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Abstract: Aiming at robotic manipulators subject to system uncertainty and external disturbance, this
paper presents a novel adaptive control scheme that uses the time delay estimation (TED) technique
and reinforcement learning (RL) technique to achieve a good tracking performance for each joint of a
manipulator. Compared to conventional controllers, the proposed control scheme can not only handle
the system parametric uncertainty and external disturbance but also guarantee both the angular
positions and angular velocities of each joint without exceeding their preset constraints. Moreover,
it has been proved by using Lyapunov theory that the tracking errors are uniformly ultimately
bounded (UUB) with a small bound related to the parameters of the controller. Additionally, an
innovative RL-based auxiliary term in the proposed controller further minimizes the steady state
tracking errors, and thereby the tracking accuracy is not compromised by the lack of asymptotic con-
vergence of tracking errors. Finally, the simulation results validate the effectiveness of the proposed
control scheme.
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1. Introduction

Robotic manipulators have been extensively applied in assisting or even replacing
humans to perform the various tasks such as assembling [1], machine operation [2], debur-
ring [3], drilling [4], transportation [5] and manufacturing [6,7]. In order to successfully
perform such industrial tasks, it is essential to well control the motion of robotic manip-
ulators. However, the highly nonlinear and uncertain dynamics of robotic manipulators
result in the inapplicability of many traditional controllers designed for linear systems
such as linear quadratic control (LQC) [8,9] and linear H∞ control [10,11]. Hence, many
researchers have been motivated to place efforts on designing advanced controllers for
robotic manipulators.

State feedback linearization requiring a known dynamic model can transform the
nonlinear system to a linear form [12]. However, the dynamic model of robotic manipula-
tors is always uncertain because of unknown external disturbances and uncertain system
parameters. To handle the issue of uncertainty, many efforts have been made such as sliding
mode control (SMC) [13–18], fuzzy logic system (FLS)-based control [19–21], neural net-
work (NN)-based control [22–26], and disturbance observer (DOB)-based control [27–29].
More precisely, Zhang et al. [13] propose a fixed time sliding mode control for uncertain
robotic manipulators in which a conservative switching gain requiring the upper bound
of lumped uncertainty is used. In [21], an adaptive controller-based T-S (Takagi-Sugeno)
fuzzy system is designed, and the modified T-S fuzzy system can efficiently approximate
the unknown model of robotic manipulators. Hu et al. [26] present a multiple-layer neural
network-based controller that can achieve a high accuracy of motion control of robotic
manipulators subject to unknown disturbances. In [28], a high-order-sliding-mode differen-
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tiator (HOSMD)-based estimator is designed to compensate the mismatched uncertainties
without the need of assuming a bounded uncertainty.

Besides the uncertainty of the dynamic model, state constraint is also a common
problem of robotic manipulators, which has attracted much attention. For example,
Sun et al. [30] proposed an adaptive neural network control scheme considering full-
state constraints of robotic manipulators. In [31], an adaptive fuzzy control scheme that
can guarantee the constrained output is presented. Yu et al. [32] designed an adaptive
fuzzy control scheme working with a disturbance observer for the manipulators with full-
state constraints. Nevertheless, those controllers can only achieve either the constrained
tracking error of joint angle or the constrained error between the actual angular velocity
and the virtual control signal. In other words, controllers in [30–32] do not guarantee the
angular position and angular velocity for each joint of the robotic manipulator, within
the preset constraints. Recently, Yang et al. [33] designed a new adaptive control scheme
that can guarantee the angular position for each joint of a robotic manipulator to never
exceed the preset constraints. However, the constrained angular velocity of each joint is
not guaranteed.

In the light of reviewing the existing literature, the following issues need to be
further solved:

• In order to safely perform robotic manipulators, both the angular position and angular
velocity of each joint of robotic manipulators should be controlled to not exceed the
preset constraints. More precisely, the angular position (rotation angle) of each joint
should be always within a reasonable range to have no risk on physically breaking
the joint. Similarly, the angular velocity of each joint should not exceed its maximum
related to the maximum rotational speed of the driving motor;

• For some existing controllers (e.g., [9,23,26,30–32]), the tracking accuracy could be
compromised due to the bounded result of tracking errors and uncertainty-estimation
errors. Therefore, it is needed to avoid the loss of tracking accuracy caused by the lack
of asymptotic convergence of tracking errors.

To handle the above issues, this paper proposes a new adaptive control scheme that
utilizes time delay estimation (TDE) and reinforcement learning (RL) for n-link robotic
manipulators. In the proposed control scheme, the multiple-input-and-multiple-output
(MIMO) robotic system is initially decomposed into n single-input-single-output (SISO)
subsystems by TDE. Each subsystem is with an unknown bounded TDE error. After that,
the novel virtual control law for each subsystem is designed, which can not only achieve
the boundness of tracking errors for each joint in the presence of TDE error, but can also
guarantee both the angular position and angular velocity for each joint to be not exceeding
the preset constraints. To improve the tracking accuracy, an RL-based term in the virtual
control law is designed, which automatically learns the optimal parameters of the controller
in the different system states. RL is an artificial intelligence technique that gradually
explores the optimal policy by interacting with the environment, which has attracted many
interests in the control of robotic manipulators such as [34–36]. Particularly, the RL-based
term in this paper is designed to avoid the violation of the boundness of tracking errors,
even if a bad policy is tried by RL, which ensures a safe environment for implementing RL.
The tracking errors are proven to be uniformly ultimately bounded (UUB) via Lyapunov
theory. Simulation results indicate the proposed control scheme can achieve a high tracking
accuracy in the presence of model uncertainty and unknown disturbances.

The major merits of this paper include the following points:

• Compare with some existing research [30–33], in addition to the basic achievement of
the uniformly ultimately bounded (UUB) tracking error for each joint in the presence
of TDE error; the control scheme can guarantee both the angular position and angular
velocity for each joint to be not exceeding the preset constraints;

• The novel adaptive gain in (13) results in the smooth control torques to reduce the
chattering effect caused by switching term in (10). Meanwhile, an RL-based term
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can effectively improve the tracking accuracy, which thereby reduces the possible
steady-state tracking errors caused by the lack of asymptotic convergence;

• The mathematical expression of the controller is simple, meanwhile, any prior knowl-
edge of upper bounds caused by an imprecise model are unnecessary in our
control scheme.

The rest of this paper is organized as follows: in Section 2, the dynamics model of
n-link robotic manipulators is given, and the control objective is described. In Section 3,
the RL-based adaptive control scheme is proposed and the proof of stability is given. In
Section 4, the numerical simulation is conducted to verify the effectiveness of the proposed
controller. The conclusion is given in Section 5.

2. Dynamical Model and Problem Statement

The dynamic model of n-link robot manipulators is shown as the following:

M(q(t))
..
q(t) + C

(
q(t),

.
q(t)

) .
q(t) + G(q(t)) + F

( .
q(t)

)
= τ(t) + τd(t) (1)

where M(q(t)) ∈ Rn×n is the inertia matrix, q(t) = [q1(t), q2(t), .., qi(t), .., qn(t)]
T∈ Rn is the

vector of angular positions of joints of manipulator. C
(
q(t),

.
q(t)

)
∈ Rn×n is the Coriolis

and centrifugal matrix. G(q(t))∈ Rn is the gravity vector. F
( .
q(t)

)
∈ Rn is the vector of

friction. τ(t) ∈ Rn is the vector of torques applied on the joints. τd(t) ∈ Rn is the
external disturbance.

The model (1) can be further written as (2) to indicate the system uncertainty.

..
q(t) = M(q(t))−1[−C

(
q(t),

.
q(t)

) .
q(t)−G(q(t))− F

( .
q(t)

)
+ τd(t)

]
+
[
M(q(t))−1 − M̂(q(t))−1

]
τ(t)

+M̂(q(t))−1τ(t) = Γ(t) + M̂(q(t))−1τ(t)
(2)

where M̂(q(t)) is the estimation of M(q(t)). Γ(t) = M(q(t))−1 [−C
(
q(t),

.
q(t)

) .
q(t)−G(q(t))

−F
( .
q(t)

)
+ τd(t) ] +

[
M(q(t))−1 − M̂(q(t))−1

]
τ(t) is the system uncertainty.

The vector of error between the desired angular position and actual angular position
is defined in (3):

e(t) = q(t)− qd (3)

where qd = [qd1, qd2, . . . , qdn]
T ∈ Rn is the vector of desired angular position of joints.

e = [e1, e2, . . . , en]
T ∈ Rn is the tracking error vector.

The main control objective is to design the torque τ(t) that can drive all the joints of
the robotic manipulator system (1) to approach their desired angular positions. Meanwhile,
both the angular positions and angular velocities for each joint should be guaranteed to not
exceed the given constraints. The control objective can be described by (4)–(6).

||e(t)|| ≤ σ, ∀ t ≥ 0 (4)

|qi(t)| < εi, ∀ t ≥ 0, i = 1, 2, .., n (5)∣∣ .
qi(t)

∣∣ < Λi, ∀ t ≥ 0, i = 1, 2, .., n (6)

where σ∗ > σ ≥ 0, and σ∗ > 0 is a positive constant, εi > 0 is a positive constant referring
to the angular position constraint of the ith joint, and Λi > 0 is a positive constant, meaning
the angular velocity constraint of the ith joint.

Remark 1. The positive constant σ∗ is related to the initial state of the system and parameters
of the controller. σ reflects the tracking accuracy. Notably, σ(t→ ∞) = 0 means the asymptotic
convergence of tracking errors.
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Remark 2. In this paper, we consider the angular position tracking problem for each joint of
the manipulator. Hence, qdi is a constant for i = 1, 2, .., n., which means

.
qdi = 0. The angular

trajectory tracking problem will be considered in our future work.

3. Controller Design and Stability Analysis

In this part, the adaptive RL-based controller working with TDE is developed. After
that, the stability is proven by using Lyapunov theory.

3.1. Controller Design

The TDE technique is applied to handle the system uncertainty in (2):

Γ̂(t) ≈ Γ(t− L) =
..
q(t− L)− M̂−1

(q(t− L))τ(t− L) (7)

where Γ̂(t) = [Γ̂1, Γ̂2, .., Γ̂n]
T ∈ Rn is the estimate of Γ(t). L > 0 is the sampling time

of TDE.

Lemma 1. [14] The TDE error of robotic manipulator (2) is bounded such that
∣∣Γi(t)− Γ̂i(t)

∣∣ ≤ Γ∗i
(for i = 1, 2, . . . , n) if the following condition is satisfied:

∣∣∣∣∣∣I−M−1(q(t))M̂ (q(t− L))||2 < 1 (8)

where Γ∗i is an unknown positive constant.
The control law working with TDE technique is designed as follows:

τ(t) = M̂(q(t))
[
−Γ̂(t) + u(t)

]
(9)

where u(t) = [u1(t), u2(t), . . . , un(t)]
T ∈ Rn is the virtual control law.

The virtual control law in (9) is designed as follows:

ui = −d̂isgn
( .
qi
)
− 1

1 + kyiCi

[
kpiei + kdi

.
qi + ksi Aiqi + ksiBizi + Λi

.
qi + ΛiΛitanh

(
ei
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i
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ti = 1, 2, . . . , n

(10)

where kpi, ksi, kdi,
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Ai =
ε2

i z2
i(

ε2
i − q2

i
)2 , Bi =

ε2
i

ε2
i − q2

i
, Ci =

2Λ2
i(

Λ2
i −

.
q2

i

)2 (11)

where εi > 0 is the restricted upper bound of angular position of the ith joint. Λi > 0 is the
restricted upper bound of angular velocity of the ith joint.

And the variable zi is defined as follows:

zi = ei +
∫ t

0
ηi(Θ)dΘ, ηi = −βizi (12)

where βi is a positive constant.
The d̂i is used to handle the bounded TDE error and the update law of d̂i is designed

as follows.

