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Abstract: Action recognition is essential in security monitoring, home care, and behavior analysis.
Traditional solutions usually leverage particular devices, such as smart watches, infrared/visible
cameras, etc. These methods may narrow the application areas due to the risk of privacy leakage,
high equipment cost, and over/under-exposure. Using wireless signals for motion recognition can
effectively avoid the above problems. However, the motion recognition technology based on Wi-Fi
signals currently has some defects, such as low resolution caused by narrow signal bandwidth, poor
environmental adaptability caused by the multi-path effect, etc., which make it hard for commercial
applications. To solve the above problems, we first propose and implement a position adaptive
motion recognition method based on Wi-Fi feature enhancement, which is composed of an enhanced
Wi-Fi features module and an enhanced convolution Transformer network. Meanwhile, we improve
the generalization ability in the signal processing stage to avoid building an extremely complex
model and reduce the demand for system hardware. To verify the generalization of the method, we
implement real-world experiments using 9300 network cards and the PicoScenes software platform
for data acquisition and processing. By contrast with the baseline method using original channel
state information(CSI) data, the average accuracy of our algorithm is improved by 14% in different
positions and over 16% in different orientations. Meanwhile, our method has best performance with
an accuracy of 90.33% compared with the existing models on public datasets WiAR and WiDAR.

Keywords: human motion recognition; channel state information; multi-signal classification algorithm;
wireless perception

1. Introduction

Due to the popular concept of artificial intelligence (AI) technology and the rapid
development of intelligent equipment and the Internet of Things (IoT), indoor human action
recognition technology is widely used in many fields, such as human–computer interaction
to improve production and life efficiency [1–3], nursing [4], and monitoring [5,6].

Human action recognition techniques can be broadly divided into two categories. One
of them is bound motion recognition, which requires individuals to carry radio frequency
identification (RFID) tags [7,8], sensor devices [9], or other special devices [10–12]. These
methods indeed have high accuracy, while they cannot be applied to some confidential
scenes that prohibit carrying devices. The other is unbound motion recognition, which has
certain universality, such as using wireless signals to recognize human actions. Due to the
existence of communication modules in intelligent equipment, wireless signals have the
advantages of wide distribution, high signal strength in indoor environments, excellent
penetration, and avoid the risk of personal privacy disclosure. Wi-Fi signal is the most
widely distributed wireless signal [13–15]. According to the changes of CSI or other data
in the received Wi-Fi signal, the human body and its actions in the environment can be
analyzed and identified [15–17].

There are also many techniques on action recognition based on Wi-Fi. The Multiple
Signal Classification [18] (MUSIC) algorithm is mainly used to estimate the incidence angle
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of source signals in space and traverses the spectral function values corresponding to the
incidence angles. Then, the maximum value of them can be used to deduce the source
position. However, the MUSIC algorithm is mainly used in the field of radar direction
finding, which requires a huge antenna array for accurate estimation. For common Wi-Fi
devices, the number of antennas and bandwidth are limited, and the estimation accuracy
will be greatly reduced when applied to human body location scenes due to the multi-path
effect. Moreover, among all the parameters of the signal affected by human actions (Time
of Flight, Angle of Arrival, Doppler Frequency Shift (DFS) and Received Signal Strength
Information (RSSI)), Doppler Frequency Shift reflects the human action speed information
best [19]. When the human body is running, walking, or any other actions, the movement
distance is usually more than 2m, and DFS changes significantly. Nevertheless, for the
actions with small displacement such as standing up and sitting down, DFS changes slightly,
which makes it difficult to estimate the velocity distribution of such actions.

From above considerations, a position-adaptive motion recognition method based on
Wi-Fi feature enhancement is proposed to solve the multi-path effect under constrained
conditions and improve the generalization ability of Wi-Fi motion recognition. Taking the
human body as the reference, the three-dimensional velocity distribution independent of
the human body’s position is extracted from the Doppler frequency shift as the feature to
enhance its generalization performance of the position. In the action classification stage,
a dynamic convolution transformer network is designed to realize action classification,
which is used to improve the ability to extract local features and classify different actions.
Ultimately, we implement improving motion classification performance through Wi-Fi
signal with good generalization ability and high accuracy.

