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Abstract: The development of control technology on wind turbine application robots has played an
integral role in facilitating the digitization of inspection and maintenance in the wind energy industry.
This paper presents a wind-turbine-climbing robot that determines the service lifespan of the wind
turbine components subject to its payload capacity. The model has four rubber wheels, as the driving
mechanism for its locomotion is being supported by a Bowden cable as a winding mechanism for
its adhesion. The design further incorporates an Arduino microcontroller, distance sensors, motors,
and a step motor to form its electromechanical structure. The overall capability of the robot has been
analyzed through its kinematics and dynamics. Practical indoor experiments using a wind turbine
tower mockup have been conducted for the validation of the various speeds and payload capacity of
the prototype. The results indicate the effectiveness of its driving and winding mechanism to climb at
the various speeds and with or without a payload. The advantage of the operations of its mechanism
conformed with the wind turbine application robots.

Keywords: wind-turbine-tower-climbing robots; locomotion; adhesion; winding mechanism; driving
mechanism

1. Introduction

The advancement of control technologies and the intelligent research on climbing
robots [1] receive extensive interest in the academe–industry community to promote scien-
tific discipline, research innovation and technological developments in the field of wind
turbine application robots [2–4]. Wind-turbine-climbing robots facilitate the digitization of
inspection and maintenance operation to prolong the service lifespan and to avoid unex-
pected external failures of the wind turbine parts [5]. This includes corrosion, cracks, paint
peel-off, material degradation, lightning strike damage and other physical defects [3,6], as
listed in Table 1. These conditions seriously damage the physical components of the wind
turbine, leading to possible major issues, or even the worst-case scenarios. The corrosion
of wind turbines is a vexed issue in its steel structure, which may cause dependency on
different characteristics attacked by high or unwanted levels of humidity, on the inside and
outside of the turbine system [7]. Wind turbine tower cracks could result in catastrophic
failures due to extreme loads on the tower, improper manufacturing, poor material and
structural design and excessive environmental factors [8,9]. Such cracks were detected
in its circumferential welded joints between the lower rings and flanges connecting the
tower and its base foundations [10]. The peeling of paints, caused by wind, raindrops,
airborne sand, temperature changes, and acidity from bug carcasses [11], could damage the
adhesive layer and the bond between the skin layer [12] and the surface of the wind turbine
parts. The most prevalent material degradation is fatigue, due in part to the very large
number of cycles and types of internal interfaces in the composite material components
that are potential weak links. Offshore turbines, with their greater exposure to higher
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levels of moisture and salt, can suffer from material degradation [13]. Lightning strike is
a major challenge due to wind turbines being tall structures, especially when placed in
flat planes [14]. Two types of lightning may occur: (1) a downward initiated lightning,
which starts in a thunderstorm and propagates downward, attaching to the turbine tip, and
(2) an upward lightning, which happens when the turbine is very tall and itself starts to
generate lightning. Other surface defects are caused by erosion (rain erosion, sand, and
hail) and small object impacts [12]. Overall, these external defects severely shorten the
wind turbines’ service life and restrict the cost per MW. Thus, this study aims to resolve the
major issues related to the short lifespan of the wind turbines components and to improve
the overall efficiency of wind turbine components, optimize manpower, identify issues
early on and schedule maintenance to prevent unnecessary costs and catastrophic external
wind turbine failures in the future through the benefits of a climbing robot. This suggests
that the study of the wind-turbine-climbing robots to carry out surface maintenance in
the different wind turbine components is extremely necessary and is deemed to become a
common activity in the succeeding years, as the number of installed wind turbines is rising
globally, necessitating further research for this topic.

Table 1. Types of physical defects occurring in the structure of wind turbine.

WT Physical Defects Description References

Corrosion A different characteristics attack by a high or unwanted levels of
humidity inside and outside the wind turbine system. [7]

Cracks It is due to extreme loads on the tower, improper manufacturing, poor
material and structural design and excessive environmental factors. [8,9]

Paint peel-off The paint peel-off caused by the elements of wind, raindrops,
airborne sand, temperature changes, and acidy from bug carcasses. [11]

Material Degradation

It is due in part to the very large number of cycles and types of
internal interfaces in the composite material components that are

potential weak links; with their greater exposure to higher levels of
moisture and salt.

[13]

Lightning Strike It is due to tall structures that are attractive to lightning, especially
when located in flat planes. [14]

Other surface defects This is caused by erosion (rain erosion, sand, and hail), or small
object impacts. [12]

Studies on wind-turbine-climbing robots mostly focused on two important mecha-
nisms: the adhesion and locomotion [15–17]. Adhesion is the mechanism that makes firm
contact to the surface/object without slipping. Various adhesion mechanisms have been
identified in the application of wind turbines with its prototype models. Among these ad-
hesion mechanisms are magnetic adhesion [2,17,18], vacuum/air suction adhesion [19,20],
ropes/rubber bands traction [21], and mechanical-spring traction [22,23]. Locomotion is the
mechanism that enables the robot to move unbounded throughout its environments. Sev-
eral types in terms of locomotion mechanism are being classified on wind-turbine-climbing
robots, such as wheeled [14,23], tracked [2,15], and legged [19]. Depending on the features
of structural components, robots have a variety of climbing mechanisms. Some of the re-
cent studies on wind-turbine-climbing robots’ application [2,18–21,23–25] use experimental
prototypes. One of the applications of a magnetic climbing robot is for the inspection and
maintenance of a wind tower, using magnets to keep it in contact with the tower [2]. A
two-footed climbing robot that uses vacuum suckers was used to adhere to the rotor blade
or to the tower [20], the Lego-based robot for the inspection of wind turbine parts with
diagonal ropes and rubber bands was employed for the connection to the tower [21], and
the climbing ring robot for offshore wind turbines can climb around cylindrical towers [23].
After reviewing the wind-turbine-climbing robot with its two important mechanisms, the
functionality of its locomotion and adhesion, this study proposed four rubber wheels that
perform locomotion and a winding mechanism that provides enough adhesion to the wind
turbine tower.
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The paper aims to develop a wind-turbine-tower-climbing robot with a high payload
capacity to install additional equipment and to withstand the impact of wind disturbances.
The locomotion mechanism is a wheel-based method for a quicker and more robust climb.
The four rubber wheels create enough friction as it rolls over the tower’s surface, preventing
it from slipping. By combining rubber wheels as its locomotion mechanism and a winding
mechanism through a Bowden cable force, one can maintain its position on the tower
surface without it slipping to the tower base and increase the contact on the tower surface
to achieve a high payload capacity. Concerning the robot carrying load capability, an
additional component in the body frame through the aid of the caster wheel was added
to optimize its stability for carrying ancillary equipment to perform specific application
tasks of wind turbine parts and wind disturbances. With these goals, the carrying load
was roughly more than 50% of the robot’s weight that was protected from breaking or
slipping. This climbing robot can perform a straight up–down movement on the tower
surface. The other unique characteristic of the proposed design was that it can achieve
wind gust disturbance’s ability and innovative structure to estimate the robot position in
the manner to maximize its capacity for climbing, which were the main drawbacks of the
existing climbing robots.