.
d̂i =


ψi
(
1 + kyiCi

)∣∣ .
qi
∣∣ , i f

(
d̂i ≤ 0

)
or
(
Ωi > Ωi

)
−ψi

δi
(1+kyiCi)| .qi|

, i f
(

d̂i > 0
)

and
(
Ωi ≤ Ωi

) (13)
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where ψi, δi and Ωi are positive constants. The variable Ωi is defined as (14).

Ωi =
1
2

.
q2

i +
1
2

kpie2
i +

1
2

ksi
ε2

i z2
i

ε2
i − q2

i
+ kyi

.
q2

i

Λ2
i −

.
q2

i

+ Λi

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 27 
 

Remark 1. The positive constant 𝜎∗ is related to the initial state of the system and parameters of 
the controller. 𝜎 reflects the tracking accuracy. Notably, 𝜎(𝑡 → ∞) = 0 means the asymptotic 
convergence of tracking errors. 

Remark 2. In this paper, we consider the angular position tracking problem for each joint of the 
manipulator. Hence, 𝑞  is a constant for 𝑖 = 1,2, . . , 𝑛., which means 𝑞 = 0. The angular tra-
jectory tracking problem will be considered in our future work. 

3. Controller Design and Stability Analysis 
In this part, the adaptive RL-based controller working with TDE is developed. After 

that, the stability is proven by using Lyapunov theory. 

3.1. Controller Design 
The TDE technique is applied to handle the system uncertainty in (2): 𝜞(𝑡) ≈ 𝜞(𝑡 − 𝐿) = 𝒒(𝑡 − 𝐿) − 𝑴 𝟏(𝒒(𝒕 − 𝑳))𝝉(𝑡 − 𝐿) (7)

where 𝜞(𝑡) = [𝛤 , 𝛤 , . . , 𝛤 ] ∈ 𝑅  is the estimate of 𝛤(𝑡). 𝐿 > 0 is the sampling time of 
TDE. 

Lemma 1. [14] The TDE error of robotic manipulator (2) is bounded such that 𝛤(𝑡) − 𝛤(𝑡) ≤𝛤𝒊∗ (for 𝑖 = 1,2, … , 𝑛) if the following condition is satisfied: 𝑰 − 𝑴 𝒒(𝑡) 𝑴 𝒒(𝑡 − 𝐿) 𝟐 <  1 (8)

where 𝛤𝒊∗ is an unknown positive constant. 
The control law working with TDE technique is designed as follows: 𝝉(𝑡) = 𝑴 𝒒(𝑡) −𝜞(𝑡) + 𝒖(𝑡)   (9)

where 𝒖(𝑡) = [𝑢 (𝑡), 𝑢 (𝑡), … , 𝑢 (𝑡)] ∈ 𝑅  is the virtual control law. 
The virtual control law in (9) is designed as follows: 𝑢 = −𝑑 𝑠𝑔𝑛(𝑞 ) − 11 + 𝑘 𝐶 𝑘 𝑒 + 𝑘 𝑞 + 𝑘 𝐴 𝑞 + 𝑘 𝐵 𝑧 + 𝜆  𝑞 + 𝜆 𝛬 𝑡𝑎𝑛ℎ 𝑒  ₵  

𝑖 = 1, 2, . . . , 𝑛  (10)

where 𝑘 , 𝑘 , 𝑘 , ₵ and 𝑘  are the positive constants determined by users. 𝜆 > 0 is a 
positive variable determined by the fuzzy reinforcement learning mechanism. 𝐴 = , 𝐵 = , 𝐶 =  (11)

where 𝜀 > 0 is the restricted upper bound of angular position of the 𝑖  joint. Λ > 0 is 
the restricted upper bound of angular velocity of the 𝑖  joint. 

And the variable 𝑧  is defined as follows: 𝑧 = 𝑒 + 𝜂 (Θ) 𝑑Θ, 𝜂 = −𝛽 𝑧  (12)

where 𝛽  is a positive constant. 
The 𝑑  is used to handle the bounded TDE error and the update law of 𝑑  is de-

signed as follows. 

𝑑 =  ⎩⎪⎨
⎪⎧ 𝜓 1 + 𝑘 𝐶 |𝑞 | , 𝑖𝑓 𝑑 ≤ 0  𝑜𝑟 (𝛺 > 𝛺 )

−𝜓 𝛿1 + 𝑘 𝐶 |𝑞 | , 𝑖𝑓 𝑑 > 0  𝑎𝑛𝑑 (𝛺 ≤ 𝛺 ) (13)

where 𝜓 , 𝛿  and 𝛺  are positive constants. The variable 𝛺  is defined as (14). 

i ln
[

cosh
(

ei

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 27 
 

Remark 1. The positive constant 𝜎∗ is related to the initial state of the system and parameters of 
the controller. 𝜎 reflects the tracking accuracy. Notably, 𝜎(𝑡 → ∞) = 0 means the asymptotic 
convergence of tracking errors. 

Remark 2. In this paper, we consider the angular position tracking problem for each joint of the 
manipulator. Hence, 𝑞  is a constant for 𝑖 = 1,2, . . , 𝑛., which means 𝑞 = 0. The angular tra-
jectory tracking problem will be considered in our future work. 

3. Controller Design and Stability Analysis 
In this part, the adaptive RL-based controller working with TDE is developed. After 

that, the stability is proven by using Lyapunov theory. 

3.1. Controller Design 
The TDE technique is applied to handle the system uncertainty in (2): 𝜞(𝑡) ≈ 𝜞(𝑡 − 𝐿) = 𝒒(𝑡 − 𝐿) − 𝑴 𝟏(𝒒(𝒕 − 𝑳))𝝉(𝑡 − 𝐿) (7)

where 𝜞(𝑡) = [𝛤 , 𝛤 , . . , 𝛤 ] ∈ 𝑅  is the estimate of 𝛤(𝑡). 𝐿 > 0 is the sampling time of 
TDE. 

Lemma 1. [14] The TDE error of robotic manipulator (2) is bounded such that 𝛤(𝑡) − 𝛤(𝑡) ≤𝛤𝒊∗ (for 𝑖 = 1,2, … , 𝑛) if the following condition is satisfied: 𝑰 − 𝑴 𝒒(𝑡) 𝑴 𝒒(𝑡 − 𝐿) 𝟐 <  1 (8)

where 𝛤𝒊∗ is an unknown positive constant. 
The control law working with TDE technique is designed as follows: 𝝉(𝑡) = 𝑴 𝒒(𝑡) −𝜞(𝑡) + 𝒖(𝑡)   (9)

where 𝒖(𝑡) = [𝑢 (𝑡), 𝑢 (𝑡), … , 𝑢 (𝑡)] ∈ 𝑅  is the virtual control law. 
The virtual control law in (9) is designed as follows: 𝑢 = −𝑑 𝑠𝑔𝑛(𝑞 ) − 11 + 𝑘 𝐶 𝑘 𝑒 + 𝑘 𝑞 + 𝑘 𝐴 𝑞 + 𝑘 𝐵 𝑧 + 𝜆  𝑞 + 𝜆 𝛬 𝑡𝑎𝑛ℎ 𝑒  ₵  

𝑖 = 1, 2, . . . , 𝑛  (10)

where 𝑘 , 𝑘 , 𝑘 , ₵ and 𝑘  are the positive constants determined by users. 𝜆 > 0 is a 
positive variable determined by the fuzzy reinforcement learning mechanism. 𝐴 = , 𝐵 = , 𝐶 =  (11)

where 𝜀 > 0 is the restricted upper bound of angular position of the 𝑖  joint. Λ > 0 is 
the restricted upper bound of angular velocity of the 𝑖  joint. 

And the variable 𝑧  is defined as follows: 𝑧 = 𝑒 + 𝜂 (Θ) 𝑑Θ, 𝜂 = −𝛽 𝑧  (12)

where 𝛽  is a positive constant. 
The 𝑑  is used to handle the bounded TDE error and the update law of 𝑑  is de-

signed as follows. 

𝑑 =  ⎩⎪⎨
⎪⎧ 𝜓 1 + 𝑘 𝐶 |𝑞 | , 𝑖𝑓 𝑑 ≤ 0  𝑜𝑟 (𝛺 > 𝛺 )

−𝜓 𝛿1 + 𝑘 𝐶 |𝑞 | , 𝑖𝑓 𝑑 > 0  𝑎𝑛𝑑 (𝛺 ≤ 𝛺 ) (13)

where 𝜓 , 𝛿  and 𝛺  are positive constants. The variable 𝛺  is defined as (14). 

i

)]
(14)

Remark 3. d̂i is to guarantee the stability in the presence of the bounded TDE errors. A conservative

update law of d̂i is to monotonously increase the value of d̂i such that
.
d̂i = ψi

(
1 + kyiCi

)∣∣ .
qi
∣∣.

Although such adaptive law can achieve the bounded tracking errors and angular velocities, the
great value of d̂i could result in the chattering effect on the calculated control torques. Therefore, a
novel adaptive law for d̂i shown in (13) is proposed to mitigate the chattering effect by decreasing
the value of d̂i without the breach of stability of system. The proof will be given later. Moreover,

d̂i > 0 holds because d̂i ≤ 0 leads to
.
d̂i = ψi

(
1 + kyiCi

)∣∣ .
qi
∣∣ ≥ 0.

Remark 4. Similar to [33], the terms Aiqi and Bizi in (10) are to guarantee the angular position of
each joint of manipulator to not exceed the preset constraint ±εi. While the term 1

1+kyiCi
in (10) is

to guarantee the angular velocity of each joint to not exceed the preset constraint ±Λi, which was
not achieved in [33]. The proof will be detailed later.

3.2. Stability Analysis

Theorem 1. If the initial angular position and velocity of all joints are within their preset constraints
such that |qi(0)| < εi and

∣∣ .
qi(0)

∣∣ < Λi, and (8) in lemma 1 holds, the control law consisting of (7)
and (9)–(14) can achieve the uniformly ultimately bounded tracking errors of robotic manipulator
system (1). Meanwhile, the angular velocity and angular position of each joint of manipulator are
within the preset constraints such that |qi(t)| < εi and

∣∣ .
qi(t)

∣∣ < Λi, ∀ t > 0. Namely, the control
target (4)–(6) is achieved.

Proof. By inserting (9) into (2) and using the fact of M̂−1M̂ = I with I = diag([1, 1, .., 1]) ∈
Rn×n, the MIMO robotic manipulator system can be decoupled into n uncertain SISO
subsystems (15).

..
qi(t) = ui(t) + di(t)i = 1, 2, . . . , n (15)

where qi ∈ q is the angular position of the ith joint. ui is designed in (10). di(t) = Γi(t)− Γ̂i(t)
is the TDE error.

The following Lyapunov candidate is designed:

V =
n

∑
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Vi =
n

∑
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where d̃i = Γ∗i − d̂i. Γ∗i is the upper bound TDE error defined in Lemma 1.
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i

))
≥ 0 holds because of the fact of cosh(·) ≥ 1 and the fact of

ln(x) ≥ 0 with x ≥ 1. Therefore, the Lyapunov candidate (16) is positive defined as long as
|qi| < εi and

∣∣ .
qi
∣∣ < Λi.

Taking the derivative of the Lyapunov function (16) with respect to the time t and
using (11), (12) and (15), we have:
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.
V = ∑n

i=1[
.
qi

..
qi + kpiei

.
qi − 1

ψi
d̃i

.
d̂i + ksi Aiqi

.
qi + ksiBizi

.
zi + kyiCi

.
qi

..
qi + ΛiΛitanh

(
ei
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i

)
.
qi]

=
n
∑

i=1

.
qi

[(
1 + kyiCi

)
(ui + di) + kpiei + ksi Aiqi + ksiBizi + ΛiΛitanh

(
ei

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 27 
 

Remark 1. The positive constant 𝜎∗ is related to the initial state of the system and parameters of 
the controller. 𝜎 reflects the tracking accuracy. Notably, 𝜎(𝑡 → ∞) = 0 means the asymptotic 
convergence of tracking errors. 

