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Abstract: The use of a micro-compressed air-volume-detection method to detect the volume of
irregularly cavitied components has the characteristics of multi-variable coupling and nonlinearity.
To solve this problem, a volume-prediction model of irregularly cavitied components based on gray
correlation and a particle-swarm-optimization support-vector machine is proposed. In this paper,
the gray-correlation method was used to extract the detection parameters that have the greatest
correlation with the cavity volume. On the basis of the obtained detection parameters, the SVM
algorithm was used to build an irregularly cavitied components volume-prediction model. During
model training, since the regression accuracy and generalization performance of the SVM model
depend on the proper setting of its two parameters (the penalty-parameter C and the kernel-parameter
σ), and especially on the interaction of the parameters, this paper presents an optimal-selection
approach towards the SVM parameters, based on the particle-swarm-optimization (PSO) algorithm.
Experiments showed that the prediction model can better predict the volume of irregularly cavitied
components, and the prediction accuracy was high, which played a guiding role in intellectual
nondestructive testing of the volume of the irregularly cavitied components.

Keywords: volume-detection; micro-compressed air; gray-correlation analysis; support vector machine

1. Introduction

For irregularly cavitied components such as the combustion chamber, liquid storage
tank, supercharging device and vacuum-pump device of an automobile engine, it is difficult
to measure their volume by conventional measurement methods, due to their complex
profile or cavity. The traditional method is to use the water-injection method [1] to calculate
volume. This method is mainly operated manually, and the medium generally used is
liquid. There are the following problems when using liquid to measure volume: (1) if
the internal shape of the tested part is complex, it is difficult to ensure that the liquid
fills the entire space or the liquid is completely poured out, which will affect the accurate
measurement of the volume; (2) the use of liquids may affect the performance of the parts in
the future; (3) it involves many processes, the detection efficiency is low, and the accuracy
is not high. At present, in addition to the traditional water-injection method, there is
laser measurement [2–4], orthogonal double-grating [5], vibration measurement [6–11], the
ultrasonic-measurement method [12], and so on.

In recent years, some volume-detection methods based on the ideal gas equation-of-
state, such as the gas-calibration method [13], the gas-static-expansion method [14], the
gas-pressure method [15–17], etc., have been continuously applied to volume detection of
irregularly cavitied components. These methods are usually based on the conservation of
mass, use the gas equation-of-state or combine the linear-regression method to obtain the
volume calculation formula of the tested components. These methods will lead to large
errors, and cannot measure precision containers. In addition, these methods have relatively
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high requirements for test conditions, and do not consider the influence of air humidity and
temperature on the measurement results; however, it is difficult to meet these conditions in
the actual application process.

In view of the practical problems of the above detection-methods, this paper analyzed
the structural characteristics of the irregularly cavitied components, applied the ideal-
gas equation-of-state, adopted the volume-measurement method of micro-compressed
air, and, fully considering the influence of environmental factors such as temperature,
humidity, pressure and gas-equilibrium time on volume measurement, a volume-prediction
algorithm for irregularly cavitied components based on gray correlation and particle-
swarm-optimization support vector machine was proposed, which was used for volume
detection of irregularly cavitied components. The method has the characteristics of high
efficiency and high precision, and has reference significance for the volume-prediction and
detection of irregularly cavitied components.

The main contributions of this paper are three aspects. Firstly, collecting the param-
eters related to the volume of the irregularly cavitied components by using the micro-
compressed-air method, under the premise of ensuring that the components to be tested
are not damaged, this method micro-compresses the atmospheric pressure of the air sealed
in the irregularly cavitied components, and collects the measurement parameters. Sec-
ondly, the main control-factors affecting the irregularly cavitied components’ volume-
measurement are analyzed by gray correlation, and we screen pressure, temperature,
humidity, and air-equilibrium time, etc., as the main characteristic parameters. Thirdly,
there is the development of a PSO-SVM model, to improve the accuracy and stability of
the volume-prediction model of irregularly cavitied components. Finally, obtaining the
volume-prediction value of the irregularly cavitied components, means that the volume of
irregularly cavitied components can be measured quickly and accurately.

