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Abstract: Recently, digital images have been considered the primary key for many applications, such
as forensics, medical diagnosis, and social networks. Image forgery detection is considered one of
the most complex digital image applications. More profoundly, image splicing was investigated as
one of the common types of image forgery. As a result, we proposed a convolutional neural network
(CNN) model for detecting splicing forged images in real-time and with high accuracy, with a small
number of parameters as compared with the recently published approaches. The presented model
is a lightweight model with only four convolutional layers and four max-pooling layers, which is
suitable for most environments that have limitations in their resources. A detailed comparison was
conducted between the proposed model and the other investigated models. The sensitivity and
specificity of the proposed model over CASIA 1.0, CASIA 2.0, and CUISDE datasets are determined.
The proposed model achieved an accuracy of 99.1% in detecting forgery on the CASIA 1.0 dataset,
99.3% in detecting forgery on the CASIA 2.0 dataset, and 100% in detecting forgery on the CUISDE
dataset. The proposed model achieved high accuracy, with a small number of parameters. Therefore,
specialists can use the proposed approach as an automated tool for real-time forged image detection.

Keywords: deep learning; image processing; lightweight model

1. Introduction

With the advancement of technology, digital images have become widely used in
many fields, such as social networks [1], the military [2], computer-aided medical diagnosis
systems [3], and evidence in court and forensics [4], and it has become very easy to obtain
them. The focus of human interest in the current era is photography, which led to the
huge growth of digital images. The high progress of technology was the reason behind the
dramatic increase in the tools that have been used to manipulate digital images. Therefore,
it is necessary to find more efficient approaches to detect forgery images.

There are two approaches to image forgery: active and passive. Active approaches
include digital signatures in images and watermarks; passive approaches include copying,
splicing, image morphing, image retouching, and image enhancement [5,6].

Image splicing is the most significant type of image forgery. Many methods for
detecting image splicing were proposed in the image field. In general, we can classify
these methods into two classes. First, extract the features using traditional methods such
as Markov features in discrete cosine transform (DCT) and discrete wavelet transform
(DWT), and extract features by using support vector machines (SVM) and the orthogonal
moments. Second is the deep learning image splicing forgery detection (ISFD) technique,
where different deep learning methods are configured. In Figure 1, A and B are the original
images, and C is the splicing image.
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Figure 1. Represents the splicing of original images for obtaining a spliced image forgery, where 
(A,B) are the original images, and (C) is the spliced image forgery. 

1.1. Traditional Splicing Forgery Detection Approach 
An efficient approach for image splicing detection based on Markov features in the 

DCT and DWT domain was suggested by [7]. Experimental results substantiate the high 
performance of their approach as compared with the others. An approach for image splic-
ing based on inter-color channel information has been introduced [8]. This approach aims 
to detect the most appropriate chroma-like channel, but this approach is computationally 
complex. An improved Markov state selection approach, which matches coefficients to 
Markov states based on a well-performed functional model, is proposed by Bo Su et al. 
[9]. This work focuses on enhancing the Markov state selection method [10,11], and the 
obtained results reveal high performance compared to the previous version. However, the 
number of images used in the database is not sufficient to measure the best performance 
of the proposed approach. An enhanced version of the Run Length Run number algorithm 
for ISFD is introduced by Zahra Moghaddasi et al. [12], and the enhanced version used 
the principal component analysis (PCA) and kernel PCA, which is a blind technique for 
ISFD based on the Markov features for edge images in spatial domain and DCT coeffi-
cients. The efficiency of the previous merge has been proved by using PCA and SVM, 
suggested by El-Alfy et al. [13]. 