Remark 2. In this paper, we consider the angular position tracking problem for each joint of the 
manipulator. Hence, 𝑞  is a constant for 𝑖 = 1,2, . . , 𝑛., which means 𝑞 = 0. The angular tra-
jectory tracking problem will be considered in our future work. 

3. Controller Design and Stability Analysis 
In this part, the adaptive RL-based controller working with TDE is developed. After 

that, the stability is proven by using Lyapunov theory. 

3.1. Controller Design 
The TDE technique is applied to handle the system uncertainty in (2): 𝜞(𝑡) ≈ 𝜞(𝑡 − 𝐿) = 𝒒(𝑡 − 𝐿) − 𝑴 𝟏(𝒒(𝒕 − 𝑳))𝝉(𝑡 − 𝐿) (7)

where 𝜞(𝑡) = [𝛤 , 𝛤 , . . , 𝛤 ] ∈ 𝑅  is the estimate of 𝛤(𝑡). 𝐿 > 0 is the sampling time of 
TDE. 

Lemma 1. [14] The TDE error of robotic manipulator (2) is bounded such that 𝛤(𝑡) − 𝛤(𝑡) ≤𝛤𝒊∗ (for 𝑖 = 1,2, … , 𝑛) if the following condition is satisfied: 𝑰 − 𝑴 𝒒(𝑡) 𝑴 𝒒(𝑡 − 𝐿) 𝟐 <  1 (8)

where 𝛤𝒊∗ is an unknown positive constant. 
The control law working with TDE technique is designed as follows: 𝝉(𝑡) = 𝑴 𝒒(𝑡) −𝜞(𝑡) + 𝒖(𝑡)   (9)

where 𝒖(𝑡) = [𝑢 (𝑡), 𝑢 (𝑡), … , 𝑢 (𝑡)] ∈ 𝑅  is the virtual control law. 
The virtual control law in (9) is designed as follows: 𝑢 = −𝑑 𝑠𝑔𝑛(𝑞 ) − 11 + 𝑘 𝐶 𝑘 𝑒 + 𝑘 𝑞 + 𝑘 𝐴 𝑞 + 𝑘 𝐵 𝑧 + 𝜆  𝑞 + 𝜆 𝛬 𝑡𝑎𝑛ℎ 𝑒  ₵  

𝑖 = 1, 2, . . . , 𝑛  (10)

where 𝑘 , 𝑘 , 𝑘 , ₵ and 𝑘  are the positive constants determined by users. 𝜆 > 0 is a 
positive variable determined by the fuzzy reinforcement learning mechanism. 𝐴 = , 𝐵 = , 𝐶 =  (11)

where 𝜀 > 0 is the restricted upper bound of angular position of the 𝑖  joint. Λ > 0 is 
the restricted upper bound of angular velocity of the 𝑖  joint. 

And the variable 𝑧  is defined as follows: 𝑧 = 𝑒 + 𝜂 (Θ) 𝑑Θ, 𝜂 = −𝛽 𝑧  (12)

where 𝛽  is a positive constant. 
The 𝑑  is used to handle the bounded TDE error and the update law of 𝑑  is de-

signed as follows. 

𝑑 =  ⎩⎪⎨
⎪⎧ 𝜓 1 + 𝑘 𝐶 |𝑞 | , 𝑖𝑓 𝑑 ≤ 0  𝑜𝑟 (𝛺 > 𝛺 )

−𝜓 𝛿1 + 𝑘 𝐶 |𝑞 | , 𝑖𝑓 𝑑 > 0  𝑎𝑛𝑑 (𝛺 ≤ 𝛺 ) (13)

where 𝜓 , 𝛿  and 𝛺  are positive constants. The variable 𝛺  is defined as (14). 

i

)]
− ∑n

i=1

(
1
ψi

d̃i

.
d̂i + ksiBizi ηi

) (17)

Substituting (10) and into (17) with the fact of Ci > 0 as long as
∣∣ .
qi
∣∣ < Λi:

.
V =

n
∑

i=1

.
qi
(
1 + kyiCi

)[
−d̂isgn

( .
qi
)
+ di

]
−∑n

i=1
1
ψi

d̃i

.
d̂i

−∑n
i=1 ksiBiβiz2

i −∑n
i=1(Λi + kdi)

.
q2

i

≤
n
∑

i=1

∣∣ .
qi
∣∣(1 + kyiCi

)(
Γ∗i − d̂i

)
−∑n

i=1
1
ψi

d̃i

.
d̂i

=
n
∑

i=1

[∣∣ .
qi
∣∣(1 + kyiCi

)
− 1

ψi

.
d̂i

](
Γ∗i − d̂i

)
(18)

Therefore, for each Vi, we can derive (19) by combining (13) and (18):

.
Vi ≤


0 , i f

(
d̂i ≤ 0

)
or
(
Ωi ≥ Ωi

)
xi

(
Γ∗i − d̂i

)
, i f
(

d̂i > 0
)

and
(
Ωi < Ωi

) (19)

where xi =
∣∣ .
qi
∣∣(1 + kyiCi

)
+ δi
| .qi|(1+kyiCi)

. Clearly, xi ≥ 2
√

δi > 0 holds.

In addition, the Vi defined in (16) can be written as:

Vi = Ωi +
1

2ψi
d̃2

i (20)

where Ωi is defined in (14).
To prove the Lyapunov function, Vi is bounded by a positive constant and we assume

a sufficiently large constant V∗i . Clearly, the sufficiently large V∗i requires at least one of the
terms (Ωi or d̃2

i ) to be sufficiently large. If Ωi is sufficiently large such that Ωi > Ωi, then
.

Vi ≤ 0 holds according to (19). If d̃2
i = (Γ∗i − d̂i)

2
is sufficiently large such that d̃2

i > (2Γ∗i )
2,

then d̂i > 3Γ∗i will hold because of the facts of Γ∗i > 0 (Lemma 1) and d̂i ≥ 0 (remark
3), which further means Γ∗i − d̂i < 0 holds. As a result, according to (19) and the fact of
xi ≥ 2

√
δi > 0,

.
Vi ≤ 0 can hold by Ωi > Ωi or d̃2

i > (2Γ∗i )
2, which means

.
Vi ≤ 0 holds if

Vi ≥ Ωi +
1

2ψi
(2Γ∗i )

2 holds. It is thereby easy to conclude that Vi is bounded by V∗i such

that Vi ≤ V∗i = max
{

Vi(0), Ωi +
1

2ψi
(2Γ∗i )

2
}

.

Therefore, the tracking error of the ith subsystem is bounded because of the fact of
1
2 kpie2

i ≤ Vi.

|ei| ≤
√

2
kpi

max{Vi(0), (Ωi +
1

2ψi

(
2Γ∗i )

2
)
i = 1, 2, .., n (21)

Then, the norm of the vector of the tracking error is thereby bounded.

||e(t)|| ≤
√

n

∑
i=1

2
kpi

max{Vi(0), [Ωi +
1

2ψi

(
2Γ∗i )

2
]

(22)
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Moreover, the bounded Vi implies all terms in Vi are bounded. The (23) therefore
holds, which means |qi|< εi and

∣∣ .
qi
∣∣< Λi hold.

ε2
i z2

i
2(ε2

i − q2
i )

,
.
q2

i

Λ2
i −

.
q2

i

∈ L∞i = 1, 2, . . . , n (23)

�

3.3. Fuzzy Q Reinforcement Learning Mechanism Determining Parameters of Controller

In this section, a fuzzy Q reinforcement learning mechanism is designed to tune the
parameter Λi to improve the tracking accuracy. The motivations of RL are detailed in
remark 7.

Lemma 2. If (24) holds, the tracking error ei defined in (3) will asymptotically converge to zero
with the converging rate satisfying

∣∣ .
qi
∣∣ < Λi.

0 =
.
qi + Λitanh

(
ei
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i

)
, i = 1, 2, ..n (24)

Proof. A simple Lyapunov function is given in (25).

Vi =
1
2

e2
i (25)

Combining (24) and derivative of (25), we can obtain (26).

.
V i = −Λieitanh

(
ei

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 27 
 

Remark 1. The positive constant 𝜎∗ is related to the initial state of the system and parameters of 
the controller. 𝜎 reflects the tracking accuracy. Notably, 𝜎(𝑡 → ∞) = 0 means the asymptotic 
convergence of tracking errors. 

Remark 2. In this paper, we consider the angular position tracking problem for each joint of the 
manipulator. Hence, 𝑞  is a constant for 𝑖 = 1,2, . . , 𝑛., which means 𝑞 = 0. The angular tra-
jectory tracking problem will be considered in our future work. 

3. Controller Design and Stability Analysis 
In this part, the adaptive RL-based controller working with TDE is developed. After 

that, the stability is proven by using Lyapunov theory. 

3.1. Controller Design 
The TDE technique is applied to handle the system uncertainty in (2): 𝜞(𝑡) ≈ 𝜞(𝑡 − 𝐿) = 𝒒(𝑡 − 𝐿) − 𝑴 𝟏(𝒒(𝒕 − 𝑳))𝝉(𝑡 − 𝐿) (7)

where 𝜞(𝑡) = [𝛤 , 𝛤 , . . , 𝛤 ] ∈ 𝑅  is the estimate of 𝛤(𝑡). 𝐿 > 0 is the sampling time of 
TDE. 

Lemma 1. [14] The TDE error of robotic manipulator (2) is bounded such that 𝛤(𝑡) − 𝛤(𝑡) ≤𝛤𝒊∗ (for 𝑖 = 1,2, … , 𝑛) if the following condition is satisfied: 𝑰 − 𝑴 𝒒(𝑡) 𝑴 𝒒(𝑡 − 𝐿) 𝟐 <  1 (8)

where 𝛤𝒊∗ is an unknown positive constant. 
The control law working with TDE technique is designed as follows: 𝝉(𝑡) = 𝑴 𝒒(𝑡) −𝜞(𝑡) + 𝒖(𝑡)   (9)

where 𝒖(𝑡) = [𝑢 (𝑡), 𝑢 (𝑡), … , 𝑢 (𝑡)] ∈ 𝑅  is the virtual control law. 
The virtual control law in (9) is designed as follows: 𝑢 = −𝑑 𝑠𝑔𝑛(𝑞 ) − 11 + 𝑘 𝐶 𝑘 𝑒 + 𝑘 𝑞 + 𝑘 𝐴 𝑞 + 𝑘 𝐵 𝑧 + 𝜆  𝑞 + 𝜆 𝛬 𝑡𝑎𝑛ℎ 𝑒  ₵  

𝑖 = 1, 2, . . . , 𝑛  (10)

where 𝑘 , 𝑘 , 𝑘 , ₵ and 𝑘  are the positive constants determined by users. 𝜆 > 0 is a 
positive variable determined by the fuzzy reinforcement learning mechanism. 𝐴 = , 𝐵 = , 𝐶 =  (11)

where 𝜀 > 0 is the restricted upper bound of angular position of the 𝑖  joint. Λ > 0 is 
the restricted upper bound of angular velocity of the 𝑖  joint. 

And the variable 𝑧  is defined as follows: 𝑧 = 𝑒 + 𝜂 (Θ) 𝑑Θ, 𝜂 = −𝛽 𝑧  (12)

where 𝛽  is a positive constant. 
The 𝑑  is used to handle the bounded TDE error and the update law of 𝑑  is de-

signed as follows. 