2. Preliminary

By applying the ideal-gas equation-of-state, a volume-measurement device for ir-
regularly cavitied components using micro-compressed air was designed. The principle
of volume measurement for irregularly cavitied components is shown in Figure 1. Dur-
ing detection, the irregularly cavitied components to be detected were filled with air at
normal temperature and pressure, and after sealing the air inlet, the precision cylindrical-
compression-rod was driven by a servo motor, and extended into the interior of the irreg-
ularly cavitied components to be tested for a certain length, in order to micro-compress
the air inside the cavity. The mass of the fixed group of gas in the cavity before and after
micro-compression remained constant. By measuring the pressure and temperature of
the air in the irregular cavity before and after micro-compression, and the volume of the
compression-rod extending into the cavity, the cavity volume of the irregularly cavitied
components to be measured can be obtained, following the ideal-gas equation-of- state,
which can be written as follows:

PV = ZmRT (1)

where P is the gas pressure, the unit of gas pressure is the pascal (Pa), V is the volume, the
unit of volume is milliliter (mL), Z is the compression coefficient (dimension is 1), m is the
mass (mol), T is the absolute temperature, the unit of temperature is the kelvin (K), and R
is the gas constant (R = 8.31 J/(mol·K)).

However, the detection accuracy of the volume of irregularly cavitied components
obtained by the above method was still low. Through experiments and analysis of past
detection methods, it was found that there were many influencing factors when using
this method to detect the volume of irregularly cavitied components. In addition to the
pressure and temperature in the cavity to be measured, environmental factors such as
air-equilibrium time after micro-compression, ambient atmospheric-pressure and humidity
will also lead to some deviations in the equation-of-state for gas, which will have a certain
impact on the accuracy and stability of volume detection of irregularly cavitied components.
To attack these problems mentioned above, a volume-prediction model of irregularly-
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cavitied components based on gray correlation and particle-swarm-optimization support
vector machine was proposed in this paper. Firstly, gray correlation analysis was used,
and then several key factors related to the volume of irregularly cavitied components
in the process of volume measurement using micro-compressed air were extracted, so
as to reduce the dimensions to be considered in modeling. Then, using the support
vector machine to train the extracted detection-values of important factors, a volume-
prediction model of irregularly cavitied components was established simultaneously. In
order to obtain a solution to the precision requirements of SVM calculation and modeling
which may have problems caused by parameter errors, the research used the particle-
swarm algorithm to optimize SVM parameters. The prediction accuracy of SVM was
reduced, and the convergence speed of SVM was increased, the volume-prediction value of
irregularly cavitied components was obtained, and fast and accurate volume-measurement
of irregularly cavitied components was realized.

Figure 1. Schematic diagram of the volume-measurement method using micro-compressed air.

3. Gray Correlation Analysis

A gray relationship refers to the uncertain relationships between things or the system
factors or the factors and the main behavior. Gray-correlation analysis [18,19] judges
whether the relationship between data sequences is close by the similarity of the geometric
shapes of the data curves; a modified algorithm finds out the main factors that affect the
target value through correlation calculation, and evaluates the influence of various factors.
There are some deficiencies in the samples of traditional mathematical-statistics methods,
such as large demand and large computational-volume, and there may be inconsistencies
between quantitative results and qualitative analysis. This analysis method overcomes
these deficiencies and becomes a simple and unique system-analysis method [20].

When the micro-compression air method is used to detect the volume of irregularly
cavitied components, the volume-prediction model of irregularly cavitied components is
affected by various factors such as atmospheric pressure, pressure before and after air micro-
compression, temperature, and equilibrium time. In addition, the relationship between
most of the influencing factors and the volume of the irregular-cavity parts is nonlinear,
so the effect of these influencing factors on the volume of the irregular-cavity parts is not
clear, which is gray. The gray-correlation analysis can quantitatively reflect the degree of
correlation between the volume of irregular cavity parts and various influencing factors.
Through comparative analysis, the main factors with higher correlation were selected from
the factors that affect the volume of irregularly-cavitied components. As input variables
for SVM modeling, SVM was then used for prediction. Here are the specific steps of gray
relational analysis:

Step 1. determine the referential data sequence as

x′0(k) =
{

x′0(1), x′0(2), · · · , x′0(n)
}

(2)