This paper was organized as follows: Section 2 presents a description of the wind-
turbine-tower-climbing robot, kinematic and dynamic equation of motion, control system
and experimental set-up. Section 3 was devoted to the experimental results performed of
the various speeds and subject to payload capacity and the indoor testing conditions, and
Section 4 provided the conclusions and future works.

2. Materials and Methods

The Materials and Methods section highlights the wind-turbine-tower-climbing robot,
with a specific description of parts, as well as a kinematic and dynamic equation of motion.

2.1. Climbing Robot Description

The design of the wind-turbine-tower-climbing robot is shown in Figure 1 with the
following specific parts: the Power Supply, Twin Pulley, Step Motor—42HS02, Body
Frame, Bowden Cable, Arduino Microcontroller, Electronic Module—Relay, Distance Sen-
sor, Motors—CHP-36GP-Bl3650, Rubber Wheels and Caster Wheel. The current structure
of wind-turbine-tower-climbing robot consists of three main parts: the driving mechanism,
winding mechanism, and body frame. The driving mechanism of the robot was composed
of four motorized rubber wheels, which combined the advantages of the wheel structure
aligned to the robot’s body frame. The robot’s mobility was being driven by the high torque
and high power of the DC motors with 12 V supply. The winding mechanism used a step
motor with fabricated twin pulley and Bowden cable to provide the tension force that held
the climbing robot to the tower surface. This mechanism adapted to the different diameters
of the tower mock-up and holds slow speed adjustments of cable force onto the tower
surface without falling to the ground. Through the work of the ultrasonic distance sensor
attached to the robot’s body frame, the cable tension force acted as an adhesion mechanism
dependent on the feedback signal given by sensor to maintain a precise distance of cable
to wind or unwind. The Arduino MEGA 2560, an embedded microprocessor module,
integrated all the controls for driving mechanism, winding mechanism, and other feed-
back signals to facilitate movement in a straight up/down motion into the wind turbine
tower mock-up. With this new transformative design, the robot had the potential to adapt
to the wind turbine tower diameter structures and provide greater mobility to examine
physical defects. Once the climbing robot was placed on the tower mock-up, the body
frame was locked by the cable tension force as an adhesion mechanism of the robot. The
body frame consisted of two parts, both having light structure and being easy to install and
transport. The climbing robot had a caster wheel to increase the stability of the body frame
position, causing the four rubber wheels to come in contact with the tower upon climbing.
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It also helped the robot to perform effectivity both in driving and winding mechanism. All
electronic accessories attached to its body frame are excluded from its payload capacity.
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(8) Motors—CHP-36GP-Bl3650; (9) Rubber Wheels; and (10) Caster Wheel.

2.2. Kinematic and Dynamic Equation of Motion

In this context, the details of the wind-turbine-tower-climbing robot are depicted in a
top-view position in Figure 2 for easy reference and detailed identification of robot tagging,
where W1 is wheel 1, W2 is wheel 2, W3 is wheel 3, W4 is wheel 4, CW1 is caster wheel 1,
CW2 is caster wheel 2, BF1 is body frame 1 with winding mechanism and BF2 is body
frame 2 without winding mechanism. The robot’s model is simplified in a 2D model in the
Z-X axis, as depicted in Figure 3—the model of the wind-turbine-tower-climbing robot’s
wheels—in which the Z axis refers to the straight up–down motion of the robot; X axis
is the tension direction of the cable; ∅1 and ∅3 are an angle of line from center point of
the wheel to the top wheel contact point to the tower surface; ∅2 and ∅4 are an angle of
line from the center of the caster wheel to the center of the wheel with respect to Z axis;
∅5 is an angle from the origin center of mass with respect to the X axis; G is the center of
the robot’s body frame; G′ is the robot’s center of mass; A, B, C and D are the center point
of the each wheel; E and F are the center point of the caster wheel; O1, O2, O3 and O4 are
the topmost contact point of the wheel. Other kinematic analysis could be calculated from
these parameters, provided that the four wheels were in uniform rotation during the wind
turbine tower climbing. Thus, the position, speed, and acceleration to the center of the
tower diameter of the robot’s moving wheel, the robot’s center of mass and center of mass
of the driving wheel and caster wheel can be determined.
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2.2.1. Kinematic Analysis for Wheel 1 and Caster Wheel 1
Position of W1 and CW1

The positions of wheel 1 and caster wheel 1 are centroid coordinates of the driving
wheel that can be achieved by Equations (1)–(4):

ZW1 = LO1 A cos∅1 (1)