Our main contributions can be summarized as follows:
(1) Based on the MUSIC algorithm, a novel method adding time of flight (ToF) and the

offset parameters is proposed to improve the positioning accuracy to obtain an accurate
human position. We design a dynamic signal amplification method referring to the Fresnel
model to strengthen the influence of human motion to obtain DFS. By changing the frame of
reference, we establish the corresponding relationship between DFS and speed component
and extract the speed distribution independent of position as the motion characteristics.
Overall, we improve the generalization ability in the signal processing stage to avoid
building an extremely complex model and reduce the training cost and the demand for
system hardware.

(2) In this paper, we propose a dynamic convolution transformer network. Based
on the Transformer model, the human action speed distribution is taken as the input to
extract the features. In addition, Gaussian range coding is introduced to retain the timing
information and reduce the feature differences caused by individual factors. The adaptive
capture improves the local feature extraction ability and the classification effect of different
actions, and it realizes action recognition with good generalization and high accuracy.

(3) We first propose and implement position adaptive motion recognition based on
Wi-Fi feature enhancement, and it has excellent generalization ability in different scenarios,
positions, and orientations. We also conduct experiments on WiAR and WiDAR datasets,
and compare our method with Widar 3.0, EI, and CARM. Experimental results show that
our method outperforms the compared methods in terms of efficiency and accuracy.

The rest of the paper is organized as follows. We first introduce the related work about
the main action recognition methods. Then Section 3 introduces the proposed method to en-
hance Wi-Fi features. The following section provides the enhanced convolution Transformer
network to classify actions. Finally, the experiments and conclusions are presented.

2. Related Work

Currently, Internet of Things (IoT) has been applied to sensors, devices and software
to enhance the performance. One of the most important components for IoT working is
protocols and standards, and they can be divided into data protocols (WebSocket, Hyper
Text Transfer Protocol and Direct Digital Frequency Synthesis) and network protocols
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(Wi-Fi, Bluetooth and ZigBee). Given that IoT system is vulnerable to attacks, some latest
research [20,21] focuses on the security measures. Because of the limited capabilities of
5G, some research has put forward new advancement in next generation mobile wireless
communication (6G), especially connected Intelligence [22,23]. Furthermore, indoor human
motion recognition has become a popular field in recent research [24] combing IoT, smart
devices, and AI. Meanwhile, with the coverage of optical cables and the popularity of
indoor routers, Wi-Fi signals widely exist indoors. Furthermore, water accounts for about
70% of the human body. Thus, the human body has good reflectivity to indoor Wi-Fi
signals, and action recognition can be realized by distinguishing the varying signals and
corresponding them to human actions [25]. According to the different types of information
collected, recognition technology using Wi-Fi signals can be divided into two categories:
motion recognition based on RSSI and motion recognition based on CSI.

Because of the high sensitivity to moving objects, some research works use RSSI
information to image different moving objects [26] and RSSI for human motion recogni-
tion [27,28]. RSSI will no longer decrease monotonically with the increase in propagation
distance due to small-scale shadow fading caused by signal multi-path propagation in an
indoor environment, which limits the accuracy of measurement. CSI contains amplitude
and phase information, so it has higher sensitivity to individual motion. At present, many
achievements have been made in motion recognition based on CSI in Wi-Fi signals, such as
e-eyes [29], CARM [19], WiGest [30], and WIMU [31]. These wireless motion recognition
studies extract statistical features (such as histogram of signal amplitude [29]) or physical
features (such as power distribution of Doppler shift [19]) from the CSI of Wi-Fi signal and
associate the features with human motion. However, due to the lack of spatial resolution,
the wireless signal also carries adverse environmental information irrelevant to the action,
which limits the effect of recognition.

Therefore, researchers began optimizing the recognition model’s cross-domain gen-
eralization ability, such as using transfer learning and confrontational learning [32–34].
However, these methods need to add new data sets to the recognition model every time,
which greatly increases the training workload. With the rise of deep learning, many
attempts have been made to improve the generalization performance of Wi-Fi action recog-
nition. For example, Widar 3.0 [35] mine the characteristics extracted by CSI in spatial
dimension and time dimension, respectively, by using convolutional neural network (CNN)
and recurrent neural network (RNN) to distinguish common human–computer interaction
actions. STFNets [36] proposed a new neural network construction module: a short-time
Fourier neural network. It directly learns the characteristics in the frequency domain of
various sensor inputs. EI [32] designed a more complex network structure, defined a new
loss function, and directly used the new model to learn the common expression of signal
features in different environments based on making full use of unlabeled data. Therefore, it
is necessary to use deep learning to improve generalization ability while avoiding more
complex network structures from slowing down or even hindering training and consuming
training data excessively [37].