Step 2. determine the comparative data series as

x′i(k) =
{

x′i(1), x′i(2), · · · , x′i(n)
}

(3)
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Step 3. the data is processed in a dimensionless manner. Since the parameters of
different properties (such as pressure, temperature, humidity, equilibration-time, etc.) are
measured at each test point during the volume test, and these parameters have different
orders of magnitude, to make sure the correlation analysis result between parameters
of each detection point and the volume is reliable, the original sequence needs to be
processed in a dimensionless manner. Therefore, x′0(k) and x′i(k) sequences are processed
in a dimensionless manner, and the reference sequence x0(k) and the comparative data
xi(k) are obtained, as in Equations (4) and (5).

x0(k) =
x′0(k)
x′0(1)

= {x0(1), x0(2), · · · , x0(n)} (4)

xi(k) =
x′i(k)
x′i(1)

= {xi(1), xi(2), · · · , xi(n)} (5)

Step 4. find the absolute-difference sequence. The absolute value of the difference be-
tween the reference sequence x0(k) and the comparative data xi(k) constitutes an absolute-
difference sequence, as in Equation (6).

∆0i(k) = |x0(k)− xi(k)|
= {∆i(1), ∆i(2), · · ·∆i(n)}

(6)

Step 5. find the maximum difference and the minimum difference in the absolute-
difference sequence, as in Equations (7) and (8).

∆max = max

∣∣∣∣∣∣∣∣∣∣∣
∆oi(k)

1 ≤ i ≤ m
1 ≤ k ≤ n

∣∣∣∣∣∣∣∣∣∣∣
(7)

∆min = min

∣∣∣∣∣∣∣∣∣∣∣
∆oi(k)

1 ≤ i ≤ m
1 ≤ k ≤ n

∣∣∣∣∣∣∣∣∣∣∣
(8)

Step 6. find the grey correlation coefficient, which is shown as:

γ0i(k) =
min

i
min

k
|x0(k)− xi(k)|+ ρmax

i
max

k
|x0(k)− xi(k)|

|x0(k)− xi(k)|+ ρmax
i

max
k
|x0(k)− xi(k)|

=
∆min + ρ∆max

∆0i(k) + ρ∆max
(9)

where γ0i(k) is the correlation coefficient between the kth object of the comparative data
and the reference sequence; ρ is the resolution coefficient in the range of [0, 1], usually
0.5 [21].

Step 7. find the grey correlation degree of each factor, as in Equation (10).

γi =
1
n

n

∑
k=1

γ0i(k) (10)

Step 8. sort, according to the gray correlation degree.
γi is the reflected correlation between the comparative data xi(k) and reference se-

quence x0(k); the larger the value, the greater the impact on x0(k). According to the above
steps, gray-correlation analysis was carried out on parameters such as atmospheric pressure
and stable differential-pressure before and after micro-compression. The results are shown



Appl. Sci. 2023, 13, 1354 5 of 12

in Table 1, the most important factors which affect the volume of irregularly cavitied compo-
nents are gas-equilibration time (the correlation coefficient is 0.9993), atmospheric pressure
before micro-compression (the correlation coefficient is 0.9896) and stable differential-
pressure after micro-compression (the correlation coefficient is 0.9989), followed by temper-
ature after micro-compression and atmospheric pressure after micro-compression.

Table 1. Correlation coefficients of the variables.

Serial
Number

Variable
Name Input-Feature Parameters Correlation

Coefficient

1 x1
Atmospheric pressure before
micro-compression 0.9896

2 x2
Stable differential-pressure before
micro-compression 0.5735

3 x3 Temperature before micro-compression 0.5948

4 x4
Stable differential-pressure after
micro-compression 0.9989

5 x5 Temperature after micro-compression 0.8689
6 x6 Atmospheric humidity 0.5285
7 x7 Gas-equilibration time 0.9993

8 x8
Atmospheric pressure after
micro-compression 0.8678

4. Parameter Optimization of Volume-Prediction Model Based on SVM

The support vector machine (SVM) is based on statistical learning theory and structural-
risk minimization [22]. The SVM algorithm has strong learning-functions and character-
istics, good adaptability to small samples and limited samples, and strong stability and
generalization-ability [23]. It can better deal with the problem of nonlinear regression.