An efficient technique for the spliced blurred image can localize the spliced region 
proposed by Khosro Bahrami et al. [11]. This approach can be applied only to blurred 
images. A Markov-based approach in the DCT and contourlet transform domains intro-
duced by Qingbo Zhang and Wei Lu [14]. The superiority of the proposed approach is 
that it can be extended in terms of gray and color image splicing detection. Chi-Man Pun 
et al. [15] exposed a novel approach for ISFD, using noise discrepancies in multiple scales 
as an indicator for ISFD. The proposed approach reveals high superiority when compared 
with existing state-of-the-art approaches. An efficient approach for color ISFD was sug-
gested by Ce Li et al. [16]. The authors used Markov features in quaternion discrete cosine 
transform (QDCT), then exploited SVM to make a classification for the Markov feature 
vector. The experimental results reveal high superiority thanks to their approach with 
more than 92.38% accuracy compared with other recently published methods, but accu-
racy should be improved on that. An efficient algorithm based on the PCA algorithm and 
the K-means method has been introduced by Hui Zeng et al. [17]. The experimental results 
specified good results for ISFD when compared to the original and spliced regions. An 
approach for ISFD based on local binary pattern (LBP) and DCT for feature extraction; 
hence, SVM, has been used for detection and is proposed by Alahmadi et al. [10]. A novel 
method for ISFD based on a noise level function (NLF), the values of NLF reflect the rela-
tionship between noise variance and sharpness of image blocks, is introduced by Nan Zhu 
and Zhao Li [18]. The experimental results reveal the high superiority of the proposed 
method, but that approach cannot detect more areas of forgery. 

An efficient method for ISFD based on several algorithms: roughness measure algo-
rithm, PCA algorithm, and SVM algorithm, is suggested by Zahra et al. [19]. These algo-
rithms together enhance the overall process of ISFD. An efficient algorithm based on the 

Figure 1. Represents the splicing of original images for obtaining a spliced image forgery, where
(A,B) are the original images, and (C) is the spliced image forgery.

1.1. Traditional Splicing Forgery Detection Approach

An efficient approach for image splicing detection based on Markov features in the
DCT and DWT domain was suggested by [7]. Experimental results substantiate the high
performance of their approach as compared with the others. An approach for image splicing
based on inter-color channel information has been introduced [8]. This approach aims to
detect the most appropriate chroma-like channel, but this approach is computationally
complex. An improved Markov state selection approach, which matches coefficients to
Markov states based on a well-performed functional model, is proposed by Bo Su et al. [9].
This work focuses on enhancing the Markov state selection method [10,11], and the obtained
results reveal high performance compared to the previous version. However, the number
of images used in the database is not sufficient to measure the best performance of the
proposed approach. An enhanced version of the Run Length Run number algorithm for
ISFD is introduced by Zahra Moghaddasi et al. [12], and the enhanced version used the
principal component analysis (PCA) and kernel PCA, which is a blind technique for ISFD
based on the Markov features for edge images in spatial domain and DCT coefficients. The
efficiency of the previous merge has been proved by using PCA and SVM, suggested by
El-Alfy et al. [13].

An efficient technique for the spliced blurred image can localize the spliced region
proposed by Khosro Bahrami et al. [11]. This approach can be applied only to blurred im-
ages. A Markov-based approach in the DCT and contourlet transform domains introduced
by Qingbo Zhang and Wei Lu [14]. The superiority of the proposed approach is that it can
be extended in terms of gray and color image splicing detection. Chi-Man Pun et al. [15]
exposed a novel approach for ISFD, using noise discrepancies in multiple scales as an
indicator for ISFD. The proposed approach reveals high superiority when compared with
existing state-of-the-art approaches. An efficient approach for color ISFD was suggested
by Ce Li et al. [16]. The authors used Markov features in quaternion discrete cosine trans-
form (QDCT), then exploited SVM to make a classification for the Markov feature vector.
The experimental results reveal high superiority thanks to their approach with more than
92.38% accuracy compared with other recently published methods, but accuracy should be
improved on that. An efficient algorithm based on the PCA algorithm and the K-means
method has been introduced by Hui Zeng et al. [17]. The experimental results specified
good results for ISFD when compared to the original and spliced regions. An approach for
ISFD based on local binary pattern (LBP) and DCT for feature extraction; hence, SVM, has
been used for detection and is proposed by Alahmadi et al. [10]. A novel method for ISFD
based on a noise level function (NLF), the values of NLF reflect the relationship between
noise variance and sharpness of image blocks, is introduced by Nan Zhu and Zhao Li [18].
The experimental results reveal the high superiority of the proposed method, but that
approach cannot detect more areas of forgery.