3. Enhanced Wi-Fi Features Based on Human Body Speed Distribution

In this section, we present an improved MUSIC algorithm to enhance the resolution
ratio of arrival angle by introducing time of flight, then solve the sampling time offset and
sampling frequency offset caused by the time of flight. Given that some human actions have
too little influence on signals to estimate DFS, a dynamic signal amplification method based
on the Fresnel Zone model is proposed, which establishes the corresponding relationship
between DFS and the human motion velocity distribution in the human reference frame.

3.1. Human Body Location Based on Improved Multi-Signal Classification Algorithm

Wi-Fi technology uses several different subcarriers to transmit signals, which are mod-
ulated on different subcarriers to achieve the purpose of parallel transmission. The subcarri-
ers are superimposed during propagation and accepted by the receiver antenna. The key of
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the MUSIC algorithm is to calculate the phase shift caused by the distance among antennas
to estimate AOA (angle of arrival). However, this method requires many antennas, and the
estimation accuracy will be greatly reduced when applied to human body location scenes
due to the multi-path effect. To make phase differences more obvious and improve the
resolution of AOA, we introduce ToF to the MUSIC algorithm. The signals from L signal
resources are accepted by receiving array consisting of M antennas. For one signal, different
subcarriers arrive at one receiving antenna with the same incident angle ϕ. Because of the
different frequencies, the generated original phase shift formula is as follows

Ω =
2π(L− 1)d( f1 − f2) cos(ϕ)

c
(1)

where f1 and f2 are the frequency of two subcarriers and c is the speed of light. Due to
Wi-Fi’s narrow bandwidth signal, the subcarriers’ frequency is close. Since light travels
very fast, the phase difference is not significant enough to be involved. After adding ToF,
the phase shift formula becomes

Ω = 2π( f1 − f2)τ (2)

where τ is the time of flight. Through importing a new parameter, the distinction of the
phase shift is strengthened. Furthermore, the spatial spectral function is expressed as:

Pmu(ϕ, θ, τ) =
1

aH(ϕ, θ, τ)UUHa(ϕ, θ, τ)
(3)

According to the spatial spectrum function, traversing all azimuth ϕ, pitch θ, and ToF τ
at certain intervals, we can find out the number of maxima and the corresponding azimuth
and pitch and then deduce the position of the human body in reverse. By the signal’s angle
of arrival, the source azimuth can be uniquely determined.

The introduction of ToF will lead to the time offset in random sampling, and we
leverage the multiple linear regression method to solve the phase noise. STO (Sampling
Time Offset) and SFO (Sampling Frequency Offset) equivalently influence the transmitting
or receiving antennas. The extra delay is constant in the transmission path of different
antennas with the same sampling, but inconsistent phase errors are generated in different
sampling packets. The offset introduced by SFO to all paths appears as a linear frequency
term. Namely, STO offset τsto leads to 2π∆ f (k− 1)τsto phase offset in the k-th subcarrier,
and ∆ f is the frequency interval between carriers.

For each CSI measurement, the offset is removed by removing the linear fitting of the
spread phase shift on all antenna subcarriers. Assuming that ψ(i, j, k) is the CSI phase of
the k-th subcarrier transmitted by the j-th transmitting antenna and received by the i-th
receiving antenna, the best linear fitting can be obtained as follows:

τ̂sto = arg min
β1

i,j=1

∑
N,M

k=1

∑
K
(ψ(i, j, k) + 2π∆ f (k− 1)β1 + β2)

2 (4)

where β1 is the common slope of receiving phase response antennas and β2 is offset.
The corrected CSI phase is

ψ̂(i, j, k) = ψ(i, j, k)− 2π∆ f (k− 1)τ̂sto (5)

Finally, the AoA of the reflected signal can be obtained from CSI information, and the
position information of the human body can be obtained from the arrival angle of the
human body signal [38–40].
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3.2. DFS Estimation Based on Dynamic Signal Amplification Method

To obtain DFS caused by the movement of the human body between a pair of trans-
mitting and receiving antennas [40], we propose a method to amplify the dynamic signal
changes caused by the human body and extract the required DFS from it. According to
the Fresnel zone model, the larger the motion amplitude, the greater the signal change,
and the easier it is to detect the dynamic path. The signal change is a segment of a sine
wave. When the path length change caused by action is small, its phase change is not
easily observed. However, the same displacement at different starting positions will cause
different signal changes.