𝑑 =  ⎩⎪⎨
⎪⎧ 𝜓 1 + 𝑘 𝐶 |𝑞 | , 𝑖𝑓 𝑑 ≤ 0  𝑜𝑟 (𝛺 > 𝛺 )

−𝜓 𝛿1 + 𝑘 𝐶 |𝑞 | , 𝑖𝑓 𝑑 > 0  𝑎𝑛𝑑 (𝛺 ≤ 𝛺 ) (13)

where 𝜓 , 𝛿  and 𝛺  are positive constants. The variable 𝛺  is defined as (14). 

i

)
≤ −Λi
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.
V i ≤ 0 implies Vi ∈ L∞. And then, (27) can be obtained by integration on both sides

of (26).

Vi(∞)− Vi(0) ≤ −Λi
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In the light of Barbalet’s Lemma, (27) implies tanh
(
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(

ei

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 27 
 

Remark 1. The positive constant 𝜎∗ is related to the initial state of the system and parameters of 
the controller. 𝜎 reflects the tracking accuracy. Notably, 𝜎(𝑡 → ∞) = 0 means the asymptotic 
convergence of tracking errors. 

Remark 2. In this paper, we consider the angular position tracking problem for each joint of the 
manipulator. Hence, 𝑞  is a constant for 𝑖 = 1,2, . . , 𝑛., which means 𝑞 = 0. The angular tra-
jectory tracking problem will be considered in our future work. 

3. Controller Design and Stability Analysis 
In this part, the adaptive RL-based controller working with TDE is developed. After 

that, the stability is proven by using Lyapunov theory. 

3.1. Controller Design 
The TDE technique is applied to handle the system uncertainty in (2): 𝜞(𝑡) ≈ 𝜞(𝑡 − 𝐿) = 𝒒(𝑡 − 𝐿) − 𝑴 𝟏(𝒒(𝒕 − 𝑳))𝝉(𝑡 − 𝐿) (7)

where 𝜞(𝑡) = [𝛤 , 𝛤 , . . , 𝛤 ] ∈ 𝑅  is the estimate of 𝛤(𝑡). 𝐿 > 0 is the sampling time of 
TDE. 

Lemma 1. [14] The TDE error of robotic manipulator (2) is bounded such that 𝛤(𝑡) − 𝛤(𝑡) ≤𝛤𝒊∗ (for 𝑖 = 1,2, … , 𝑛) if the following condition is satisfied: 𝑰 − 𝑴 𝒒(𝑡) 𝑴 𝒒(𝑡 − 𝐿) 𝟐 <  1 (8)

where 𝛤𝒊∗ is an unknown positive constant. 
The control law working with TDE technique is designed as follows: 𝝉(𝑡) = 𝑴 𝒒(𝑡) −𝜞(𝑡) + 𝒖(𝑡)   (9)

where 𝒖(𝑡) = [𝑢 (𝑡), 𝑢 (𝑡), … , 𝑢 (𝑡)] ∈ 𝑅  is the virtual control law. 
The virtual control law in (9) is designed as follows: 𝑢 = −𝑑 𝑠𝑔𝑛(𝑞 ) − 11 + 𝑘 𝐶 𝑘 𝑒 + 𝑘 𝑞 + 𝑘 𝐴 𝑞 + 𝑘 𝐵 𝑧 + 𝜆  𝑞 + 𝜆 𝛬 𝑡𝑎𝑛ℎ 𝑒  ₵  

𝑖 = 1, 2, . . . , 𝑛  (10)

where 𝑘 , 𝑘 , 𝑘 , ₵ and 𝑘  are the positive constants determined by users. 𝜆 > 0 is a 
positive variable determined by the fuzzy reinforcement learning mechanism. 𝐴 = , 𝐵 = , 𝐶 =  (11)

where 𝜀 > 0 is the restricted upper bound of angular position of the 𝑖  joint. Λ > 0 is 
the restricted upper bound of angular velocity of the 𝑖  joint. 

And the variable 𝑧  is defined as follows: 𝑧 = 𝑒 + 𝜂 (Θ) 𝑑Θ, 𝜂 = −𝛽 𝑧  (12)

where 𝛽  is a positive constant. 
The 𝑑  is used to handle the bounded TDE error and the update law of 𝑑  is de-

signed as follows. 

𝑑 =  ⎩⎪⎨
⎪⎧ 𝜓 1 + 𝑘 𝐶 |𝑞 | , 𝑖𝑓 𝑑 ≤ 0  𝑜𝑟 (𝛺 > 𝛺 )

−𝜓 𝛿1 + 𝑘 𝐶 |𝑞 | , 𝑖𝑓 𝑑 > 0  𝑎𝑛𝑑 (𝛺 ≤ 𝛺 ) (13)

where 𝜓 , 𝛿  and 𝛺  are positive constants. The variable 𝛺  is defined as (14). 

i

)
| < Λi due to the fact of tanh(·) < 1.

�

Remark 6. The asymptotic convergence of tracking errors in Lemma 2 is stronger than the
boundness of tracking errors that we achieved in Theorem 1, which means a better tracking accuracy.
It is because asymptotic convergence means ei is eventually going to zero, while boundedness only
implies |ei| bounded by a positive constant. Therefore, the proposed controller can be improved with
a better tracking accuracy by finding the optimal parameters of the proposed controller that are able

to minimize
∣∣∣∣ .
qi + Λitanh

(
ei
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The converging behaviour of tracking errors of (24) is visualized in Figure 1.
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)
]
2

|t=t∗ < 0 (30)

Using (5), (6), (29) and (30), a solution of Λ∗i satisfying (30) is obtained in (31).

Λ∗i >
1

| .qi + Λitanh
(
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Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 27 
 

Remark 1. The positive constant 𝜎∗ is related to the initial state of the system and parameters of 
the controller. 𝜎 reflects the tracking accuracy. Notably, 𝜎(𝑡 → ∞) = 0 means the asymptotic 
convergence of tracking errors. 

Remark 2. In this paper, we consider the angular position tracking problem for each joint of the 
manipulator. Hence, 𝑞  is a constant for 𝑖 = 1,2, . . , 𝑛., which means 𝑞 = 0. The angular tra-
jectory tracking problem will be considered in our future work. 

3. Controller Design and Stability Analysis 
In this part, the adaptive RL-based controller working with TDE is developed. After 

that, the stability is proven by using Lyapunov theory. 

3.1. Controller Design 
The TDE technique is applied to handle the system uncertainty in (2): 𝜞(𝑡) ≈ 𝜞(𝑡 − 𝐿) = 𝒒(𝑡 − 𝐿) − 𝑴 𝟏(𝒒(𝒕 − 𝑳))𝝉(𝑡 − 𝐿) (7)

where 𝜞(𝑡) = [𝛤 , 𝛤 , . . , 𝛤 ] ∈ 𝑅  is the estimate of 𝛤(𝑡). 𝐿 > 0 is the sampling time of 
TDE. 

Lemma 1. [14] The TDE error of robotic manipulator (2) is bounded such that 𝛤(𝑡) − 𝛤(𝑡) ≤𝛤𝒊∗ (for 𝑖 = 1,2, … , 𝑛) if the following condition is satisfied: 𝑰 − 𝑴 𝒒(𝑡) 𝑴 𝒒(𝑡 − 𝐿) 𝟐 <  1 (8)

where 𝛤𝒊∗ is an unknown positive constant. 
The control law working with TDE technique is designed as follows: 𝝉(𝑡) = 𝑴 𝒒(𝑡) −𝜞(𝑡) + 𝒖(𝑡)   (9)

where 𝒖(𝑡) = [𝑢 (𝑡), 𝑢 (𝑡), … , 𝑢 (𝑡)] ∈ 𝑅  is the virtual control law. 
The virtual control law in (9) is designed as follows: 𝑢 = −𝑑 𝑠𝑔𝑛(𝑞 ) − 11 + 𝑘 𝐶 𝑘 𝑒 + 𝑘 𝑞 + 𝑘 𝐴 𝑞 + 𝑘 𝐵 𝑧 + 𝜆  𝑞 + 𝜆 𝛬 𝑡𝑎𝑛ℎ 𝑒  ₵  

𝑖 = 1, 2, . . . , 𝑛  (10)

where 𝑘 , 𝑘 , 𝑘 , ₵ and 𝑘  are the positive constants determined by users. 𝜆 > 0 is a 
positive variable determined by the fuzzy reinforcement learning mechanism. 𝐴 = , 𝐵 = , 𝐶 =  (11)

where 𝜀 > 0 is the restricted upper bound of angular position of the 𝑖  joint. Λ > 0 is 
the restricted upper bound of angular velocity of the 𝑖  joint. 

And the variable 𝑧  is defined as follows: 𝑧 = 𝑒 + 𝜂 (Θ) 𝑑Θ, 𝜂 = −𝛽 𝑧  (12)

where 𝛽  is a positive constant. 
The 𝑑  is used to handle the bounded TDE error and the update law of 𝑑  is de-

signed as follows. 

𝑑 =  ⎩⎪⎨
⎪⎧ 𝜓 1 + 𝑘 𝐶 |𝑞 | , 𝑖𝑓 𝑑 ≤ 0  𝑜𝑟 (𝛺 > 𝛺 )

−𝜓 𝛿1 + 𝑘 𝐶 |𝑞 | , 𝑖𝑓 𝑑 > 0  𝑎𝑛𝑑 (𝛺 ≤ 𝛺 ) (13)

where 𝜓 , 𝛿  and 𝛺  are positive constants. The variable 𝛺  is defined as (14). 

i

)
|
[
(
1 + kyiCi
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(d̂i + Γ∗i +
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) + kpi|ei|+ kdiΛi + ksi|Ai|εi + ksi|Bi||zi|] (31)

Notably, d̂i, |ei|, |zi|, |Ai| and |Bi| are all bounded because of the bounded Lya-
punov function (16). Therefore, a finite real solution of Λ∗i satisfying (31) exists as long as
.
qi + Λitanh

(
ei
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6= 0.

�

Remark 7. According to Lemma 3 and Remark 6, the optimal parameters Λ∗i leading to a decrease of

| .qi + Λitanh
(
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i

)
| at the moment t∗ can improve the tracking accuracy. Although a large enough

Λi can be selected to satisfy (31), an inappropriately large Λi could lead to a significant chattering
of control torques and thereby compromise the tracking accuracy. Moreover, an optimal Λi is hard
to be deterministically found due to the complexity of the system and the unknown TDE errors.
Therefore, a fuzzy Q RL mechanism is designed to automatically determine the optimal Λ∗i .

Fuzzy Q learning is a common version of RL applicable on continuous systems, which
can explore the optimal policy by interacting with the environment [37]. In this paper,
the Λi is to be tuned by a fuzzy Q learning mechanism according to the tracking error
ei and the angular velocity

.
qi. The linguistic rules to determine Λi can be given as the

following form:

IF ei(
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

-th fuzzy rule in fuzzy Q learning is defined as follows:
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action can achieve higher rewards, therefore, we can finally learn the optimal action. 
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When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)
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(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
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𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 

Some intuitive linguistic rules can be given as: 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is small 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is small 

Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 

 
Figure 2. Membership function of fuzzy input of the 𝑖  subsystem. 

The parameters of membership function shown in Figure 2 are defined as follows: 𝐿𝑖𝑛(𝑒 ) = 𝜁 ,( ), … , 𝜁 ,𝒶( ) , … , 𝜁 ,𝒜( ) , 𝒶 = 1,2, … , 𝒜  (33)𝐿𝑖𝑛(𝑞 ) = 𝜁 ,( ), … , 𝜁 ,𝒷( ) , … , 𝜁 ,ℬ( ) , 𝒷 = 1,2, … , ℬ (34)

where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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The numerical value of 𝜆  is calculated by firing rates and the selected actions: 
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The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 
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where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 
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where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
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The numerical value of 𝜆  is calculated by firing rates and the selected actions: 
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The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 
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(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 

Some intuitive linguistic rules can be given as: 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is small 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is small 

Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 

 
Figure 2. Membership function of fuzzy input of the 𝑖  subsystem. 