An efficient method for ISFD based on several algorithms: roughness measure al-
gorithm, PCA algorithm, and SVM algorithm, is suggested by Zahra et al. [19]. These
algorithms together enhance the overall process of ISFD. An efficient algorithm based on
the optimal threshold local ternary pattern has been introduced [20], and the proposed
technique achieved an accuracy of up to 98.25%. Kunj et al. [21] proposed an approach for
detecting and localizing ISF based on noise level estimation, with high accuracy revealed
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when experiments were performed on the CUISDE dataset. Local binary pattern (LBP)
has been employed for ISFD [22], the LBP is used to compute the image texture features.
Hence, machine learning algorithms have been used for classification.

Quaternion representation QR represents an efficient approach for representing color
images. Zhang et al. [23] proposed an approach for ISFD depending on error level analysis
(ELA) and local binary pattern (LBP). Chen et al. [24] introduced an improved quaternion
representation (QR) approach based on pseudo-Zernike moments to resolve the redundancy
problem. The proposed approach has been used for color ISFD.

1.2. Deep Learning-Based Splicing Forgery Detection Approach

An effective solution for ISFD based on a fully convolutional network (FCN) is pre-
sented by Salloum et al. [25]. The authors first introduced a single FCN (SFCN); after that,
they used multi-task FSN (MFSN), and the experimental results have shown superiority in
favor of SFCN and MFCN when compared with exciting splicing localization algorithms.
A novel ISFD method has been introduced by Bin Xiao et al. [26]. The proposed approach
depends on a coarse-to-refined convolutional neural network (C2RNet) and diluted adap-
tive clustering. Experimental results reveal the high superiority of the proposed approach
over other existing approaches. However, the proposed detection method only focuses on
one manipulated area in the image due to the limitation of the post-processing approach
and cannot detect the distortion otherwise, which is an efficient blind ISFD technique.
Additionally, they employed a deep learning architecture called ResNet-Conv suggested
by Belal Ahmed et al. [27]. The suggested model has been trained and evaluated using
a computer-generated image splicing dataset and found to be more efficient than other
models. S. Nath and R. Naskar have suggested a blind ISFD technique [28]. The proposed
approach used a deep convolutional residual network and a fully connected classifier
network. Good results were obtained when the approach was tested using the CASIA v2.0
database. An efficient ISFD based on dual-channel U-Net, that is, DCU-Net is suggested by
Hongwei et al. [29]. Experimental results reveal the robustness of the proposed approach.
Multiple ISFD techniques were proposed by Kadam et al. [30]. The authors used Mask
R-CNN with MobileNet VI as a backbone architecture. The proposed method was tested
over ultra-modern datasets such as CASIA, Wild Web, MISD, and Columbia Gray. The
results specified good superiority. However, his proposed model is not tested on a larger
number of attacks, and there is no comparison of evaluation results with and without
attacks. A lightweight architecture based on CNN for copy-move forgery detection is
introduced by Hosny et al. [31]. The presented approach reveals superiority in terms of
time and accuracy compared with other recently published methods. However, it does not
have a high-efficiency rate when it comes to splicing image fraud.

The main contribution of this work is as follows:

• The proposed model achieved high accuracy with a small number of parameters
as compared with the recently published approaches, which can be considered as
power key for the proposed architecture. Moreover, the proposed model is suitable for
environments that have limitations in memory space and CPUs.

• The presented CNN model has four convolutional layers, four max-pooling layers, one
global average pooling layer, one fully connected layer, and 97,698 hyper-parameters
shown in Table 1, so it is a lightweight CNN model.

• Three standard datasets were used that allowed us to provide accurate experiments,
and these datasets are CASIA 1.0 [32], CASIA 2.0 [32], and CUISDE [33].

• Experiments were conducted on the dataset, and an analytical comparison was made
between the proposed model’s results and previously presented models (Alahmadi
et al. [10], Kanwal et al. [20], Zhang et al. [22], Ding et al. [29], Itier et al. [34], Kadam
et al. [30], Abd El-Latif et al. [35], Nath et al. [28], and Niyishaka et al. [22]). This
comparison showed that the proposed model is efficient and accurate against the other
investigated models.
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Table 1. The proposed model activation shape, activation size, and hyperparameters.