XW1 = LO1 Asin ∅1 (2)

ZCW1 = ZW1 + LAE cos ∅2 = LO1 A cos ∅1 + LAE cos ∅2 (3)

XCW1 = XW1 + LAE sin ∅2 = LO1 A sin ∅1 + LAE sin ∅2 (4)

Speed of W1 and CW1

By calculating the first-order derivative of Equations (1)–(4), the centroid speed of
wheel 1 and caster wheel 1 can be expressed as follows:

.
ZW1 = −

.
∅1LO1 A sin ∅1 (5)

.
XW1 =

.
∅1LO1 A cos ∅1 (6)

.
ZCW1 =

.
ZW1 −

.
∅2LAE sin ∅2 = −

.
∅1LO1 A sin ∅1 −

.
∅2LAE sin ∅2 (7)

.
XCW1 =

.
XW1 +

.
∅2LAE cos ∅2 =

.
∅1LO1 A cos ∅1 +

.
∅2LAE cos ∅2 (8)

Acceleration of W1 and CW1

By calculating the second-order derivative of Equations (5)–(8), the centroid accelera-
tion of wheel 1 and caster wheel 1 can be expressed as follows:

..
ZW1 = −

.
∅1

2
LO1 A cos ∅1 (9)

..
XW1 = −

.
∅1

2
LO1 A sin ∅1 (10)

..
ZCW1 =

..
ZW1 − LAE

( .
∅2

2
cos ∅2

)
= −

.
∅1

2
LO1 A cos ∅1 − LAE

( .
∅2

2
cos ∅2

)
(11)

..
XCW1 =

..
XW1 − LAE

( .
∅2

2
sin ∅2

)
= −

.
∅1

2
LO1 A sin ∅1 − LAE

( .
∅2

2
sin ∅2

)
(12)

Equations (9)–(12) constitute the kinematic equation for the robot driving wheel and
caster wheel in climbing the wind turbine tower capability.
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2.2.2. Kinematic Analysis for Wheel 4 and Caster Wheel 2
Position of W4 and CW2

The position of wheel 4 and caster wheel 2 are centroid coordinate of the driving wheel
that can be achieved by Equations (13)–(16):

ZW4 = LO4D cos ∅3 (13)

XW4 = LO4D sin ∅3 (14)

ZCW2 = ZW4 + LDF cos ∅4 = LO4D cos ∅3 + LDF cos ∅4 (15)

XCW2 = XW4 + LDF sin ∅4 = LO4D sin ∅3 + LDF sin ∅4 (16)

Speed of W4 and CW2

By calculating the first-order derivative of Equations (13)–(16), the centroid speed of
wheel 4 and caster wheel 2 can be expressed as follows:

.
ZW4 = −

.
∅3LO4D sin ∅3 (17)

.
XW4 =

.
∅3LO4D cos ∅3 (18)

.
ZCW2 =

.
ZW4 −

.
∅4 LDF sin ∅4 = −

.
∅3LO4D sin ∅3 −

.
∅4 LDF sin ∅4 (19)

.
XCW2 =

.
XW4 +

.
∅4 LDF cos ∅4 =

.
∅3LO4D cos ∅3 +

.
∅4 LDF cos ∅4 (20)

Acceleration of W4 and CW2

By calculating the second-order derivative of Equations (17)–(20), the centroid acceler-
ation of wheel 4 and caster wheel 2 can be expressed as follows:

..
ZW4 = −

.
∅3

2
LO4D cos ∅3 (21)

..
XW4 = −

.
∅3

2
LO4D sin ∅3 (22)

..
ZCW2 =

..
ZW4 − LDF

( .
∅4

2
cos ∅4

)
= −

.
∅3

2
LO4D cos ∅3 − LDF

( .
∅4

2
cos ∅4

)
(23)

..
XCW2 =

..
XW4 − LDF

( .
∅4

2
sin ∅4

)
= −

.
∅3

2
LO4D sin ∅3 − LDF

( .
∅4

2
sin ∅4

)
(24)

Equations (21)–(24) constitute the kinematic equation for the robot driving wheel and
caster wheel in climbing the wind turbine tower capability. The analysis of the W1 and
CW1 and W4 and CW2 are relatively the same to W2 and CW1 and W3 and CW2.

2.2.3. Analysis of the Robot Body

Using the same method, the coordinate, speed, and acceleration of the center of mass
(G′) of the robot can be obtained using Equations (25)–(30):

Position

ZG = LO1G′ sin ∅5 (25)

XG = LO1G′ cos ∅5 (26)

Speed
.
ZG =

.
∅5LO1G′ cos ∅5 (27)

.
XG = −

.
∅5LO1G′ sin ∅5 (28)

Acceleration
..
ZG = −

.
∅5

2
LO1G′ sin ∅5 (29)

..
XG = −

.
∅5

2
LO1G′ cos ∅5 (30)
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By using these equations, the kinematic parameters of the wind-turbine-tower-climbing
robot can be precisely determined.