We used gray-correlation analysis to develop the support-vector-machine predic-
tive modeling for the main influencing factors of multiple variables related to the vol-
ume of irregular-cavity parts after processing in this paper. In the given sample set{(

xi, yj
)
, (i = 1, 2, 3, · · · , m)

}
, xi was a attribute vector of two-dimensional space, with

characteristic input-values such as atmospheric pressure, atmospheric humidity, temper-
ature before micro-compression, stable differential-pressure before micro-compression,
stable differential-pressure after micro-compression, gas-equilibrium time, and tempera-
ture after micro-compression, etc.; yj was the corresponding predicted-target value, and m
was the number of samples. For the volume model of irregularly cavitied components in
the low-dimensional nonlinear space [24], the sample data set, x, was mapped to the high-
dimensional linear space through the nonlinear function, φ(x), and the decision function
was established in the high-dimensional linear space, as in Equation (11).

φ(x) = ω·(x) + b (11)

whereω is the weight vector, and b is the bias parameter.
The algorithm uses the minimization-optimization model to establish a decision

function, as in Equations (12) and (13).

min
1
2

ω2 + C
m

∑
i=1

(ξi + ξ∗i ) (12)

S.T.


yi −ω · ϕ(x)− b ≤ ε + ξi
[ω · ϕ(x)] + b− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0(i = 1, 2, 3, · · · , m)

(13)

where C is the penalty factor; ξi, ξ∗i are the relaxation factors; and ε is the upper limit of
the error.
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We introduced the Lagrangian multipliers ai and α∗i , and then transformed the
minimization-optimization model into a dual optimization, in order to solve it, by finding
the maximum value of Q(α), as in Equations (14) and (15).

max : Q(α) = −1
2

m

∑
i,j=1

(αi − α∗i )
(

αj − α∗j

)
· K
(

xi, xj
)
+

m

∑
i=1

yi(αi − α∗i )− ε
m

∑
i=1

(αi + α∗i ) (14)

S.T.
{

∑m
i=1 αi = ∑m

i=1 α∗i
0 ≤ αi, α∗i ≤ C(i = 1, 2, 3, · · · , m)

(15)

where Q(α) is the dual objective function of the Lagrangian function, K
(

xi, xj
)
= ϕ(xi) ·

ϕ
(

xj
)

is the kernel function when αi × α∗i = 0 and αi, α∗i are not 0 at the same time, and the
corresponding xi is a support vector (SV).

Since the volume-prediction of irregularly cavitied components belongs to nonlinear
prediction, to improve the model’s veracity we selected the radial-basis function (RBF)
as the kernel function of the SVM, and used the particle-swarm-optimization method to
optimize the initial parameters of the support vector machine, as in Equation (16).

K
(
xi, xj

)
= exp

(
− x− xi

2σ2

)
(16)

The correct selection of the penalty parameter C and the kernel parameter σ of the
nonlinear SVM is very important for the support-vector algorithm; this not only affects the
complexity of the model algorithm, but also has a great impact on the generalization per-
formance and robustness of the model prediction, which further influences the prediction
precision of the SVM model. Whether the selection of model parameters is appropriate or
not, this will have a greater impact on the volume-prediction effect of irregular-cavitied
components. The traditional SVM adopts the grid-search cross-validation method to opti-
mize the parameters, but when using this method, subjective factors have a great influence,
the search and verification process takes a long time, and a considerable number of training
samples are wasted for verification. In the case of limited samples, its defects are more
obvious. However, particle-swarm-optimization (PSO) is an optimization algorithm, which
has the simplicity characteristics, strong global-search ability, fast convergence-speed and
high solution-accuracy. In addition, it is easy to implement because it does not have to
adjust too many parameters [25,26]. In this paper, particle-swarm-optimization was used
to optimize the parameters of SVM. For the volume-prediction process of PSO-SVM based
on the grey correlation, see Figure 2.

