Lin, C.C.; Pan, J.S. Novel image authentication scheme with fine image quality for BTC-based compressed images.

Multimed. Tools Appl. 2016, 75, 4771–4793. [CrossRef]
24. Chen, T.H.; Chang, T.C. On the security of a BTC-based-compression image authentication scheme. Multimed. Tools Appl. 2018, 77,

12979–12989. [CrossRef]
25. Hong, W.; Zhou, X.Y.; Lou, D.C.; Huang, X.Q.; Peng, C. Detectability improved tamper detection scheme for absolute moment

block truncation coding compressed images. Symmetry 2018, 10, 318. [CrossRef]
26. Hong, W.; Chen, M.J.; Chen, T.S.; Huang, C.C. An efficient authentication method for AMBTC compressed images using adaptive

pixel pair matching. Multimed. Tools Appl. 2018, 77, 4677–4695. [CrossRef]
27. Su, G.D.; Chang, C.C.; Lin, C.C. High-precision authentication scheme based on matrix encoding for AMBTC-compressed images.

Symmetry 2019, 11, 996. [CrossRef]
28. Lema, M.; Mitchell, O. Absolute moment block truncation coding and its application to color image. IEEE Trans. Commun. 1984,

32, 1148–1157. [CrossRef]
29. Hong, W.; Chen, T.S. A novel data embedding method using adaptive pixel pair matching. IEEE Trans. Inf. Foren. Sec. 2012, 7,

176–184. [CrossRef]
30. Liu, S.; Fu, Z.; Yu, B. Rich QR codes with three-layer information using Hamming code. IEEE Access 2019, 7, 78640–78651.

[CrossRef]
31. Hamming, R.W. Error detecting and error correcting codes. Bell Labs Tech. J. 1950, 29, 147–160. [CrossRef]
32. Menezes, A.J.; Van Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography; CRC Press: Boca Raton, FL, USA, 1996.
33. The USC-SIPI Image Database. Available online: http://sipi.usc.edu/database/ (accessed on 10 January 2023).
34. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE

Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]
35. BOWS-2 Image Database. Available online: http://bows2.ec-lille.fr/ (accessed on 10 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.jisa.2020.102629
http://doi.org/10.1016/j.optlaseng.2018.09.008
http://doi.org/10.1109/TLA.2020.9082736
http://doi.org/10.1016/j.image.2019.08.007
http://doi.org/10.1016/j.sigpro.2010.04.027
http://doi.org/10.1109/ACCESS.2021.3114495
http://doi.org/10.1016/j.ins.2022.04.011
http://doi.org/10.1016/j.jvcir.2017.11.020
http://doi.org/10.1109/ACCESS.2020.2973179
http://doi.org/10.1016/j.jvcir.2022.103635
http://doi.org/10.1016/j.ins.2021.02.015
http://doi.org/10.1109/TIFS.2021.3111713
http://doi.org/10.3390/math9202610
http://doi.org/10.1007/s11042-022-12995-w
http://doi.org/10.1117/1.JEI.22.1.013012
http://doi.org/10.1007/s11042-015-2502-z
http://doi.org/10.1007/s11042-017-4927-z
http://doi.org/10.3390/sym10080318
http://doi.org/10.1007/s11042-017-4899-z
http://doi.org/10.3390/sym11080996
http://doi.org/10.1109/TCOM.1984.1095973
http://doi.org/10.1109/TIFS.2011.2155062
http://doi.org/10.1109/ACCESS.2019.2922259
http://doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://sipi.usc.edu/database/
http://doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://bows2.ec-lille.fr/

	Introduction
	Related Works
	AMBTC Compression Technique
	The Adaptive Pixel Pair Matching (APPM) Technique
	The Matrix Encoding

	The Proposed Method
	The Embedment Algorithm of Smooth Blocks
	The Embedment Algorithm of Complex Blocks
	Embedding of Smoothness-Changed Blocks
	The Embedding Procedures
	The Authentication Procedures

	Experimental Results
	The Performance of the Proposed Method
	PSNR Comparisons with Prior Works
	Detectability Comparisons with Prior Works

	Conclusions
	References