Layers Activation Shape Activation Size Number of
Parameters

Input layer (224,224,3) 163,968 0

Conv1 (222,222,16) 788,544 448

Max pool1 (111,111,16) 197,136 0

Conv2 (109,109,32) 380,192 4640

Max pool2 (54,54,32) 93,312 0

Conv3 (52,52,64) 173,056 18,496

Max pool3 (26,26,64) 43,264 0

Conv4 (24,24,128) 73,728 73,856

Max pool4 (12,12,128) 18,432 0

Global Average Pooling 2D 18,432 18,432 0

Fully Connected 18,432 18,432 0

Output layer 2 2 258

Total number of parameters 97,698

This study encompasses other parts as follows: the preliminaries of CNN have been
discussed through Section 2. In Section 3, we discussed the proposed approach in detail.
The experimental results are explained and discussed in Section 4. Finally, through Section 5,
we exposed the conclusion.

2. Preliminaries
Understanding of a CNN

CNN stands for a convolution neural network. It is a class of deep learning consisting
of multilayers. It has gained much popularity in the literature due to its ability to handle
enormous amounts of data. Most of the advantages of convolutional neural networks are
related to reducing the number of parameters in ANN, which encourages researchers and
developers to use larger models to complete tasks previously impossible with standard
ANNs Albawi et al. [36].

The CNN consists of a group of elements (layers). The basic elements of CNN are the
convolutional layer Yamashita et al. [37], the pooling layer, and the fully connected layer. It
is intended to automatically and adaptively learn the spatial hierarchy of features using the
backpropagation technique shown in Figure 2.
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whether the input image is a forgery or authentic. 

Figure 2. Shows the overall architectural of the convolutional neural network, which includes an
input layer, multiple alternating convolution and max-pooling layers, one follow connected layer,
and one classification layer.

3. Proposed Approach

This study introduces an efficient and accurate model. The proposed CNN model is
shown in Figure 3. It deals with the image as a whole. The traditional approaches deal with
the image as a block. Our approach consists of three stages.
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Figure 3. The structure of the proposed algorithm CNN layers.

• The first stage is preprocessing. In this stage, the image is resized to a suitable size to
be inserted into the next stage without cutting any part of the entered image.

• The second stage is feature extraction. At this stage, there are four convolutional layers.
Each convolutional layer is followed by the following: a max-pooling layer, one global
average pooling layer, and one fully connected layer. The first convolutional layer has
16 feature maps, a filter size of (3,3), an input shape of (224,224), and an activation
function (RELU). The first max-pooling layer has a pool size of (2,2). The second
convolutional layer has 32 feature maps, a filter size of (3,3), a shape of (111,111), and
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an activation function (RELU). The second max-pooling layer has a pool size of (2,2).
The third convolutional layer has 64 feature maps, a filter size of (3,3), an input shape
of (54,54), and an activation function (RELU). The third max-pooling layer has a pool
size of (2,2). The fourth convolutional layer has 128 feature maps, a filter size of (3,3),
an input shape of (26,26), and an activation function (RELU). The fourth max-pooling
has a pool size of (2,2). These hyperparameters were tabulated in Table 1. The final
stage is a dense layer called the classification stage, and it classifies data into two
categories: authentic or forgery. The main role of the convolutional layer is to extract
features. Each convolutional layer has its own feature maps based on its specified filter.
In the first convolutional layer, feature map sizes were reduced, which is important
for providing next-layer feature maps. This process is called max-pooling [36]. This
map works as an input to the next convolutional layer.

• The third stage is the classification stage: the output of the last block of the convolu-
tional part represents the input of the global average pooling layer of the classification
part. The final pooled feature maps of the global average pooling layer are formulated
as vectors and fed to the fully connected layer. Finally, we can detect whether the
input image is a forgery or authentic.