As an effective algorithm in the field of optimization, particle-swarm-optimization
can achieve good results in the optimization process of SVM parameters. Particle-swarm-
optimization (PSO) is a random-search algorithm-based group collaboration which works
by simulating the behavior of birds foraging, where each “bird” represents a particle, and
the “food” that the flock is looking for is the optimal solution. In the volume-prediction
of the irregularly cavitied components, the PSO algorithm was used to initialize the two
particles of “penalty-factor C and kernel-function parameter σ”; the coordinate of the i-th
particle was xi

i = (x)i
i1, xi

i2, · · · , xi
iD, xi

iD ∈ [LD, UD], and the coordinates of the D target
solutions were the target solutions before optimization. The running speed of the i-th
particle was vi

i =
(
vi

i1, vi
i2, · · · , vi

iD
)
, vi

iD ∈ [vmin,D, vmax,D], the optimal position of the i-
th particle was pi

i =
(

pi
i1, pi

i2, · · · , pi
iD
)
, and the optimal position of the population was

pi
g =

(
pi

g1, pi
g2, · · · , pi

gD

)
. Therefore, the iterative result of particle-motion velocity and

particle coordinates in the s-th dimension can be expressed as in Equations (17) and (18).

vi
iD,s = βvi

iD,s + c1r1

(
pi

iD,s − vi
iD,s

)
+ c2r2

(
pi

gD,s − vi
gD,s

)
(17)

xi+1
iD,s = xi

iD,s + vi+1
iD,s (18)
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where v is the particle velocity, β is the inertia weight, c1, c1 are the learning factors, and r1
and r2 are random numbers in [0, 1].

Figure 2. Flowchart of GRA-PSO-SVM model.

β has the ability to balance local and global searches. The larger the value of β, the
stronger the global-convergence ability; otherwise, it has a stronger local-convergence
ability. The learning factors c1 and c2 control the ability of the particle to find the individual
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optimal-position and the global optimal-position, respectively [27]. The optimal selection
of parameters includes atmospheric pressure, stable differential-pressure before or after
micro-compression, atmospheric humidity, gas equilibrium time etc. In addition, they
were used as input variables to predict the volume of the irregularly cavitied components,
by regression. If the error between the predicted and the measured irregular-cavitied-
component volume is within the error range, the optimal parameter-selection procedure
is ended. At this time, the optimal position of the particle swarm is the optimal solution
of parameter C and σ. If the predicted volume of the irregularly cavitied components and
the volume of the irregularly cavitied components exceed the set error range, the program
should be executed until the error between the two values is within the set error-range.

The optimization steps with the PSO-optimization algorithm are as follows:

Step 1: Define the fitness function. The prediction error of the training sample is defined as
the fitness function of the model; that is, the optimal solution corresponding to the function
is the particle position corresponding to the minimum prediction error;
Step 2: Normalization. Read the sample data and normalize the sample data, set the
parameter-motion range, set the acceleration constants c1 and c2, the dimension, n, of
the individual particle, the inertia-weight coefficient, ω, the number of particles in the
population, m, the penalty factor, C, and the kernel parameter, σ;
Step 3: Initialization. Initialize particle-swarm position and particle velocity;
Step 4: Evaluate fitness. Calculate the individual fitness-value of each particle, initialize the
optimal individual particle and the optimal global particle;
Step 5: Compare the optimization. Generate new populations by updating particle ve-
locities and positions, calculate the individual fitness-degree of the new populations,
compare the fitness degree of the current parameters, C and σ, with their own historical
optimal-values and the optimum populations, and update the optimal global values of the
population’s parameters, C and σ;
Step 6: Check the end condition. When the optimization reaches the maximum evolutionary
algebra, end the optimization, and output the optimal parameters, C and σ; otherwise,
return to step 2, and retrain;
Step 7: Perform SVM-algorithm training on the optimal parameters, C and σ, values, and
then use the validation set to verify the prediction accuracy of the network and obtain the
prediction-value of the volume of the irregularly cavitied components.