2.2.4. Dynamic Analysis of Each Robot Driving Wheel

The dynamic static force analysis of the robot’s wheel for a typical state of motion in
the wind turbine tower surface is analyzed. The analysis process of wheel 1 is similar to
that of wheel 3, as is the case with wheel 2 and wheel 4, respectively. Through this process,
the forces of the wheel that constitute in all axes are being shown in in the following:

Forces of Wheel 1

From the wheel 1 perspective, as shown in Figure 4a top view, the forces are the Fn1
normal force exerted of W1; F f 1 is the frictional force of W1; Ft is the force from the Bowden
cable to attain the ideal traction force; α1 is an angle of the normal force with respect to
X-axis; α2 is an angle of the frictional force with respect to X-axis; Figure 4b shows a side
view, where β is the tower inclination angle; τ is the torque required from the DC motor;
mg is the center mass of gravity and r1 is the radius of the robot wheel as it rolls to the
tower surface. The mechanism can be regarded as being in equilibrium state; thus, the
equation for each axis can be obtained from Equations (31)–(36).
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x (32)

At Y-axis:
∑ Fy = 0 (33)

Fn1 sin α1 = F f 1 sin α2 (34)

At Z-axis:
∑ Fz = m

..
z (35)

Fn1 sin β− F f 11 cos β−m1g + FD = m
..
z (36)

where FD is the force from the axel, F f 11 = µFn1 and m1 = MR1/2; MR1 is the total mass of
the body frame with winding.
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Forces of Wheel 2 

From the wheel 2 perspective, as shown in Figure 5a top view, the forces are the F𝑛2 

normal force exerted of W2; F𝑓2  is the frictional force of W2; F𝑡  is the force from the 

Bowden cable to attain the ideal traction force; 𝛼1 is an angle of the normal force with 

respect to X-axis; 𝛼2 is an angle of the frictional force with respect to X-axis; Figure 5b 

shows side view, where 𝛽 is the tower inclination angle; 𝜏 is the torque required from 

the DC motor; mg is the center mass of gravity and r2 is the radius of the robot wheel as 

it rolls to the tower surface. The mechanism can be regarded as in equilibrium state; thus, 

the equation for each axis can be obtained from Equations (38)–(43).  

At X-axis: 

∑ F𝑥  = 𝑚𝑥̈ (38) 

F𝑛2 cos 𝛼1 + F𝑓2 cos 𝛼2  = 2F𝑡 + 𝑚𝑥̈ (39) 

At Y-axis: 

moment at W1 :

The moment at wheel 1 rotates counterclockwise to the tower surface; its contact point
gives Equation (37). (

F f 11 cos β
)

r1 + τ =
J

..
x

r1
(37)
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Forces of Wheel 2

From the wheel 2 perspective, as shown in Figure 5a top view, the forces are the Fn2
normal force exerted of W2; F f 2 is the frictional force of W2; Ft is the force from the Bowden
cable to attain the ideal traction force; α1 is an angle of the normal force with respect to
X-axis; α2 is an angle of the frictional force with respect to X-axis; Figure 5b shows side
view, where β is the tower inclination angle; τ is the torque required from the DC motor;
mg is the center mass of gravity and r2 is the radius of the robot wheel as it rolls to the
tower surface. The mechanism can be regarded as in equilibrium state; thus, the equation
for each axis can be obtained from Equations (38)–(43).
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Figure 5. Wheel 2: (a) top view and (b) side view.

At X-axis:
∑ Fx = m

..
x (38)

Fn2 cos α1 + F f 2 cos α2 = 2Ft + m
..
x (39)

At Y-axis:
∑ Fy = 0 (40)

Fn2 sin α1 = F f 2 sin α2 (41)

At Z-axis:
∑ Fz = m

..
z (42)

Fn2 sin β− F f 21 cos β−m2g + FD = m
..
z (43)

where FD is the force from the axel, F f 21 = µFn2 and m2 = MR1/2; MR1 is the total mass of
the body frame with winding.
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the F𝑛𝑐𝑤1 normal forces exerted of CW1; F𝐵𝐹1 is the force of the body frame 1 weight 
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the center mass of gravity and 𝛾 is an angle caused by the BF1 weight. The mechanism 

can be regarded as being in an equilibrium state; thus, the equation for each axis can be 

obtained from Equations (59)–(63). 

At X-axis: 

∑ F𝑥  = 𝑚𝑥̈ (59) 

2F𝑡 − F𝑛𝑐𝑤1 − F𝐵𝐹1 cos 𝛾 = 𝑚𝑥̈ (60) 

At Y-axis: 

∑ F𝑦  = 0 (61) 

At Z-axis: 

∑ F𝑧  =  𝑚𝑧̈ (62) 

F𝑛𝑐𝑤1 sin 𝛽 − F𝑓𝑐𝑤1 cos 𝛽 − 𝑚𝑐𝑤1𝑔 −F𝐵𝐹1 cos 𝛾 =   𝑚𝑧̈ (63) 

where F𝑓𝑐𝑤1 =  𝜇F𝑛𝑐𝑤1 

F𝐵𝐹1 = Force of Body Frame 1 with winding 

F𝐵𝐹2 = Force of Body Frame 2 without winding 

moment at W2 :

The moment at wheel 2 rotates clockwise to the tower surface; its contact point gives
Equation (44). (

F f 21 cos β
)

r1 + τ =
J

..
x

r2
(44)

Forces of Wheel 3

From the wheel 3 perspective, as shown in Figure 6a top view, the forces are the Fn3
normal force exerted of W3; F f 3 is the frictional force of W3; Ft is the force from the Bowden
cable to attain the ideal traction force; α1 is an angle of the normal force with respect to
X-axis; α2 is an angle of the frictional force with respect to X-axis; Figure 6b shows side
view, where β is the tower inclination angle; τ is the torque required from the DC motor;
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mg is the center mass of gravity and r3 is the radius of the robot wheel as it rolls to the
tower surface. The mechanism can be regarded as being in an equilibrium state; thus, the
equation for each axis can be obtained from Equations (45)–(50).
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At X-axis:
∑ Fx = m

..
x (45)

− Fn3 cos α1 − F f 3 cos α2 = −2Ft + m
..
x (46)

At Y-axis:
∑ Fy = 0 (47)

Fn3 sinα1 = F f 3 sinα2 (48)

At Z-axis:
∑ Fz = m

..
z (49)

Fn3 sin β− F f 31 cos β−m3g + FD = m
..
z (50)

where FD is the force from the axel, F f 31 = µFn3 and m3 = MR2/2; MR2 is the total mass of
the body frame without winding.
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Forces of Wheel 2 

From the wheel 2 perspective, as shown in Figure 5a top view, the forces are the F𝑛2 

normal force exerted of W2; F𝑓2  is the frictional force of W2; F𝑡  is the force from the 

Bowden cable to attain the ideal traction force; 𝛼1 is an angle of the normal force with 

respect to X-axis; 𝛼2 is an angle of the frictional force with respect to X-axis; Figure 5b 

shows side view, where 𝛽 is the tower inclination angle; 𝜏 is the torque required from 

the DC motor; mg is the center mass of gravity and r2 is the radius of the robot wheel as 

it rolls to the tower surface. The mechanism can be regarded as in equilibrium state; thus, 

the equation for each axis can be obtained from Equations (38)–(43).  