Therefore, to change the phase difference to amplify the signal, the phase of the static
vector can be changed by adding a virtual path to change the phase difference between the
dynamic vector and the static vector. The specific process is as follows:

(A) Search for phase shift. As shown in Figure 1, Hs,Hd, Hv and H′s are static variable,
dynamic variable, virtual variable, and static synthetic variable, respectively, and H′s is the
final variable to be updated. The dynamic and static vector phase difference ∆θsd can not
be obtained directly from the original signal but can be traversed between 0− 2π, and the
phase shift with the strongest sensing ability is the best one.

(B) Calculate multiple radial quantities. Estimate the static variables approximately
by the signal average value periodically. In Figure 2, Hv1 and Hv2 are two virtual paths
with different lengths; they and Hs are combined into different static paths, H′s1 and H′s2,
respectively. It can be observed that although H′s1 and H′s2 have different lengths, they
have the same phase shift, which ensures the same degree of improvement in sensing
performance. To simplify the problem, we can set |H′s|to a value equal to |Hs|, which
will not affect the correctness of the result. To date, according to the known parameters,
the amplitude of the synthetic static path can be constructed:

|Hv| =
√
|Hs|2 + |H′s|

2 − 2|Hs||H′s| cos ω (6)

After the amplitude of Hv is obtained, δ = arcsin
sin ω|Hs′ |
|Hv | can be obtained according

to |Hv |
sin ω = |H′s |

sin δ . The phase of virtual path Hv is θv = θs + δ − π, and θs is the phase of
static path vector. According to the given ω, the virtual static vector can finally be obtained
as follows:

Hv = |Hv|ejθv (7)

(C) Add a composite path. After Hv is obtained, this path is created by MATLAB and added
to the original signal. For the original signal of S0 = (CSI1, CSI2, . . . , CSIP)) with p-CSI sam-
ples, the new signal after adding virtual path is S = (CSI1 + Hv, CSI2 + Hv, . . . , CSIP + Hv).

Figure 1. Diagram without virtual diagram.
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Figure 2. Diagram with virtual diagram.

To date, a new signal with strong dynamic perception ability has been obtained.
The DFS caused by the dynamic path can be extracted by time-frequency analysis of this
signal, and its symbol is fD(t), which is related to the change of signal propagation path
length d(t):

fD(t) = −
1
λ

d
dt

d(t) (8)

where λ is the signal wavelength. The channel response of the dynamic path can be
expressed by DFS:

H(t) = Hs(t) + Hd(t) = Hs(t) + ∑
`∈Ld

α`(t)e
−j2π

∫ f
−∞ fDl

(u)du (9)

where H(t) is the resultant signal accepted at the receiver, which is a linear superposition
of Hs(t) and Hd(t). α(t) is the original phase shift and amplitude in complex form.

In a short time, α and fDcan be considered to be constant, as shown in the following
formula:

H(t) ≈ Hs(t) + ∑
`∈Ld

α`(t)B
(

fD`
(t)
)

(10)

where B is the window of dividing signal segments, and Ld is the number of dynamic paths.
By applying a short-time Fourier transformation to the new CSI, we can obtain the DFS
caused by human actions.

3.3. Motion Velocity Distribution Model Based on Human Frame of Reference

When a human body makes an action, its body parts (for example, two hands, two
arms, and the trunk) move at different speeds, and DFS is highly correlated with the
orientation of the human body position. The movement speed distribution obtained from
DFS is also related to human body position. However, in the human frame of reference,
the segmentation of the moving body is only associated with the type of action and the
distribution of movement speed, which is irrelevant to the position. Thus, we must
transform to the human frame of reference to reduce parameters.