The parameters of membership function shown in Figure 2 are defined as follows: 𝐿𝑖𝑛(𝑒 ) = 𝜁 ,( ), … , 𝜁 ,𝒶( ) , … , 𝜁 ,𝒜( ) , 𝒶 = 1,2, … , 𝒜  (33)𝐿𝑖𝑛(𝑞 ) = 𝜁 ,( ), … , 𝜁 ,𝒷( ) , … , 𝜁 ,ℬ( ) , 𝒷 = 1,2, … , ℬ (34)

where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

)
i = u

(

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 27 
 

rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)
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)
i,3 with

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 27 
 

error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 

Some intuitive linguistic rules can be given as: 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is small 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is small 

Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 

 
Figure 2. Membership function of fuzzy input of the 𝑖  subsystem. 

The parameters of membership function shown in Figure 2 are defined as follows: 𝐿𝑖𝑛(𝑒 ) = 𝜁 ,( ), … , 𝜁 ,𝒶( ) , … , 𝜁 ,𝒜( ) , 𝒶 = 1,2, … , 𝒜  (33)𝐿𝑖𝑛(𝑞 ) = 𝜁 ,( ), … , 𝜁 ,𝒷( ) , … , 𝜁 ,ℬ( ) , 𝒷 = 1,2, … , ℬ (34)

where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 

Some intuitive linguistic rules can be given as: 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is small 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is small 

Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 

 
Figure 2. Membership function of fuzzy input of the 𝑖  subsystem. 

The parameters of membership function shown in Figure 2 are defined as follows: 𝐿𝑖𝑛(𝑒 ) = 𝜁 ,( ), … , 𝜁 ,𝒶( ) , … , 𝜁 ,𝒜( ) , 𝒶 = 1,2, … , 𝒜  (33)𝐿𝑖𝑛(𝑞 ) = 𝜁 ,( ), … , 𝜁 ,𝒷( ) , … , 𝜁 ,ℬ( ) , 𝒷 = 1,2, … , ℬ (34)

where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 
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Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 
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(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

)
i,P

}
is the set of action candidates in the rule

R
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

,i. L(
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

)
i ={L(
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

)
1,i , . . . , L(
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

)
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 

Some intuitive linguistic rules can be given as: 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is small 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is small 

Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 

 
Figure 2. Membership function of fuzzy input of the 𝑖  subsystem. 

The parameters of membership function shown in Figure 2 are defined as follows: 𝐿𝑖𝑛(𝑒 ) = 𝜁 ,( ), … , 𝜁 ,𝒶( ) , … , 𝜁 ,𝒜( ) , 𝒶 = 1,2, … , 𝒜  (33)𝐿𝑖𝑛(𝑞 ) = 𝜁 ,( ), … , 𝜁 ,𝒷( ) , … , 𝜁 ,ℬ( ) , 𝒷 = 1,2, … , ℬ (34)

where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 

Some intuitive linguistic rules can be given as: 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is small 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is small 

Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 
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(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 

Some intuitive linguistic rules can be given as: 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is small 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is small 

Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 

 
Figure 2. Membership function of fuzzy input of the 𝑖  subsystem. 

The parameters of membership function shown in Figure 2 are defined as follows: 𝐿𝑖𝑛(𝑒 ) = 𝜁 ,( ), … , 𝜁 ,𝒶( ) , … , 𝜁 ,𝒜( ) , 𝒶 = 1,2, … , 𝒜  (33)𝐿𝑖𝑛(𝑞 ) = 𝜁 ,( ), … , 𝜁 ,𝒷( ) , … , 𝜁 ,ℬ( ) , 𝒷 = 1,2, … , ℬ (34)

where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

, p), p ∈ {1, 2, .., P} among P
action candidates.

u∗
(
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where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)
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When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)
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The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

, u(

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 27 
 

rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
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where 𝛾 ∈ [0,1] is the learning rate. 
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action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

)
i , with probablity ρ

u∗
(
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

)
i with probablity 1− ρ

(37)

where u+
(
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

)
i is an action randomly selected from Ui,
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

. 0 < ρ < 1 is the probability to
explore random actions.

The numerical value of Λi is calculated by firing rates and the selected actions:

Λi

(
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 

Some intuitive linguistic rules can be given as: 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is small 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is small 

Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 

 
Figure 2. Membership function of fuzzy input of the 𝑖  subsystem. 

The parameters of membership function shown in Figure 2 are defined as follows: 𝐿𝑖𝑛(𝑒 ) = 𝜁 ,( ), … , 𝜁 ,𝒶( ) , … , 𝜁 ,𝒜( ) , 𝒶 = 1,2, … , 𝒜  (33)𝐿𝑖𝑛(𝑞 ) = 𝜁 ,( ), … , 𝜁 ,𝒷( ) , … , 𝜁 ,ℬ( ) , 𝒷 = 1,2, … , ℬ (34)

where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 

(
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
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where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 

Some intuitive linguistic rules can be given as: 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is small 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is small 

Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 

 
Figure 2. Membership function of fuzzy input of the 𝑖  subsystem. 
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is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 

Some intuitive linguistic rules can be given as: 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is small 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is small 

Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 

 
Figure 2. Membership function of fuzzy input of the 𝑖  subsystem. 

The parameters of membership function shown in Figure 2 are defined as follows: 𝐿𝑖𝑛(𝑒 ) = 𝜁 ,( ), … , 𝜁 ,𝒶( ) , … , 𝜁 ,𝒜( ) , 𝒶 = 1,2, … , 𝒜  (33)𝐿𝑖𝑛(𝑞 ) = 𝜁 ,( ), … , 𝜁 ,𝒷( ) , … , 𝜁 ,ℬ( ) , 𝒷 = 1,2, … , ℬ (34)

where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 
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fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 

Some intuitive linguistic rules can be given as: 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is small 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is small 

Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 

 
Figure 2. Membership function of fuzzy input of the 𝑖  subsystem. 

The parameters of membership function shown in Figure 2 are defined as follows: 𝐿𝑖𝑛(𝑒 ) = 𝜁 ,( ), … , 𝜁 ,𝒶( ) , … , 𝜁 ,𝒜( ) , 𝒶 = 1,2, … , 𝒜  (33)𝐿𝑖𝑛(𝑞 ) = 𝜁 ,( ), … , 𝜁 ,𝒷( ) , … , 𝜁 ,ℬ( ) , 𝒷 = 1,2, … , ℬ (34)

where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 
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where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
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such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 
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where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

(

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 27 
 

error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 
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Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 
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such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 
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the following form: 
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is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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)
(41)

where αi ∈ [0, 1] is the discount factor reflecting the contribution of the future reward. The
reward
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where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 
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is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 

moment of the ith subsystem is designed in (42) and the meaning of (42)
is explained in Remark 9.
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𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 
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where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
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where 𝛾 ∈ [0,1] is the learning rate. 
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Remark 1. The positive constant 𝜎∗ is related to the initial state of the system and parameters of 
the controller. 𝜎 reflects the tracking accuracy. Notably, 𝜎(𝑡 → ∞) = 0 means the asymptotic 
convergence of tracking errors. 

Remark 2. In this paper, we consider the angular position tracking problem for each joint of the 
manipulator. Hence, 𝑞  is a constant for 𝑖 = 1,2, . . , 𝑛., which means 𝑞 = 0. The angular tra-
jectory tracking problem will be considered in our future work. 

3. Controller Design and Stability Analysis 
In this part, the adaptive RL-based controller working with TDE is developed. After 

that, the stability is proven by using Lyapunov theory. 

3.1. Controller Design 
The TDE technique is applied to handle the system uncertainty in (2): 𝜞(𝑡) ≈ 𝜞(𝑡 − 𝐿) = 𝒒(𝑡 − 𝐿) − 𝑴 𝟏(𝒒(𝒕 − 𝑳))𝝉(𝑡 − 𝐿) (7)

where 𝜞(𝑡) = [𝛤 , 𝛤 , . . , 𝛤 ] ∈ 𝑅  is the estimate of 𝛤(𝑡). 𝐿 > 0 is the sampling time of 
TDE. 

Lemma 1. [14] The TDE error of robotic manipulator (2) is bounded such that 𝛤(𝑡) − 𝛤(𝑡) ≤𝛤𝒊∗ (for 𝑖 = 1,2, … , 𝑛) if the following condition is satisfied: 𝑰 − 𝑴 𝒒(𝑡) 𝑴 𝒒(𝑡 − 𝐿) 𝟐 <  1 (8)

where 𝛤𝒊∗ is an unknown positive constant. 
The control law working with TDE technique is designed as follows: 𝝉(𝑡) = 𝑴 𝒒(𝑡) −𝜞(𝑡) + 𝒖(𝑡)   (9)

where 𝒖(𝑡) = [𝑢 (𝑡), 𝑢 (𝑡), … , 𝑢 (𝑡)] ∈ 𝑅  is the virtual control law. 
The virtual control law in (9) is designed as follows: 𝑢 = −𝑑 𝑠𝑔𝑛(𝑞 ) − 11 + 𝑘 𝐶 𝑘 𝑒 + 𝑘 𝑞 + 𝑘 𝐴 𝑞 + 𝑘 𝐵 𝑧 + 𝜆  𝑞 + 𝜆 𝛬 𝑡𝑎𝑛ℎ 𝑒  ₵  

𝑖 = 1, 2, . . . , 𝑛  (10)

where 𝑘 , 𝑘 , 𝑘 , ₵ and 𝑘  are the positive constants determined by users. 𝜆 > 0 is a 
positive variable determined by the fuzzy reinforcement learning mechanism. 𝐴 = , 𝐵 = , 𝐶 =  (11)

where 𝜀 > 0 is the restricted upper bound of angular position of the 𝑖  joint. Λ > 0 is 
the restricted upper bound of angular velocity of the 𝑖  joint. 

And the variable 𝑧  is defined as follows: 𝑧 = 𝑒 + 𝜂 (Θ) 𝑑Θ, 𝜂 = −𝛽 𝑧  (12)

where 𝛽  is a positive constant. 
The 𝑑  is used to handle the bounded TDE error and the update law of 𝑑  is de-

signed as follows. 

𝑑 =  ⎩⎪⎨
⎪⎧ 𝜓 1 + 𝑘 𝐶 |𝑞 | , 𝑖𝑓 𝑑 ≤ 0  𝑜𝑟 (𝛺 > 𝛺 )

−𝜓 𝛿1 + 𝑘 𝐶 |𝑞 | , 𝑖𝑓 𝑑 > 0  𝑎𝑛𝑑 (𝛺 ≤ 𝛺 ) (13)

where 𝜓 , 𝛿  and 𝛺  are positive constants. The variable 𝛺  is defined as (14). 

i

)
and σi > 0 is a positive constant.

Finally, the adaptive law of q-values is:
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 

Some intuitive linguistic rules can be given as: 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is small 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is small 

Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 

 
Figure 2. Membership function of fuzzy input of the 𝑖  subsystem. 

The parameters of membership function shown in Figure 2 are defined as follows: 𝐿𝑖𝑛(𝑒 ) = 𝜁 ,( ), … , 𝜁 ,𝒶( ) , … , 𝜁 ,𝒜( ) , 𝒶 = 1,2, … , 𝒜  (33)𝐿𝑖𝑛(𝑞 ) = 𝜁 ,( ), … , 𝜁 ,𝒷( ) , … , 𝜁 ,ℬ( ) , 𝒷 = 1,2, … , ℬ (34)

where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
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IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
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Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 

 
Figure 2. Membership function of fuzzy input of the 𝑖  subsystem. 