At X-axis: 

∑ F𝑥  = 𝑚𝑥̈ (38) 

F𝑛2 cos 𝛼1 + F𝑓2 cos 𝛼2  = 2F𝑡 + 𝑚𝑥̈ (39) 

At Y-axis: 

moment at W3 :

The moment at wheel 3 rotates counterclockwise to the tower surface; its contact point
gives Equation (51). (

F f 31 cos β
)

r3 + τ =
J

..
x

r3
(51)

Forces of Wheel 4

From the wheel 4 perspective, as shown in Figure 7a top view, the forces are the Fn4
normal force exerted of W4; F f 4 is the frictional force of W4; Ft is the force from the Bowden
cable to attain the ideal traction force; α1 is an angle of the normal force with respect to
X-axis; α2 is an angle of the frictional force with respect to X-axis; Figure 7b shows side
view, where β is the tower inclination angle; τ is the torque required from the DC motor;
mg is the center mass of gravity and r2 is the radius of the robot wheel as it rolls to the
tower surface. The mechanism can be regarded as being in an equilibrium state; thus, the
equation for each axis can be obtained from Equations (52)–(57).



Appl. Sci. 2023, 13, 1381 10 of 21

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 23 
 

F௡ସ sin 𝛽 − F௙ସଵ cos 𝛽 − 𝑚ସ𝑔 + F஽ =   𝑚𝑧ሷ (57) 

where F஽  is the force from the axel, F௙ସଵ =  𝜇F௡ସ  and 𝑚ସ =  𝑀ோଶ 2⁄  ; 𝑀ோଶ  is the total 
mass of the body frame without winding. ⤼ moment at W4:  

The moment at wheel 4 rotates clockwise to the tower surface; its contact point gives 
Equation (58). ൫F௙ସଵ cos 𝛽൯rସ + 𝜏 =   Jxሷrସ  (58)

 

  

(a) (b) 

Figure 7. Wheel 4: (a) top view and (b) side view. 

Forces on caster wheel 1 with winding 
From the caster wheel 1 perspective, as shown in Figure 8a top view, the forces are 

the F௡௖௪ଵ normal forces exerted of CW1; F஻ிଵ is the force of the body frame 1 weight 
exerted to the tower surface; F௧ is the force from the Bowden cable to attain the ideal 
tension force; Figure 8b shows side view, where 𝛽 is the tower inclination angle; mg is 
the center mass of gravity and 𝛾 is an angle caused by the BF1 weight. The mechanism 
can be regarded as being in an equilibrium state; thus, the equation for each axis can be 
obtained from Equations (59)–(63). 

At X-axis: ෍ F௫  = 𝑚𝑥ሷ  (59) 

2F௧ − F௡௖௪ଵ − F஻ிଵ cos 𝛾 = 𝑚𝑥ሷ  (60) 

At Y-axis: ෍ F௬  = 0 (61) 

At Z-axis: ෍ F௭  =  𝑚𝑧ሷ (62) 

F௡௖௪ଵ sin 𝛽 − F௙௖௪ଵ cos 𝛽 − 𝑚௖௪ଵ𝑔 −F஻ிଵ cos 𝛾 =   𝑚𝑧ሷ (63) 

where F௙௖௪ଵ =  𝜇F௡௖௪ଵ F஻ிଵ = Force of Body Frame 1 with winding F஻ிଶ = Force of Body Frame 2 without winding 

Figure 7. Wheel 4: (a) top view and (b) side view.

At X-axis:
∑ Fx = m

..
x (52)

− Fn4 cos α1 − F f 4 cos α2 = −2Ft + m
..
x (53)

At Y-axis:
∑ Fy = 0 (54)

Fn4 sin α1 = F f 4 sin α2 (55)

At Z-axis:
∑ Fz = m

..
z (56)

Fn4 sin β− F f 41 cos β−m4g + FD = m
..
z (57)

where FD is the force from the axel, F f 41 = µFn4 and m4 = MR2/2; MR2 is the total mass of
the body frame without winding.
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Forces on Caster Wheel 1 with Winding 

From the caster wheel 1 perspective, as shown in Figure 8a top view, the forces are 

the F𝑛𝑐𝑤1 normal forces exerted of CW1; F𝐵𝐹1 is the force of the body frame 1 weight 

exerted to the tower surface; F𝑡 is the force from the Bowden cable to attain the ideal 

tension force; Figure 8b shows side view, where 𝛽 is the tower inclination angle; mg is 

the center mass of gravity and 𝛾 is an angle caused by the BF1 weight. The mechanism 

can be regarded as being in an equilibrium state; thus, the equation for each axis can be 

obtained from Equations (59)–(63). 