It is necessary to estimate the target’s position information in the Z-axis direction and
two-dimensional plane simultaneously to establish the human body’s three-dimensional
coordinate system. The local coordinate system centered on the human body takes the
front-facing direction of the human body as the X-axis, and the other direction parallels
the ground and is perpendicular to the X-axis as the Y-axis. To include the actual height of
most people, we set the altitude datum of the Z-axis to 1.3 m relative to the ground and
obtain the three-dimensional coordinates of the transmitting end and receiving end of the
i-th channel in the human coordinate system:

l(i)t =
(

x(i)t , y(i)t , z(i)t

)
(11)
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l(i)r =
(

x(i)r , y(i)r , z(i)r

)
(12)

Velocity component ~v =
(
vx, vy, vz

)
caused by human action contributes to the fre-

quency component. We label it as f (i)(~v), and the following is the corresponding relation
for the i-th channel:

f (i)(~v) = a(i)x vx + a(i)y vy + a(i)z vz (13)

where a(i)x ,a(i)y ,a(i)z are the coefficients determined by the three-dimensional position infor-
mation of the transmitting end and the receiving end:

a(i)x =
1
λ

 x(i)t∥∥∥l(i)t

∥∥∥
2

+
x(i)r∥∥∥l(i)r

∥∥∥
2

 (14)

a(i)y =
1
λ

 y(i)t∥∥∥l(i)t

∥∥∥
2

+
y(i)r∥∥∥l(i)r

∥∥∥
2

 (15)

a(i)z =
1
λ

 z(i)t∥∥∥l(i)t

∥∥∥
2

+
z(i)r∥∥∥l(i)r

∥∥∥
2

 (16)

According to Equations (14)–(16), the coefficients a(i)x ,a(i)y ,a(i)z between human body’s
velocity and frequency are obtained. Due to the limitation of human body structure (such
as joints), the number of reflected multi-path signals is limited. The possible velocity
components caused by human motion in the X and Y axes are generally no more than 8,
and that in the Z axis is generally no more than 5. Thus, we traverse all possible ~v in a
certain speed range according to the set step size and multiply it by corresponding ax,ay,az.
The possible frequency component generated by the possible speed component of the
human body is obtained. If the frequency component calculated is between the maximum
and minimum sampling frequencies, the corresponding position of the allocation matrix
is 1; otherwise, it is 0, and the initial allocation matrix in i-th link A(i)

F∗PN2 is obtained. F
represents the number of samples, namely the number of peak values in the DFS profile or
the number of actual velocity components. N is the number of possible velocity components
in X or Y axes [35], and P is that in Z axes.

A(i)
j,k =

{
1 fmin < f (i)(~vk) < fmax
0 others

(17)

where fmin and fmax are the minimum and maximum frequency sampling frequency,
respectively, f (i)(~vk) is possible velocity components correspond to frequency components.

The DFS obtained in Section 3.2 is segmented according to the set time t, and the
average value is taken as the actual value of the segment.

min
V

∑
M

∣∣∣EMD
(

A(i)V, Di
)∣∣∣+ η‖V‖ (18)

where M is the number of Wi-Fi transceiver links. The sparseness of the number of velocity
components is defined by the term η‖V‖, where η is the sparseness coefficient, and ‖V‖ is
the number of non-zero velocity components. To alleviate the approximate error caused
by the quantification of velocity distribution, EMD (The Earth Mover’s Distance) [41] is
used to characterize the difference between the two distributions. The difference between
the actual and the estimated Doppler spectrum calculated by the allocation matrix A is
measured by the Formula (18). We can obtain the corresponding human motion speed
distribution by iteratively reducing these two distributions’ differences.
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4. Enhanced Convolution Transformer Network

In this section, the multi-scale convolution module is added to the Transformer model
to enhance its local feature extraction ability further and improve the classification per-
formance of different actions. In addition, Gaussian range coding is introduced to retain
the time sequence information of data, which reduces the difference caused by individual
factors in the same action. Finally, human motion recognition is realized.

4.1. Model Overview

The human motion distribution data extracted from CSI is used as the input of the
convolution enhanced Transformer model, as shown in Figure 3. The main target is to
classify. Thus, we only use the Encoder component in the Transformer model. Firstly,
the input data is processed by the multi-head self-attention module [42] after the location
code. A weighted sum of the values is output, where the weight assigned to each value is
computed by the dot product of the query with the corresponding key.

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (19)

where Q ∈ RL×dk , K ∈ RL×dk , V ∈ RL×dV , dk, dv are queries, keys, values, the dimension of
Q and K, and the dimension of V, respectively. Q, K, and V are obtained by linear variation
of the input data.

Q = XWQ (20)

K = XWK (21)

V = XWV (22)

whereWQ ∈ Rd(in)×dK ,WK ∈ Rd(in)×dk ,Ww ∈ Rd(in)×dv are learnable weight parameters.
d(in) is the dimension of the input vector. To concentrate information from different
subspaces, the queries, keys, and values use different linear variations methods to change
h times (h-head). The output of the projection is wired and projected again to produce the
final output

MultiHead(Q, K, V) = [head1, . . . , head h]WO (23)

head i = Attention
(

XW i
Q, XW i

K, XW i
V

)
,WO ∈ Rhdm×dk is the final projection matrix..