The parameters of membership function shown in Figure 2 are defined as follows: 𝐿𝑖𝑛(𝑒 ) = 𝜁 ,( ), … , 𝜁 ,𝒶( ) , … , 𝜁 ,𝒜( ) , 𝒶 = 1,2, … , 𝒜  (33)𝐿𝑖𝑛(𝑞 ) = 𝜁 ,( ), … , 𝜁 ,𝒷( ) , … , 𝜁 ,ℬ( ) , 𝒷 = 1,2, … , ℬ (34)

where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 

Some intuitive linguistic rules can be given as: 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is small 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is small 

Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 

 
Figure 2. Membership function of fuzzy input of the 𝑖  subsystem. 

The parameters of membership function shown in Figure 2 are defined as follows: 𝐿𝑖𝑛(𝑒 ) = 𝜁 ,( ), … , 𝜁 ,𝒶( ) , … , 𝜁 ,𝒜( ) , 𝒶 = 1,2, … , 𝒜  (33)𝐿𝑖𝑛(𝑞 ) = 𝜁 ,( ), … , 𝜁 ,𝒷( ) , … , 𝜁 ,ℬ( ) , 𝒷 = 1,2, … , ℬ (34)

where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 

Some intuitive linguistic rules can be given as: 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is small 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is small 

Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 

 
Figure 2. Membership function of fuzzy input of the 𝑖  subsystem. 

The parameters of membership function shown in Figure 2 are defined as follows: 𝐿𝑖𝑛(𝑒 ) = 𝜁 ,( ), … , 𝜁 ,𝒶( ) , … , 𝜁 ,𝒜( ) , 𝒶 = 1,2, … , 𝒜  (33)𝐿𝑖𝑛(𝑞 ) = 𝜁 ,( ), … , 𝜁 ,𝒷( ) , … , 𝜁 ,ℬ( ) , 𝒷 = 1,2, … , ℬ (34)

where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
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𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
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where 𝛾 ∈ [0,1] is the learning rate. 
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inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 
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The parameters of membership function shown in Figure 2 are defined as follows: 𝐿𝑖𝑛(𝑒 ) = 𝜁 ,( ), … , 𝜁 ,𝒶( ) , … , 𝜁 ,𝒜( ) , 𝒶 = 1,2, … , 𝒜  (33)𝐿𝑖𝑛(𝑞 ) = 𝜁 ,( ), … , 𝜁 ,𝒷( ) , … , 𝜁 ,ℬ( ) , 𝒷 = 1,2, … , ℬ (34)

where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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where Γi ∈ [0, 1] is the learning rate.

Remark 9. The reward function (42) indicates that higher values of reward
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(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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)
i = 1).

The aforementioned process of fuzzy Q learning to tune Λi can be also concluded in
Figure 3. The proposed control scheme can be concluded in Figure 4.
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Remark 10. All the system states including the tracking errors are proven to be bounded with 
𝜆 > 0. Therefore, the instability will not occur even if an inappropriate positive value of 𝜆  is 
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gorithm works. Thereby, not only can the time derivative of 𝜆  be negligible in the proof of Theorem 
1, but the computational load is also decreased. 

Figure 3. Flow chart of fuzzy Q learning to determine Λi.

Remark 10. All the system states including the tracking errors are proven to be bounded with
Λi > 0. Therefore, the instability will not occur even if an inappropriate positive value of Λi
is calculated by the fuzzy Q learning mechanism trying some bad action candidates. Hence,
the designed control law (7), (9)–(14) offers the fuzzy Q learning mechanism (32)–(43) a safe
environment to learn a optimal Λi. Notably, in order to make sure Λi > 0 always holds, all the
action candidates Ui,
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)
i,P

}
should be positive.

Remark 11. The proof of Theorem 1 requires the parameter Λi > 0 to be a constant. However, the
parameter Λi is oneline tuned by a fuzzy Q learning mechanism, and therefore Λi is varying in the
implementation of the proposed controller. To handle this issue, we design that the time interval
between two consecutive fuzzy inferences of Λi in fuzzy Q learning is 20-times greater than the time
interval between two consecutive control actions τ (eg. 0.1s between two consecutive û(
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)
i (equally,

two consecutive Λi) while 0.001s between two consecutive τ). Namely, Λi(t) = Λi(t∗), ∀ t ∈
[t∗, t∗ + 20L]; τ(t) = τ(t∗), ∀ t ∈ [t∗, t∗ + L]. t∗ is any time moment when the algorithm works.
Thereby, not only can the time derivative of Λi be negligible in the proof of Theorem 1, but the
computational load is also decreased.
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4. Simulation Results and Analysis

In this section, similar to works [38–42], we use the simulation to verify the effective-
ness of the proposed controller. A 2-rigid-link robotic manipulator shown in Figure 5 is
carried in Matlab 2018a. The sampling time of simulating the real dynamics of robotic
manipulators is set as 1 × 10−4 s. The sampling time of TDE and controller is set as
1× 10−3 s (10 times to 1× 10−4) to show the discrete nature of using controllers in practice.
The sampling time of fuzzy Q learning is set as 0.01 s according to Remark 10. The dynamic
model of a 2-rigid-link robotic manipulator is given as follows, which can be also found
in [26].

M(q) =
[

m2l2
2 + 2l1l2m2 cos(q2) + (m1 + m2)l2

1 m2l2
2 + l1l2m2 cos(q2)

m2l2
2 + l1l2m2 cos(q2) m2l2

2

]

C
(
q,

.
q
) .
q =

[
−m2l1l2 sin(q2)

.
q2

2 − 2m2l1l2 sin(q2)
.
q1

.
q2

m2l1l2 sin(q2)
.
q2

1

]

G(q) =
[
(m1 + m2)l1cos(q2)g + m2l2cos(q1 + q2)g

m2l2 cos(q1 + q2)g

]
F
( .
q
)
=

[
F1
F2

]
τd =

[
τd1
τd2

]
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Figure 5. 2-rigid-link robotic manipulator.

The system parameters are given in Table 1, which are the same as [26].

Table 1. Parameters of robotic manipulator.

Parameter Value

l1 (m) 0.5

l2 (m) 0.5

m1 (kg) 5

m2 (kg) 2

Robotic manipulator

g (m/s2) 9.8

The initial angular positions and velocities of two joints are set as: q1 = 0o, q2 = 0o,
.
q1 = 0o/s and

.
q2 = 0o/s. The desired angular positions of two joints are set as: qr1 = 30o

and qr2 = 45o.
The upper bounds of the angular position and angular velocity for the ith joint of ma-

nipulator (εi and Λi) are selected by the user dependent on the specific mission requirement.
To successfully implement the proposed controller, users can select any values satisfying
εi > |qri| and Λi > 0. Therefore, in the simulation of this paper, we select ε1 = 50o,
ε2 = 60o, Λ1 = 10o/s and Λ2 = 12o/s.

Remark 12. kpi and kdi are the proportional coefficient and differential coefficient, respectively.
The great kpi could decrease steady state error, but an excessively great could result in a significant
overshoot. While the great kdi could improve the robustness to disturbance/uncertainty, but an
over-great kdi could compromise the tracking accuracy. The selection of kpi and kdi can be based on
the tuning rules of PID controllers.

Remark 13. Great ksi can amplify the effect of the terms Ai and Bi in (10) to keep the angular
positions from hitting their constraints. An inappropriately small ksi could lead to a |qi| too close
to εi and then result in an over-great ui in (10). Therefore, the selection of ksi could be started at
a small value, and then users could gradually increase ksi until the magnitude of ui is acceptable.
Great kyi can amplify the effect of the term Ci in (10) to keep the angular velocities from hitting their
constraints. An excessively great kyi could lead to an over great (1 + kyiCi) in (10) to decline the
converging rate of the tracking error even if the angular velocity is not close to its constraint, which
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could increase the settling time. Therefore, the trial of selecting kyi could start at a small value,
and then users could decrease it until the converging rate of the tracking error is acceptable. βi
determines the converging rate of the auxiliary variable zi that has a significant effect on steady state
error in the controller [33]. However, in the proposed controller, the RL-based term is introduced to
improve the tracking performance and thereby the effect of βi is decreased. We suggest to offer βi
with a medium value ranging between 0.1–1.

Remark 14. large values of ψi and δi can lead to a fast adaption of d̂i to handle system uncertainty
and external disturbance. However, the inappropriately large ψi and δi could result in a sharp
variation of d̂i and then a chattering effect on control torques. Therefore, the selection of ψi and δi
could start at a big value, and then users could decrease them until no chattering effect occurs on
the control torques. Over-small values of Ωi could lead to an insufficient decrease of d̂i that still
brings up a chattering effect on control torques. Meanwhile, over-great values of Ωi could negatively
influence the robustness to uncertainty and disturbance. Hence, the selection of Ωi could start at
some small values, and then users could increase Ωi until d̂i is significantly decreased at the final
stage of the control to have a satisfactory chattering attenuation.

Remark 15. Small/great values of
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i could bring up an insufficient improvement on tracking performance. Therefore, the
trial of selecting
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i until a
satisfying improvement on the tracking performance.

According to Remark 11~Remark 15, the parameters of the proposed controller are
selected in Table 2.

Table 2. Parameters of proposed controller.

Parameter Value (i=1) Value (i=2)

kpi 10 10
kdi 1 1
ksi 0.1 0.1
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i 0.1 0.1
kyi 0.1 0.1
βi 0.1 0.1
ψi 0.01 0.01
Ωi 0.05 0.05
δi 0.1 0.1

Notably, it does not require an extensive trial to select parameters in Table 2 as the
satisfying tracking performance is mainly obtained by the optimal Λi in the RL term

ΛiΛitanh
(

ei
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i

)
. In other words, users can select some medium values for parameters (not

optimal) in Table 2 by an acceptable amount of parameters-selection trails. Then, the fuzzy
Q learning can automatically explore the Λi matching the selected parameters to have a
satisfying tracking performance.

Remark 16. Similar to [36], the parameters of membership function in (33) and (34), Lin(ei) ={
ζ
(i)
1,1, ζ

(i)
1,2, . . . , ζ

(i)
1,
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where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 

}
and Lin

( .
qi
)
=
{

ζ
(i)
2,1, ζ

(i)
2,2, . . . , ζ

(i)
2,
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such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 
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could start at some great values (e.g., 20), and then users could decrease
them until a reasonable computational load.

Remark 17. σi is the threshold of obtaining rewards. The inappropriately small values of σi could
result in a difficulty in obtaining high values of reward, while the over-great values of σi could result
in the different action candidates to be offered with the similarly high rewards even if they lead to
the different control performances. Therefore, both of the over-great and over-small values of σi will
negatively influence the convergence of q-values in (43) and thereby compromise the performance of
reinforcement learning. The selection of σi could start at a small value, and the users could increase
σi until a satisfying convergence of q values (the convergence of q-values can be also reflected by
the convergence of obtained rewards). The selection of mutation probability ρ, learning rate Γi and
discount factor α2 can be based on the strategy mentioned in [36].

Remark 18 Action candidates Ui,

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 27 
 

rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 
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(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

)
i,P

}
are the most important parameters

in the proposed control scheme because the optimal Λi that brings up a satisfying control performance
is calculated based on them. To make the optimal action included in the group of action candidates,
u
(
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

)
i,1 should be given a small value (e.g., 0) while u

(
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

)
i,P should be given a great value. The rest

candidates u
(
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

)
i,p (p = 1, 2, .., p) are suggested to be evenly distributed between u

(
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

)
i,1 and u

(
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

)
i,P .

Users could initially give u(
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

)
i,P with a small value (but greater than u

(
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

)
i,1 ), and an increase of u(
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rate vector 𝜑 𝓈(𝕜) = 𝜑 𝓈(𝕜) , 𝜑 𝓈(𝕜) , . . , 𝜑𝒩 𝓈(𝕜) . 𝒩  is the amount of fuzzy rules 
(There are 𝒩 fuzzy rules). 