At X-axis: 

∑ F𝑥  = 𝑚𝑥̈ (59) 

2F𝑡 − F𝑛𝑐𝑤1 − F𝐵𝐹1 cos 𝛾 = 𝑚𝑥̈ (60) 

At Y-axis: 

∑ F𝑦  = 0 (61) 

At Z-axis: 

∑ F𝑧  =  𝑚𝑧̈ (62) 

F𝑛𝑐𝑤1 sin 𝛽 − F𝑓𝑐𝑤1 cos 𝛽 − 𝑚𝑐𝑤1𝑔 −F𝐵𝐹1 cos 𝛾 =   𝑚𝑧̈ (63) 

where F𝑓𝑐𝑤1 =  𝜇F𝑛𝑐𝑤1 

F𝐵𝐹1 = Force of Body Frame 1 with winding 

F𝐵𝐹2 = Force of Body Frame 2 without winding 

moment at W4 :

The moment at wheel 4 rotates clockwise to the tower surface; its contact point gives
Equation (58). (

F f 41 cos β
)

r4 + τ =
J

..
x

r4
(58)

Forces on Caster Wheel 1 with Winding

From the caster wheel 1 perspective, as shown in Figure 8a top view, the forces are the
Fncw1 normal forces exerted of CW1; FBF1 is the force of the body frame 1 weight exerted to
the tower surface; Ft is the force from the Bowden cable to attain the ideal tension force;
Figure 8b shows side view, where β is the tower inclination angle; mg is the center mass
of gravity and γ is an angle caused by the BF1 weight. The mechanism can be regarded
as being in an equilibrium state; thus, the equation for each axis can be obtained from
Equations (59)–(63).
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At X-axis:
∑ Fx = m

..
x (59)

2Ft − Fncw1 − FBF1 cos γ = m
..
x (60)

At Y-axis:
∑ Fy = 0 (61)

At Z-axis:
∑ Fz = m

..
z (62)

Fncw1 sin β− F f cw1 cos β−mcw1g− FBF1 cos γ = m
..
z (63)

where F f cw1 = µFncw1
FBF1 = Force of Body Frame 1 with winding
FBF2 = Force of Body Frame 2 without winding

Forces on Caster Wheel 2 without Winding

From the caster wheel 2 perspective, as shown in Figure 9a top view, the forces are
the Fncw2 normal forces applied exerted of CW2; FBF2 is the force of the body frame 1
weight exerted to the tower surface; Ft is the force from the Bowden cable to attain the ideal
tension force; Figure 9b shows side view, where β is the tower inclination angle; mg is the
center mass of gravity and γ is an angle caused by the BF2 weight. The mechanism can be
regarded as being in an equilibrium state; thus, the equation for each axis can be obtained
from Equations (64)–(68).
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At X-axis:
∑ Fx = m

..
x (64)

2Ft − Fncw2 − FBF2 cos γ = m
..
x (65)

At Y-axis:
∑ Fy = 0 (66)

At Z-axis:
∑ Fz = m

..
z (67)

Fncw2 sin β− F f cw2 cos β−mcw2g− FBF2 sin γ = m
..
z (68)

where F f cw2 = µFncw2

2.3. Control System and Experimental Set-Up

In this context, the details on the control system used in the prototype, control
flowchart of the climbing robot and experimental set-up of the wind-turbine-tower-climbing
robot were discussed.

2.3.1. Control System

The control system of the wind-turbine-tower-climbing robot’s hardware is shown in
Figure 10. The main microcontroller is the Arduino MEGA 2560, which incorporates all
the up–down movement controls and carries out the tasks of other electronic modules to
harmonize the movement process with the various speeds. This microcontroller controls the
four driving wheel motors of the robot, one step motor for the winding mechanism, distance
sensor, motor encoder, current sensor, and other support electronic components. It is also
considered that, due to its small size, inexpensive cost, reliability, and availability in the
market, this microcontroller is good enough for the development of the wind-turbine-tower-
climbing robot as it requires a straightforward control procedure and minimum programing
code. This study utilized an open-source programming tool called Integrated Development
Environment (IDE) to program Arduino boards [26], which supports C-programming
code of the wind-turbine-tower-climbing robot, as shown in Figure 11, and then moved
to the Arduino board using a USB cable. Its programmable input/output (I/O) pins are
configured using C++ programming software, which includes pulse width modulation
(PWM) pins and analogue pins. PWM pins can be used to control four DC motors and one
step motor, while analogue pins have analogue-to-digital converter (ADC), which can be
used to read signals from the distance sensor. The ultrasonic distance sensor—HCSR04
automatically provides feedback signal measurement ranging 200 mm to reach mock-up
tower height of 1200mm to the Arduino microcontroller to attain the precise adhesion in the
wind turbine tower mock-up without slipping to the ground. After the distance sensor was
able to detect signal the winding mechanism was the next process. With the help of one step
motor-42HS03 with twin pulley attached to its shaft, the Bowden cable, in terms of winding
and unwinding, achieves the precise adhesion between the two-body frame in the tower.
The step motor slowly winds or rolls-in its cable as it climbs to the tower in an upward
movement or unwinds or rolls-out in a downward movement. The support electronics
module is needed to run the other devices, such as encoders, while some were required for
acquiring data during the entire movement process. A regulated 5 V DC voltage source
was needed to power up the Arduino microcontroller and other boards. Once everything
was in the right position, the four driving wheels GP-BLDC3650 will push the entire robot
in a straight upward and downward movement along the wind turbine tower mock-up. A
12 V DC power supply to the four motors are needed to drive the whole robot.
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2.3.2. Control Flowchart of the Wind-Turbine-Tower-Climbing Robot