Multi-head self-attention module makes the Transformer learn characteristic from different
subspace. In order to facilitate the residual connection, din = h ∗ dv. After residual connec-
tion and normalization, this structure can make the backward and forward propagation of
information smoother and alleviate the gradient explosion problem.

Figure 3. Convolutional Feature Augmentation Transformer Model Architecture.

Figure 3 shows the entire network structure. Furthermore, the main part is the
Transformer. Different from the usual Transformer, we use a dynamic convolution module
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instead of PFFN to capture feature information at different scales and strengthen the
model’s performance. Meanwhile, we use Gaussian Prior function to enhance the ability to
express human actions’ temporal features and retain the data sequence. Finally, extract the
corresponding action features for action classification.

4.2. Dynamic Convolution Module

In order to select appropriate convolution parameters for different action inputs, we
add a convolution module with adaptive size and quantity to the transformer based on the
idea of dynamic convolution so that the convolution size and the number of convolutions
can vary with the input. Setting two parallel convolutions for calculating these two
parameters will be more complex. Thus, we use the same set of parallel convolutions.
The size is 1× 1, and the number is K. As shown in Figure 4, we perform mean pooling on
the input feature matrix, and then go through two layers of full connection and ReLu unit,
respectively, use the softmax function to calculate the weight of the convolution kernel
size, use the sigmoid function to calculate the weight of the number of convolution kernels,
and train them jointly to calculate the final dynamic convolution parameters, and convolve
with the input features to obtain local features. The input and output of the dynamic
convolution formally are:

P = ReLU( Dropout (BN(Conv(W̃(X); X)))) (24)

In the formula: W̃ is the weight function of the convolution kernel parameter, which is
a function of the input X

W̃(X) =
K

∑
k=1

πk(X)W̃k (25)

In the formula: π is the weight parameter of a certain parameter value, and k is the
kth parallel convolution kernel.

Figure 4. Dynamic CNN structure.

4.3. Representation Enhancement Based on Gaussian Prior

Although the Transformer model uses the attention mechanism to avoid the defects of
network structures such as CNN and RNN, the attention mechanism of the Transformer
model does not include the positional relationship between data units, namely, it can not
focus on intermediate state actions in a complete action because they are the same. So, the
features are not distinguishable completely in the Transformer module.

The attention mechanism can calculate the semantic correlation between different units
but ignore the influence of distance. Thus, we use Gaussian distribution with the variance
of σ2 = 1/(2π) and the probability density of φ(d) = e−πd2

to increase the importance of
close cells and reduce the weight of long-distance units. At the same time, Equation (26)
transforms the Gaussian distribution into a bias term, saving additional multiplications.
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x̃i = ∑
j

φ
(
di,j
)

compi,j

Z1
xj = ∑

j

e−d2
i,j · e(xi ·xj)

Z2
xj

= ∑
j

e−d2
i,j+(xi ·xj)

Z2
xj

= ∑
j

Softmax
(
−d2

i,j +
(
xi · xj

))
xj

(26)

where xi represents the action speed distribution with position i in the action input x, d is

the distance between units, and Z1 = ∑k φ(di,k) compi,k and Z2 = ∑k e−d2
i,k+(xi ·xk) are the

normalization factors. We calculate the compatibility function according to the softmax
of the point multiplication to obtain the correlation between the distribution, namely
Comi,j = Softmax

(
xi · xj

)
.

5. Experiments and Analysis

In this section, we first provide in-depth ablation studies to analyze our method
and then conduct comparison experiments among different models on common data sets,
illustrating the whole algorithm’s effectiveness and superiority.

5.1. Experiment Settings

Select two 9300 network interface controllers (NICs) as the transmitter and receiver
of the signal and the CSI data is collected on the PicoScenes platform. The height of the
equipment at the transmitting and receiving end is 1.3 m, located in the middle of the human
body to realize three transmitting and six receiving points. The experimenter collected
movement at different positions and orientations in the open room, office, apartment
room, and corresponding aisle areas, including walking, running, etc. Ten acquisitions
were carried out for different actions, each lasting for 5 min. The signal transmission
frequency was set to 1000 Hz, the transmission energy was set to 30 dBm, and the subcarrier
bandwidth was set to 20 MBps.