5. Comparative Analysis of Predicted Results

In this paper, we analyzed the various influencing indicators that affect the volume of
the irregularly cavitied components using the grey-relational-analysis method; the eight
indicators with the greatest influence were selected as the input-feature components for the
training of the SVM model, and the volume of the irregularly cavitied components to be
measured is the output variable. In the experiment, a total of 100 sets of data were collected;
90 data sets were selected as the training set, and 10 sets of data were selected as the test
set after shuffling the order, and these were used to verify the prediction-performance of
the model. In the support-vector-machine model optimized by PSO, the kernel function
adopted a radial-basis function (RBF). According to the performance of the model algorithm,
the initial size of the particle-swarm algorithm was set to 25 and the maximum evolutionary-
generation of the particle swarm was set to 400, through multiple attempts. Since the range
of the penalty-factor and kernel-function parameters will affect the accuracy and prediction-
rate of the algorithm, to ensure the stability and efficiency of the algorithm, the optimal
parameters c = 58.039, σ = 6.109,and the learning factors c1 = 2, c2 = 2 were set. Then,
the optimal searched parameter was brought into the support-vector-machine algorithm,
and the PSO-SVM algorithm was used to train the training set. The predicted values of
the model for the training-sample data and test-sample data are shown in Figure 3. The
prediction-accuracy rate of the volume of irregularly cavitied components was as high
as 99%, which indicated that the setting of the algorithm parameters was reasonable. By
predicting the volume of irregular-cavity parts, higher accuracy can be obtained.
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Figure 3. Results of the particle-swarm-optimization support-vector-machine algorithm. (a) Results
of training set; (b) Results of test set.

For the mean squared error (MSE), mean absolute error (MAE), and R squared (R2)
predicted by the model, please refer to Table 2.

Table 2. Results of MSE, MAE and R2.

Parameter Names MSE MAE R2

Values 0.0046 0.035 0.9704

From Table 2, we can see that R2 is as high as 0.9704, MSE is 0.0046 and MAE is 0.035,
indicating the good generalization-ability of the established support-vector-regression
model. In order to test the feasibility and effectiveness of the proposed prediction-algorithm,
the prediction results obtained by traditional SVM and GRA-PSO-SVM were compared,
and the comparison results between the predicted and actual values obtained by these
three models are shown in Figure 4 and Table 3.

Figure 4. Simulation results from three models.
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Table 3. Simulation results from three models.

Sample
Actual
Value

mL

GRA-PSO-SVM Traditional SVM

Predicted Value Relative Error Predicted Value Relative Error

mL % mL %

1 2350 2347.96 0.09 2340.35 0.41
2 2360 2357.30 0.11 2383.65 1.00
3 2370 2372.97 0.13 2387.32 0.73
4 2380 2386.38 0.27 2398.27 0.77
5 2390 2398.12 0.34 2401.93 0.50
6 2400 2404.05 0.17 2415.23 0.63
7 2450 2445.67 0.18 2440.98 0.37
8 2550 2556.65 0.26 2571.69 0.85
9 2600 2610.02 0.39 2584.54 0.59

10 2650 2642.97 0.27 2667.28 0.65

According to Table 3 and Figure 4, the maximum absolute error of the predicted value
of the irregular-cavity-parts volume based on GRA-PSO-SVM, is 10.02 mL, the maximum
relative error is 0.39%, the minimum absolute error is 2.04 mL, and the minimum relative
error is 0.09%. Among GRA-PSO-SVM and traditional SVM prediction models, the GRA-
PSO-SVM prediction model has the smallest absolute error and relative error, and the
highest prediction-accuracy.

6. Conclusions

This research studies the regression method of GRA-PSO-SVM used to model and
predict the volume of irregularly cavitied components. The volume of irregularly cavitied
components was affected by a variety of influencing factors. Through the grey-correlation
analysis of the influencing factors, this experiment selected eight main influencing factors
on the volume of irregularly cavitied components, and sorted them according to the degree
of influence on the volume of irregularly cavitied components, in descending order. A
volume-prediction model of irregularly cavitied components with the strong search ability
of PSO and the good generalization performance of a support-vector machine, was then
established. The simulation results showed that, compared to the conventional SVM, the
GRA-PSO-SVM showed its strength by generating more accurate and stable results, with
R2 as high as 0.9704, MSE of 0.0046 and MAE of 0.035. The volume change can be well
predicted, and this prediction model provides a new idea for accurately predicting the
volume of irregularly cavitied components. In the follow-up research, we will continue
to search for factors that may affect the volume-prediction model of irregularly cavitied
components through a large number of experiments, and further optimize the algorithm to
improve the detection accuracy and reliability.
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