The flowchart in Figure 12 illustrates the climbing algorithm of the wind-turbine-
tower-climbing robot. As the system starts, implying that all the hardware and software
are turned on, the system will have its proper initialization to set up all the resources in
the system to function effectively, specifically the driving and winding mechanism. The
user or the operator had the ability to choose between the various speed options: Low
speed, which takes 20 s, Medium speed, which takes 16 s, and Fast speed, which takes 8 s
for the robot to finish the climbing process. The input selection of the various speeds is
necessary for the ultrasonic distance sensor to activate and measure the distance from the
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ground; either the distance is less than or equal to 80 mm or the distance is greater than
80 mm. If the distance was less than or equal to 80 mm, the step motor would execute
the winding or tightening of the Bowden cable so that the robot would adhere around
the tower surface. Once the correct distance was attained, the four rubber wheels as the
locomotion mechanism would automatically roll up to the tower surface, and if there was
no interruption, it would continuously do the same process until it reaches the distance
of 1200 mm. It will then end at “B”, which means the robot completed the straight up
movement to the tower surface and was ready to roll down. The robot would continue to
move down the tower until the measured distance reached less than 80mm. If the initially
measured distance was greater than 80 mm, the user or the operator had to input the
direction of the climbing robot, that is, whether it should go up or down. In the situation
that the climbing robot would roll down to the tower, the step motor would execute the
unwinding or loosening of the Bowden cable, and the four rubber wheels would move
outwardly so that the robot would automatically roll down the tower surface. If there was
no interruption, it would continuously do the same process until it reaches a distance of
less than 80 mm, then end the process. However, if the distance is not attained, it will
continuously unwind or loosen the Bowden cable. The other way around will lead to “A”,
which means the robot will have to do the winding or tightening process. The robot also
could stop once the manual stop was initiated or during any wind speed disturbances.
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2.3.3. Experimental Set-Up

An experimental setup of wind-turbine-tower-climbing robot has been established in
Southern Taiwan University of Science and Technology shown in Figures 13a, 14a, 15a and 16a
through the CAD design alongside the final prototype Figures 11b, 12b, 13b and 14b during
the actual indoor experiments with the wind turbine tower mock-up, as the realization
of the lower dimension from 2 MW wind turbine tower. Figure 13b depicts the actual
physical view of the climbing robot attached to the tower, Figure 14b shows the top view
of the four rubber wheels as the driving mechanism and the two-caster wheels, and the
two body frames are made of aluminum alloy 6061 material, which is low in weight and
economical to use. The body frame 1 holds the winding mechanism, power supply of the
robot and other electronics modules, as shown in Figure 15b, and the body frame 2 holds
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the Arduino microcontroller, distance sensors, relays, encoders, and support electronics
devices, as shown in Figure 16b.
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The two main mechanisms for the wind-turbine-tower-climbing robot were the lo-
comotion and the adhesion mechanism. The locomotion comprises the four brushless
DC planetary gear motorized rubber wheels, which have a 7–30-watt rating power and
80–100 round per minute rating speed, and two caster wheels used to support the body
frame of the robot. Next, the adhesion mechanism uses a winding cable that is triggered
from the distance sensor to attain the precise tension force to ensure enough adhesion to
the tower circumference for climbing. From the distance sensor, an automatic setting in
the microcontroller program was established to achieve the step motor speed adjustments
in the winding and unwinding process of the cable and to have a synchronization with
the four driving wheels ready for the wind turbine tower movement. Because there was
only one step motor installed in the body frame of the robot, it was easy to control the
cable adjustment to alter the distance between the tower center. When the step motor with
twin pulley winds the Bowden cable inwardly, the robot body frame would tighten to
the tower surface, the rubber wheels would contact the tower area and the corresponding
normal force would increase. As a result, the normal forces provide the frictional force
by multiplying the friction coefficient together with the angle of inclination of the tower,
which overcomes the robot gravity force to make the robot climb straight up. When the
step motor with twin pulley unwinds, the Bowden cable moves outwardly, causing the
robot body frame to loosen to the tower surface, and the robot automatically goes straight
down. The step motor gives good low speed performance in winding and unwinding
the Bowden cable, and the winding rpm speed is around 19–25 rpm. Once the precise
measurement in the adhesion mechanism was achieved from the distance sensor, the robot
starts its movement on the tower. The robot needs 3 s to start the upward movement and
another 3 s to start the downward movement of the tower height of 1200 mm.

To verify the payload capacity of the prototype, as shown in Figure 17a,b, approxi-
mately 3.540 kg was implemented to test the load capacity of the robot. The results indicate
that the climbing robot was able to climb straight up and down in the wind turbine tower
mock-up regardless of its various speeds of climbing, whether low, medium, or fast, as well
as the different tower diameters. The various payload capacities of the robot are 0.823 kg
per body frame, with a total of 1.646 kg in the trial 1 test load, adding 0.947 kg per body
frame, with a total of 3.540 kg in the trial 2 test load; regardless of the climbing speed
of the robot, its climbing ability has no changes. The robot can withstand the maximum
payload weight of 5.44 kg that requires high torque and velocity decrease. During the
indoor experiment, the robot could handle climbing its maximum payload weight but, due
to the light material that supported the body frame attached to the caster wheel, it tends to
be the first to break after several instances of climbing. In this condition, reaching the 50%
payload capacity from the robot’s total weight would be the optimum load that the robot
can hold regardless of various climbing speeds. On the other hand, the four driving wheels
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did not slip from the total weight of the robot, which is 6.56 kg, signifying that the frictional
force of the driving wheel satisfied the climbing condition from the various speeds.
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3. Results and Discussion

A wind-turbine-tower-climbing robot was designed and implemented through an
actual indoor experiment involving the tower mock-up to assess how effectively the perfor-
mance of the driving and winding mechanism works in the various speeds and payload
capacity. From the indoor testing, there is a 200 mm baseline due to robot height. The total
distance for the robot to climb is roughly 1000 mm from the maximum tower height of
1200 mm mock-up from the 2 MW wind turbine tower.

3.1. Experimental Results of Distance and Time

When the robot was climbing in the upward movement, the actual data on distance
versus time and speed versus time were taken. The experiment results in various speeds:
Low speed, which takes 20 s, Medium speed which takes 16 s, and Fast speed which takes
8 s to climb up the tower. The 3540 kg payload that the robot can hold without any problem
at the various speeds shown in Figures 18–20 is included in the climbing process.
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Figure 20. Distance and Time: (a) Fast Speed (FS) at 8 s, (b) distance vs. time in FS and (c) distance vs.
time in FS with load.