When training the Transformer network, the appropriate parameters of the network
structure are determined through parameter debugging. The average pool step is set to
4. The number of Gaussian distributions k = 10. The number of Transformer layers is
set to h = 5, the input and output dimension is set to 90, and the number of heads in
the multi-head attention mechanism is set to 9. The number of parallel convolutions in
dynamic convolution structure is 6, and dropout is set to 0.1. There are two convolution
types in the prediction layer. The size is 10, 40, the number of each type W is 128, and the
dropout of this layer is set to 0.5.

5.2. Ablation Analysis of Our Method

We conduct ablation studies to verify the importance of the methods in Sections 3 and 4,
including the importance of correcting errors caused by noise, the effect of motion distribution
accuracy, and the contribution of Convolution module and Gaussian prior.

Importance of correcting errors caused by noise: To enhance the phase difference of
the MUSIC algorithm, we introduce time-of-flight, but the resulting STO and SFO at the
same time introduce phase errors in the received signals of different packets. As shown
in Figure 5, the left side is the CSI map of the original sampling, and the right side is the
result after using a multivariate linear combination. It can be seen that the phase offset has
been aligned.

Effect of motion distribution estimation: The human action velocity distribution is
used as the input of the network, so the accuracy of the action velocity distribution estima-
tion directly affects the effect of action recognition, which in turn depends on the accuracy
of the human body position estimation. To verify the effect of Section 3, we add joint pa-
rameters and human body dynamic signal amplification steps for comparison experiments.
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As shown in Figure 6, it can be seen that the accuracy rate has been significantly improved
after introducing our method.

(a) (b)
Figure 5. The correction of phase noise. (a) Original CSI phase. (b) Corrected CSI phase.

Figure 6. Comparison diagram of action speed distribution effect.

Contribution of dynamic Convolution module and Gaussian prior: By using the
weight function to adjust the convolution kernel parameters corresponding to different
actions dynamically, the model extracts action features more accurately. To consider the
characteristics of time series, Gaussian priors are added. As shown in Figure 7a, the features
of similar actions are confused, and the features of the same action are scattered and easily
identified as other action features. Figure 7b shows the classification performance of the
model using the Convolution module and Gaussian prior. We can find that the feature
difference between different actions increases, and at the same time the action features that
are opposite in time can be better distinguished.

5.3. Comparison with Other Methods

In order to better confirm the improvement of the proposed algorithm, we compare
the method in Section 3.1 with the other two positioning models for AoA estimation,
and contrast the recognition of our algorithm with other methods based on CSI using
public datasets.

Two typical positioning models are used to estimate human body positions from
CSI data collected at different locations. Figure 8 shows the cumulative error of AoA
estimation for dynamic human bodies by different models. The median errors of SpotFi [43],
Widar2.0 [38], and the model in this paper are 10.3◦, 5.1◦, and 3.7◦, respectively. Among
them, SpotFi uses the MUSIC algorithm for positioning, and the accuracy of this method
greatly reduces when the number of antennas is insufficient. Widar2.0 uses the traditional
maximum likelihood and the extended SAGE algorithm. SAGE algorithm completes
parameter decomposition by continuous transformation of index set and decomposes the
maximization problem of AoA into the corresponding maximization problems of index set
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parameters. This method does not guarantee certain convergence to the optimal value and
a local optimum usually results in not reaching the desired estimate.

(a) (b)
Figure 7. Classification performance. (a) Model performance without Convolution module and
Gaussian prior. (b) Model performance with Convolution module and Gaussian prior.

Figure 8. AOA cumulative error of different models.

There are also many action recognition methods based on CSI; however, the corre-
sponding of action sets are not exactly the same. For the sake of fairness, the CSI action
data set in the publicly available WiAR [44] and the human activity recognition data set
WiDAR [35] from the Tsinghua University team are selected. We selected CARM [19],
Widar 3.0 system [35], EI [32], and our model by PRF values (precision, recall, F1-score) as
indicators for comparison.