For the 𝓃  rule in the 𝑖  subsystem (𝑅𝓃, ), the optimal action at the 𝕜 moment is 
defined as the action with the maximum 𝓆(𝕜)(𝓃, 𝑝), 𝑝 ∈ {1,2, . . , 𝑃} among 𝑃 action can-
didates. 𝔲∗(𝓃) = 𝑎𝑟𝑔 max𝔲(𝓃)∈𝔘 ,𝓃 𝓆(𝕜) 𝓃, 𝔲 ,(𝓃)   (36)

To prevent the selection of 𝔲 from the local optimum in the learning process, we 
introduce a greed mechanism: 𝔲(𝓃) = 𝔲 (𝓃), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ρ 𝔲∗(𝓃) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − ρ  (37)

where 𝔲 (𝓃) is an action randomly selected from 𝔘 ,𝓃. 0 < ρ < 1 is the probability to ex-
plore random actions. 

The numerical value of 𝜆  is calculated by firing rates and the selected actions: 

𝜆 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝔲(𝓃)𝒩𝓃∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (38)

The update principle of 𝓆 is the most important part in the whole learning process. 
The 𝓆-values are updated according to the rewards of the selected actions; the optimal 
action can achieve higher rewards, therefore, we can finally learn the optimal action. 

The Q value at the 𝕜 moment can be designed as follows: 

𝑄 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (39)

The target value at the state 𝓈( ) is calculated as: 

𝒱 𝓈(𝕜) = ∑ 𝜑𝓃 𝓈(𝕜) 𝓆(𝕜) 𝓃, 𝔲∗(𝓃)𝒩𝓃 ∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (40)

When the system state 𝓈(𝕜) is driven to the next state 𝓈(𝕜 ), temporal difference 
(TD) is calculated according to the reward obtained at the 𝑘 moment 𝓇(𝕜): ∆𝑄(𝕜) = 𝓇(𝕜) + 𝛼 𝒱 𝓈(𝕜 ) − 𝑄 𝓈(𝕜)  (41)

where 𝛼 ∈ [0,1] is the discount factor reflecting the contribution of the future reward. 
The reward 𝓇𝕜at the 𝕜 moment of the 𝑖  subsystem is designed in (42) and the mean-
ing of (42) is explained in Remark 9. 

𝓇(𝕜) = 0, 𝑖𝑓 |𝓍 (𝕜)| > 𝜎cos 𝜋2 |𝓍 (𝕜)|𝜎 , 𝑖𝑓 |𝓍 (𝕜)| ≤ 𝜎   (42)

where 𝓍 (𝕜) = 𝑞 (𝕜) + 𝛬 𝑡𝑎𝑛ℎ (𝕜)₵  and 𝜎 > 0 is a positive constant. 
Finally, the adaptive law of q-values is: 

𝓆(𝕜 ) 𝓃, 𝔲(𝓃) = 𝓆(𝕜) 𝓃, 𝔲(𝓃) + 𝛾 ∙ ∆𝑄(𝕜) ∙ 𝜑𝓃 𝓈(𝕜)∑ 𝜑𝓃 𝓈(𝕜)𝒩𝓃  (43)

where 𝛾 ∈ [0,1] is the learning rate. 

)
i,P

until a sufficient improvement on the tracking performance is achieved. p is the amount of action
candidates of each fuzzy rule for each subsystem. The selection of p could start at a great number
(e.g., 20), and then users could decrease p until the computational load is acceptable.

According to Remark 16~Remark 18, the parameters of the fuzzy Q learning mechanism
are given as follows. The amount of fuzzy sets in (17) are
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
could be “small”, “medium” and “big”. As a result, an example of linguistic rule could 
be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 

Some intuitive linguistic rules can be given as: 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is small 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is small 

Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 

 
Figure 2. Membership function of fuzzy input of the 𝑖  subsystem. 

The parameters of membership function shown in Figure 2 are defined as follows: 𝐿𝑖𝑛(𝑒 ) = 𝜁 ,( ), … , 𝜁 ,𝒶( ) , … , 𝜁 ,𝒜( ) , 𝒶 = 1,2, … , 𝒜  (33)𝐿𝑖𝑛(𝑞 ) = 𝜁 ,( ), … , 𝜁 ,𝒷( ) , … , 𝜁 ,ℬ( ) , 𝒷 = 1,2, … , ℬ (34)

where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 

The set of fuzzy inputs 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  is fuzzified by the membership function 
shown in Figure 2 and then matched with the rule antecedents (19), providing the firing 

=
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error 𝑒  and the angular velocity 𝑞 . The linguistic rules to determine 𝜆  can be given as 
the following form: 

IF 𝑒 (𝕜) is ℒ ,  AND 𝑞 (𝕜) is ℒ , , THEN 𝜆 (𝕜) is ℒ ,  (32)ℒ , , ℒ ,  and ℒ , are the linguistic descriptions of tracking error 𝑒 , angular velocity 𝑞  and parameter 𝜆  respectively. 𝕜 is the current moment. The linguistic description 
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be: IF 𝑒 (𝕜) is 𝑠𝑚𝑎𝑙𝑙 AND 𝑞 (𝕜) is 𝑠𝑚𝑎𝑙𝑙, THEN 𝜆 (𝕜) is 𝑠𝑚𝑎𝑙𝑙. 

Some intuitive linguistic rules can be given as: 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is small 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is large, and 𝑞 (𝕜) is small THEN𝜆 (𝕜) is large 
IF 𝑒 (𝕜) is small, and 𝑞 (𝕜) is large THEN𝜆 (𝕜) is small 

Remark 8. To carry out the linguistic inference shown by (32) in a numerical form, fuzzy logic 
inference is required. In detail, initially, numerical variables 𝑒 (𝕜) and 𝑞 (𝕜) at the moment 𝕜 
are fuzzified to the firing rates of the linguistic descriptions by the triangular membership function 
shown in Figure 2. After that, a group of firing rates of fuzzy rules are obtained by fuzzy reasoning. 
Then, the numerical values of 𝜆 (𝕜) are calculated by the defuzzification according to the firing 
rates of all fuzzy rules and the numerical value of the action corresponding to each fuzzy rule. 

 
Figure 2. Membership function of fuzzy input of the 𝑖  subsystem. 

The parameters of membership function shown in Figure 2 are defined as follows: 𝐿𝑖𝑛(𝑒 ) = 𝜁 ,( ), … , 𝜁 ,𝒶( ) , … , 𝜁 ,𝒜( ) , 𝒶 = 1,2, … , 𝒜  (33)𝐿𝑖𝑛(𝑞 ) = 𝜁 ,( ), … , 𝜁 ,𝒷( ) , … , 𝜁 ,ℬ( ) , 𝒷 = 1,2, … , ℬ (34)

where 𝒜 is the number of fuzzy sets (𝜁 ,𝒶) for the fuzzy input 𝑒 , and ℬ is the number of 
fuzzy sets (𝜁 ,𝒷) for the fuzzy input 𝑞 . 

The 𝓃-th fuzzy rule in fuzzy Q learning is defined as follows: 𝑅𝓃, : IF 𝓈 ,(𝕜) is 𝐿 ,(𝕜) and 𝓈 ,(𝕜) is 𝐿 ,(𝓃) and …… and 𝓈𝓂,(𝕜)  is 𝐿𝓂,(𝓃) , THEN 𝔲(𝓃) ∈ 𝔘 ,𝓃 that 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 1) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 2) or 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 3),…., 𝔲(𝓃) = 𝔲 ,(𝓃) with 𝓆( )(𝓃, 𝑝),….,𝔲(𝓃) = 𝔲 ,(𝓃). with 𝓆( )(𝓃, 𝑃)  
(35)

where 𝔘 ,𝓃 = 𝔲 ,(𝓃), . . 𝔲 ,(𝓃), . . , 𝔲 ,(𝓃) is the set of action candidates in the rule 𝑅𝓃, . 𝐿(𝓃) ={𝐿 ,(𝓃), … , 𝐿𝓂,(𝓃) } is the set of linguistic variables of fuzzy inputs. 𝓈(𝕜) = 𝓈 ,(𝕜), … , 𝓈𝓂,(𝕜)  
is the set of fuzzy inputs at the 𝕜 moment. In this paper, the fuzzy inputs are 𝑒  and 𝑞  
such that 𝓈(𝕜) = {𝑒 (𝕜), 𝑞 (𝕜)}. 
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= 8. Therefore, the amount
of fuzzy rules are
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= 64. The parameters of membership function to do the fuzzification
are: Lin(e1) =

{
ζ
(1)
1,1 , ζ

(1)
1,2 , . . . , ζ

(1)
1,8

}
={−0.0017, −0.0014, −0.001, −0.0006, −0.0002, 0.0002,

0.0006, 0.001, 0.0014, 0.0017}. Lin
( .
q1
)
=
{

ζ
(1)
2,1 , ζ

(1)
2,2 , . . . , ζ

(1)
2,8

}
={−0.175, −0.138, −0.097,

−0.058, −0.019, 0.019, 0.058, 0.097, 0.138, 0.175}×10−3. Lin(e2) =
{

ζ
(2)
1,1 , ζ

(2)
1,2 , . . . , ζ

(2)
1,8

}
=

{−0.0017,−0.0014,−0.001,−0.0006,−0.0002, 0.0002, 0.0006, 0.001, 0.0014, 0.0017}. Lin
( .
q2
)
={

ζ
(2)
2,1 , ζ

(2)
2,2 , . . . , ζ

(2)
2,8

}
={−0.175, −0.138, −0.097, −0.058, −0.019, 0.019, 0.058, 0.097, 0.138,

0.175}×10−3. The action candidates for each fuzzy rule are: Ui,
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= {0, 22, 44, 66, 88, 111, 133,
155, 177, 200} for all i = 1, 2 and
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= 1, 2, . . . ., 64. Therefore, the amount of action candi-
dates for each fuzzy rule is P = 10. The discount factor is α1 = α2 = 0.01 and the learning
rate is Γ1 = Γ2 = 0.2. The threshold of obtaining rewards is σ1 = σ2 = 0.01.

To show the superiority, four existing controllers, Refs. [26,33,43,44] are compared
with the proposed controller.

The controller from [26] is given as (44)–(52)

τ = τ1 + τ2 (44)

τ1 = M̂(q)
( ..
qr −KV

.
e−KPe

)
+ Ĉ

(
q,

.
q
) .
q + Ĝ(q) (45)

τ2 = −M̂(q)f̂ + M̂(q)ur (46)

ur =

[
−ξ̂tan h(a1 p/ρ1)
−ξ̂tan h(a2 p/ρ1)

]
(47)

f̂ = ŴT
σ
(

V̂TX
)

(48)

.
ξ̂ = a1 ptanh

(
a1 p
ρ1

)
+ a1 ptanh

(
a2 p
ρ1

)
− Kξ̂ (49)
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.
Ŵ =

(
σ − σ′V̂TX

)
xT PB− YWŴ (50)

.
V̂ = XxT PBŴTσ′ − YVV̂ (51)

p = 1 + ||X||+
∣∣∣∣V̂∣∣∣∣·||X||+ ∣∣∣∣Ŵ∣∣∣∣·||X|| (52)

where σ = [σ1, σ2, . . . , σm]
T is the vector of hidden neurons with the activation function

σi(s) = 1/(1 + e−s). σ′ is the vector of partial derivative of σ such that σ′ = ∂σ(s)/∂s.
x = [e1, e2,

.
q1,

.
q2]

T and X = [qr1, qr2, q1, q2,
.
q1,

.
q2,

..
q1,

..
q2]

T . P satisfies PA + AT P = −Q with

A =

[
0 I
−KP −KV

]
. [a1, a2] = xT PB.