Based on Figures 18a, 19a and 20a, its distance versus time results during the indoor
experiment are as follows: the different durations of time are 20, 16, and 8 s to climb straight
up to the 1200 mm wind turbine tower height and approximately 1000 mm distance traveled
since the robot has a height of 200 mm. The distance sensor is connected to the robot’s
body frame and can detect the robot’s distance in the tower. The distance was displayed
on the user monitor in terms of centimeters, which is then converted to millimeters. The
first climbing speed was Low at 20 s; there was no large disparity between the test results
of “without load” and “with load at 3540 kg,” as shown in Figure 18b,c, the two graphs of
distance vs. time in LS. This means that the robot can handle the movement going straight
up the tower surface, and in a second there are two quick variations on its constant speed.
The second climbing speed was Medium at 16 s; there is no large disparity between the test
results of “without load” and “with load at 3540 kg”, as shown in Figure 19b,c, the two
graphs of distance vs. time in MS. Still, the robot can handle the movement going straight
up the tower surface at a smooth and steady speed for almost the entire duration. The
third climbing speed was Fast at 8 s; there is no large disparity between the test results of
“without load” and “with load at 3540 kg”, as shown in Figure 20b,c, the two graphs of
distance vs. time in FS. The robot can handle the movement going straight up the tower
surface, and every second there is change on its constant speed. From the test results of
the robot climbing in the three various speeds the robot can suffice to climb straight up
movement without breaking or slipping onto the ground. Its downward movement was
also the same time and speed to roll out to the wind turbine tower mock-up. The actual
tests of the climbing robot without and with payload are shown in Figures 21 and 22.
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Figure 22. Climbing robot with payload.

3.2. Experimental Results of (Speed) RPM and Time

Based on Figures 23a, 24a and 25a, speed versus time results during the indoor
experiment included the speed of four driving wheels in terms of rpm (revolution per
minute) versus the different durations of time, which are 20, 16, and 8 s. The first climbing
speed was low at 20 s, as shown in Figure 23b,c from the two graphs’ test results for
“without load” and “with load of 3.540 kg”. The rpm of each wheel moved in a subsequent
fluctuation that is around 45–57 and 59–74 rpm, respectively. The second climbing speed
was Medium at 16 s; as shown in Figure 24b,c, the rpm of each wheel moved in a subsequent
fluctuation, around 44–52 and 44–61 rpm, respectively. The third climbing speed was Fast
at 8 s; as shown in Figure 25b,c, the rpm of each wheel moved in a subsequent fluctuation,
around 44–54 and 52–77 rpm, respectively. Based on the graph, it is obvious that “with
load” the rpm in each motor wheel of the robot was powerful enough to overcome the load
torque and force that prevents movement. The detailed specifications are listed in Table 2.
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Table 2. Wind-turbine-tower-climbing robot specifications. 

Specifications Values 

Robot Weight Body frame 1 6.56 kg 3.64 kg 
Body frame 2 2.92 kg 

Max payload weight 3.540 kg 

Average Speed 
Low 50 mm/s 
Medium 62.5 mm/s 
High 125 mm/s 

Wheel rpm 
Low 45~74 rpm 
Medium 44~66 rpm 
High 44~77 rpm 

Winding rpm 19~25 rpm 
Angle of inclination 1.67° 
Tower height 1200 mm 
Tower diameter for climbing 330~400 mm 

4. Conclusions and Future Works 
In this paper, the development of a wind-turbine-tower-climbing robot has been pre-
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strated by the indoor experimental results “without load” and “with load of 3.540 kg”. 
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climb at the various speeds with and without the payload. The prototype needed to be 
further refined and tested, especially for use in an outdoor facility with varying wind 
strength. Later work included the use of wind sensors for wind gusts, a camera to observe 
external defects, and a robotic arm to transport inspection tools, etc. This prototype wind-
turbine-tower-climbing robot could provide a testing ground for new developments.  
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Figure 25. RPM and time: (a) Fast Speed (FS) at 8 s, (b) rpm vs. time in FS and (c) rpm vs. time in FS
with load.

Table 2. Wind-turbine-tower-climbing robot specifications.

Specifications Values

Robot Weight Body frame 1 6.56 kg 3.64 kg
Body frame 2 2.92 kg

Max payload weight 3.540 kg

Average Speed
Low 50 mm/s
Medium 62.5 mm/s
High 125 mm/s

Wheel rpm
Low 45~74 rpm
Medium 44~66 rpm
High 44~77 rpm

Winding rpm 19~25 rpm
Angle of inclination 1.67◦

Tower height 1200 mm
Tower diameter for climbing 330~400 mm

4. Conclusions and Future Works

In this paper, the development of a wind-turbine-tower-climbing robot has been
presented, along with the kinematic and dynamic analysis of each robot driving wheel,
which was successfully tested through indoor experiments using the prototype with the
wind turbine tower mock-up, proving the viability of the design. Based on the friction
created by four rubber wheels, the robot could climb in a straight up-and-down movement
at its various speeds. The winding mechanism was the significant advantage that can
withstand the cable tension force to hold on to the tower surface and the high payload
capacity to install additional equipment that is approximately above 50% of the robot
total weight. The various wheel speeds of the robot to move along the tower mock-up
were demonstrated by the indoor experimental results “without load” and “with load
of 3.540 kg”. Finally, the results indicate the effectiveness of the driving and winding
mechanism to climb at the various speeds with and without the payload. The prototype
needed to be further refined and tested, especially for use in an outdoor facility with varying
wind strength. Later work included the use of wind sensors for wind gusts, a camera to
observe external defects, and a robotic arm to transport inspection tools, etc. This prototype
wind-turbine-tower-climbing robot could provide a testing ground for new developments.
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