As shown in Tables 1 and 2, CARM uses DFS as the learning feature and adopts
the HMM model, so the performance is the worst when human motion data in different
environments and different positions are added to the datasets. EI combines the adversarial
network and specially trains the loss, and additionally utilizes the features of the unlabeled
data in the target domain, and its recognition effect is better, but the adversarial network
model is uncontrollable and the training is difficult. Widar 3.0 uses CNN to extract signal
spatial features and GRU to extract temporal features. The time normalization of action
features must be strictly performed and the training time is long, otherwise the recognition
effect cannot reach expectations. Our model transforms the DFS into the three-dimensional
velocity distribution of human actions, which improves the efficiency and accuracy of
action recognition compared with other recognition models.
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Table 1. Comparison of recognition accuracy of all models in WiAR.

This Paper Widar 3.0 EI CARM

F1 Score 90.24 88.79 92.32 70.45
Precision 91.65 88.12 92.43 70.60
Recall/TPR 90.33 89.48 92.21 70.32

Table 2. Comparison of recognition accuracy of all models in WiDAR.

This Paper Widar 3.0 EI CARM

F1 Score 92.98 91.79 91.27 80.41
Precision 90.65 91.12 91.22 80.60
Recall/TPR 91.33 92.48 91.34 80.32

5.4. Generalization Experiment

To verify the generalization of our method, we conduct experiments in different
positions, orientations and scenarios, employ 9300 network cards and the PicoScenes
software platform for data acquisition and processing, and evaluate the performances of
using human velocity distribution compared with that of using original CSI data.

In the area of 2 m × 2 m, the positions of the transmitter and receiver are fixed as
shown in Figure 9. The variation interval of the human body position is [u,w,x,y,z], and the
variation interval of the human body orientation is [1,2,3,4,5].

Figure 9. Map of the device and the human body position.

The direction of the human body is toward 4, and the position of the human body is
changed in x, y, u, w, and z. Comparing Figure 10a with Figure 10b, we can see that the
recognition accuracy of using the human velocity distribution data is much higher than that
of using the original CSI data, and the accuracy is even improved by about 14% on average.
When the position of the human body changes from the sender to the receiver, the average
accuracy of different actions in any position using the human velocity distribution data
is above 90%. This indicates that the model has good generalization performance in the
location domain.

The different orientation of the human body will also have a certain impact on the
recognition. The human position is fixed as u, and the human orientation is varied in
orientations 1, 2, 3, 4, and 5 of Figure 9. Figure 11a shows the action recognition results
of the original CSI as input under different orientations, and the average accuracy is
68.2%. We can also find that when the orientation changes, the accuracy of the model
also changes. It is mainly because the path of the Wi-Fi signal obeys the law of reflection.
In some human body orientations, part of the action reflection signals are occluded by
the body, which leads to less action influence in the signal received by the receiver than
the normal situation and then leads to the reduction in recognition accuracy. Figure 11b
illustrates the accuracy of action recognition under different orientations with human
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velocity distribution as input. The average accuracy in this case is 84.4%. In Figure 11b,
recognition accuracy is improved under different orientations, indicating that the model has
certain generalization performance in the orientation domain. However, in the directions
which are easily occluded by the body (orientations 1 and 2), the model cannot eliminate
the influence caused by the signal reflection law.

We also test the algorithm in different scenarios, as shown in Figure 12, among which
the training accuracy rate of the open indoor scene is the highest, and the accuracy rate
of the office scene is the lowest. Due to the complex environment, the wavelet transform
cannot completely remove the noise, which interferes with the performance of the action
recognition, but the accuracy rate is still above 84%.

(a) (b)
Figure 10. Accuracy of motion recognition in different positions. (a) Using CSI data. (b) Using human
velocity distribution.

(a) (b)
Figure 11. Accuracy of motion recognition under different orientations. (a) Using CSI data. (b) Using
human velocity distribution.

Figure 12. Accuracy of motion recognition in different scenarios.
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6. Conclusions

In order to adapt to the common equipment, we propose a human body positioning
method based on the improved MUSIC algorithm. In view of the problem that the dynamic
path changes caused by some actions are slight, we amplify the dynamic signal changes
based on the Fresnel area model and obtain the DFS of human motion. According to the
human position and DFS, the motion speed distribution based on the human frame of
reference is constructed. Then, we use Transformer to capture the movement characteristics
of the input data and add a dynamic convolution module and Gaussian Coding in order
to enhance the local feature extraction ability of the model and improve the classification
performance of different movements. Our model improves the generalization ability
without complex network structures, which has excellent potential for motion recognition
in different environments, locations, and orientations. In future work, we will expand the
single-user scene into a multi-user scene.
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