In this simulation, we let the controller from [26] to fully know the system parameters
such that M̂(q) = M(q), Ĉ

(
q,

.
q
)
= C

(
q,

.
q
)

and Ĝ(q) = G(q).
The parameters in (44)–(52) are given as:

KV =

[
300 0

0 300

]
, KP =

[
200 0
0 200

]

B =


0 0
0 0
1 0
0 1

, Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


ρ1 = 0.01, K = 0.005, YW = 0.15, YV = 0.15, ξ̂(0) = 0.01

Ŵ(0) =


−0.1 −0.1
−0.1 −0.1
−0.1 −0.1
−0.1 −0.1
−0.1 −0.1



V̂(0) =



0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1


The controller from [33] is given as (53)–(58).

τ = G(q) p̂− Kd
.
q− Kpe− Ksdiag{X1,X2}z (53)

Xi =
ζ2

i
ζ2

i − q2
i
+

ζ2
i qizi

(ζ2
i − q2

i )
2 , i = 1, 2 (54)

zi = ei +
∫ t

0
ηi(Θ)dΘ, i = 1, 2 (55)

ηi = −βizi, i = 1, 2 (56)
.
p̂ = −ΨGT(q)

.
q (57)

G(q) =
[

cos(q1 + q2) cos(q2)
cos(q1 + q2) 0

]
(58)

where p̂ = [ p̂1, p̂2]
T , z1(0) = e1(0) and z2(0) = e2(0). ζ1 and ζ2 are the specific constraint

(designed upper bound) of the 1st and 2nd joint respectively, therefore, ζ1 = ε1 = 50o and
ζ2 = ε2 = 60o.
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The parameters in (53)–(58) are given as follows:

Kd =

[
60 0
0 20

]
, Kp =

[
24 0
0 24

]
, Ks =

[
20 0
0 20

]

β1 = 30, β2 = 30, Ψ =

[
0.1 0
0 0.1

]
The controller from [43] is given as (59)–(61).

τ = K−1
D M̂

[
KP

.
e− KIe + KD

..
qr + β

.
s− KD Γ̂− KDΛs− KDkssgn

( .
s
)]

(59)

.
s + βs = KPe + KI

∫ t

0
e + KD

.
e (60)

.
ks = Γ

∣∣∣∣ .
s
∣∣∣∣ (61)

where
.
s(0) = [0, 0]T , ks(0) = 0, Γ = 0.1, Γ̂ is the known part of lumped uncertainty Γ. In

this simulation, we let Γ̂ = 0.7Γ. The parameters KP, KD, KI and β are given as follows.

KD =

[
20 0
0 20

]
, KP =

[
10 0
0 10

]
, KI =

[
0.01 0

0 0.01

]
, β =

[
0.1 0
0 0.1

]
The controller from [44] is given as (62)–(65).{

D̂ = z + Y
.
q

.
z = −YM̂−1z + YM̂−1 (−τ −Y

.
q− D

) (62)

τ = M̂
( ..
qr −Λ

.
q + Λ

.
qr
)
− D− KDsat(s)− D̂ (63)

sat(si) =

{
sgn(si), |si| ≥ σ

si/σ, |si| < σ
(64)

where σ = 0.1, sat(s) = [s1, s2]
T . z(0) = [0, 0]T and s =

.
e + Λe. D is known part of M̂−1Γ,

D = 0.7M̂−1Γ in the simulation. The parameters Y, Λ and KD are given as follows.

KD =

[
40 0
0 16

]
, Y =

[ 1
0.06 0
0 1

0.06

]
, Λ =

[
40 0
0 20

]
Furthermore, two cases are considered to run the simulation. In the 1st case, the

parameters of the dynamic model are fully known, and there is no external disturbance
and no friction. In the 2nd case, the parametric uncertainty is considered and the unknown
external disturbance and frictions are applied on the dynamics model.

Remark 19. The selections of parameters for the proposed controller, the controller from [26] and
the controller from [33] are all carried out in case 1. In other words, all the parameters for the
three different controllers are fine-tuned to have a good performance in case 1. In case 2, all the
selected parameters of the three controllers remain unchanged to test the robustness to the lumped
uncertainty.

Case 1. In the absence of system uncertainty, external disturbance and friction.

In this case, the system parameters used in the three controllers (proposed controller,
controller from [26] and controller from [33]) are the same as the parameters in the dynamics
model of manipulator, which means no parametric uncertainty. Meanwhile, the friction
and external disturbance are null, shown as follows:

F
( .
q
)
=

[
F1
F2

]
=

[
0
0

]
, τd =

[
τd1
τd2

]
=

[
0
0

]
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The comparisons of angular position tracking are shown in Figures 6 and 7, while the
comparisons of angular velocity are shown in Figures 8 and 9. Cleanly, in the absence of
unknown disturbance and system parametric uncertainty, the proposed controller shows an
inferior performance in terms of a greater steady state error and a slower error converging
rate, compared to the controllers from [26,33]. In comparison to [43,44], it provides a
response faster than the sliding mode controller [44] but slower than the disturbance
observer-based controller [44]. However, the steady state error of the proposed controller is
smaller than that of [43,44].
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Figure 6. Comparison of angular position to [26,33] in case 1: [26] scheme (yellow solid line), [33]
scheme (red dash line), the proposed scheme (blue solid line), the reference angular position (green
dashed line), the angular position constrains (black dashed line); (a) Joint 1. (b) Joint 2.
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Figure 7. Comparison of the angular position to [43,44] in case 1: [43] scheme (yellow solid line), [44]
scheme (red dash line), the proposed scheme (blue solid line), the reference angular position (green
dashed line), the angular position constrains (black dashed line); (a) Joint 1. (b) Joint 2.
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Figure 8. Comparison of angular velocity to [26,32] in case 1: [26] scheme (yellow solid line), [33]
scheme (red dash line), the proposed scheme (blue solid line), the angular velocity constrains (black
dashed line); (a) Joint 1. (b) Joint 2.
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In Figures 8 and 9, the angular velocities of the proposed control scheme are within the
preset constraint (red lines). While the controllers from [26,33,43,44] result in the angular
velocities of two joints exceeding the constraints a t = 0 ∼ 2 s.
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case 2: In the presence of system uncertainty, external disturbance and friction.

In this case, the system parameters used in all the five controllers are different to that
in the dynamics model of the manipulator to indicate the parametric uncertainty. Namely,
∆M, ∆C and ∆G is taken as 20% of M, C and G. Moreover, the friction and external
disturbance, which are not known by the controllers, are applied on the dynamics model.

The friction model is from [33].

F
( .
q
)
=

[
fs1
[
tanh

(
fs2

.
q1
)
− tan h

(
fs3

.
q1
)]

+ fc1tanh
(
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.
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q1

fs1
[
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(
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.
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)
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(
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q2
)]
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fc2
.
q2
)
+ fv

.
q2

]
The parameters of the friction model are given as: fs1 = 20, fs2 = 5, fs3 = 3, fc1 = 10,

fc2 = 2 and fv = 10.
It is widely seen to use triangular functions as the unknown disturbance in the lit-

erature of the robotic system control, such as [13,36,45,46]. Therefore, in this paper, the
external disturbance is in the form of the triangular functions.

τd =

[
0.78 sin

(
π
3 t + π

4
)
+ 0.065 sin

(
π
10 t + π

4
)

0.58 cos
(

π
3 t + π

4
)
+ 0.091 sin

(
π
10 t + π

4
)]

The comparisons of tracking performance and tracking error in the presence of system para-
metric uncertainty, friction and external disturbance are shown in Figures 10–13, respectively.
Clearly, the proposed controller can achieve the smallest steady state errors, which means
the robustness to the lumped uncertainty and unknown disturbance. The converging rate
of tracking errors of the proposed controller is faster than the controller [33,43] but slower
than the controller [26,44]. It is because the preset constraint of angular velocity (black
lines in Figures 14 and 15) limits the converging rate of tracking errors. Therefore, the
converging rate of tracking errors could be increased by increasing the value of velocity
constraint (Λi) (e.g., applying some better driving motors that have a greater maximum
rotational speed to drive the joints of manipulator).

The computed control torques are shown in Figures 16 and 17. The chattering effect
of the proposed controller occurs at the initial stage because of the two following factors:
1. the increasing value of switching gain d̂i to handle disturbance at the initial stage, 2. the
fuzzy Q learning mechanism tried some bad action candidates that lead to an undesirable
consequence. After the initial stage (t > 8 s), it is observed that the proposed controller
shows the smoothest control torque compared to [26,33,43,44]. Figure 18 shows the values
of switching gain d̂1 and d̂2, it is clear the d̂1 and d̂2 will decrease to a small value to avoid a
chattering in steady state regardless of the disturbance and uncertainty.

Notably, in both case 1 and case 2, the proposed controller can make the angular
positions and angular velocities of two joints to be within their constraints during the
whole period of position tracking. More precisely, the angular position of each joint is
always between the two black dash lines in Figures 6, 7, 10 and 11. Meanwhile, the angular
velocity of each joint is always between the two black dash lines in Figures 8, 9, 14 and 15.
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Figure 10. Comparison of angular position to [26,33] in case 2: the [26] scheme (yellow solid line),
the [33] scheme (red dash line), the proposed scheme (blue solid line), the reference angular position
(green dashed line), the angular position constrains (black dashed line); (a) Joint 1. (b) Joint 2.
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Figure 11. Comparison of angular position error to [26,33] in case 2: the [26] scheme (yellow solid
line), the [33] scheme (red dash line), the proposed scheme (blue solid line); (a) Joint 1. (b) Joint 2.
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Figure 12. Comparison of angular position error to [43,44] in case 2: the [43] scheme (yellow solid
line), the [44] scheme (red dash line), the proposed scheme (blue solid line); (a) Joint 1. (b) Joint 2.
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Figure 13. Comparison of angular position to [43,44] in case 2: The [43] scheme (yellow solid line),
the [44] scheme (red dash line), the proposed scheme (blue solid line), the reference angular position
(green dashed line), the angular position constrains (black dashed line); (a) Joint 1. (b) Joint 2.
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Figure 14. Comparison of angular velocity to [26,33] in case 2: the [26] scheme (yellow solid line),
the [33] scheme (red dash line), the proposed scheme (blue solid line), the angular velocity constrains
(black dashed line); (a) Joint 1. (b) Joint 2.
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Figure 15. Comparison of angular velocity to [43,44] in case 2: the [43] scheme (yellow solid line),
the [44] scheme (red dash line), the proposed scheme (blue solid line), the angular velocity constrains
(black dashed line); (a) Joint 1. (b) Joint 2.
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Figure 16. Comparison of torque to [26,33] in case 2: the [26] scheme (yellow solid line), the [33]
scheme (red dash line), the proposed scheme (blue solid line); (a) Joint 1. (b) Joint 2.
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Figure 17. Comparison of torque to [43,44] in case 2: the [43] scheme (yellow solid line), the [44]
scheme (red dash line), the proposed scheme (blue solid line); (a) Joint 1. (b) Joint 2.
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5. Conclusions

This paper proposed a novel adaptive control scheme utilizing TDE and RL for the
angular position tracking control of robotic manipulators. The proposed control scheme can
achieve a good tracking accuracy and a fast tracking performance even when subject to the
system uncertainty and unknown disturbance. Moreover, the angular position and angular
velocity of each joint of the manipulator are guaranteed to be within their preset constraints.
The boundness of tracking errors and the stability of the robotic system controlled by the
proposed controller are proven by Lyapunov theory. Notably, the stability will not be
breached by the RL trying some bad action candidates, which ensures a safe environment
for RL to explore the optimal policy. Simulation results validate the effectiveness of the
proposed control scheme.
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