4. Experimental Results

Through this section, we introduced, in detail, many experiments to test the efficiency
of the proposed approach. The experiments have been implemented on a google collab
server machine with the following specifications: GPU and RAM: 2.5 GB/12 GB in python 3,
and using Keras with TensorFlow backend.

4.1. Datasets

The experiments have been completed over three benchmark datasets, namely: CASIA
v1.0 [32], CASIA v2.0 [32], and CUISDE [33]. All datasets contain original and forgery color
images shown in Table 2.

CUISDE [33] dataset consists of 363 images, 183 original images, and 180 images
forgery. Its resolution is 568 × 757 to 768 × 1152. Its extensions are BMP or Tiff format.

CASIA 1.0 [32] dataset consists of 913 images, 451 original images, and 462 images
forgery, and its resolution is 384 × 256 or 256 × 384. The images are in JPG format.

CASIA 2.0 [32] dataset consists of 12,613 images, 7491 original images, and 5122 images
forgery. Its resolution is 900 × 600. Its extensions are BMP, TIFF, or JPG format. Figure 4
shows a sample of these datasets.

4.2. Evaluation Metrics

The following metrics are used to test the efficiency of the proposed model [35,38]:

accuracy =
(TN+TP)

(TP + FP + TN + FN)
∗ 100 (1)

precision =
TP

TP + FP
∗ 100 (2)

Recall =
TP

TP + FN
∗ 100 (3)

F1 − score =
2 ∗ (precision ∗ precall)
(precision + Recall)

(4)

sensitivity =
number of true positives(TP)

(True positives(TP) + False negatives(FN))
(5)

specificity =
number of true negatives(TN)

(True Negatives(TN) + False posotives(FP))
(6)
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Table 2. The details of the CASIA 1.0, CASIA 2.0, and CUISDE datasets.

Dataset Composition Size of Image No. of Training Images No. of Validation Images No. of Testing Images The Input
Shape

CASIA 1.0
[32]

913 images 384 × 256 pixels and
256 × 384 pixels

457 images 229 images 227 images 224 × 244
pixelstampered 462 original 451 tampered 231 original 226 tampered 116 original 113 tampered 115 original 112

CASIA 2.0
[32]

12,613 images
900 × 600 pixels

6308 images 3154 images 3152 images 224 × 244
pixelstampered 5122 original 7491 tampered 2562 original 3746 tampered 1281 original 1873 tampered 1280 original 1872

CUISDE
[33]

363 images 757 × 568 to 1152 ×
768 pixels

183 images 90 images 90 images 224 × 244
pixelstampered 180 original 183 tampered 90 original 93 tampered 45 original 45 tampered 45 original 45



Appl. Sci. 2023, 13, 1272 8 of 13

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 13 
 

 
Figure 4. Samples of datasets CASIA v1.0, CASIA v2.0, and CUISDE. 

4.2. Evaluation Metrics  
The following metrics are used to test the efficiency of the proposed model [35,38]: 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚  𝐓𝐍+ 𝐓𝐏𝐓𝐏 𝐅𝐏  𝐓𝐍  𝐅𝐍 ∗ 𝟏𝟎𝟎 (1)

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏  𝐓𝐏𝐓𝐏 𝐅𝐏 ∗ 𝟏𝟎𝟎  (2)

𝑹𝒆𝒄𝒂𝒍𝒍  𝐓𝐏𝐓𝐏 𝐅𝐍 ∗ 𝟏𝟎𝟎 (3)

𝑭𝟏 𝒔𝒄𝒐𝒓𝒆  𝟐 ∗ 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝒑𝒓𝒆𝒄𝒂𝒍𝒍𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍  (4)

𝒔𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚  𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐭𝐫𝐮𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 𝐓𝐏𝐓𝐫𝐮𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬 𝐓𝐏 𝐅𝐚𝐥𝐬𝐞 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬 𝐅𝐍  (5)

𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚  𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐭𝐫𝐮𝐞 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬 𝐓𝐍𝐓𝐫𝐮𝐞 𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬 𝐓𝐍 𝐅𝐚𝐥𝐬𝐞 𝐩𝐨𝐬𝐨𝐭𝐢𝐯𝐞𝐬 𝐅𝐏  (6)

4.3. Experimental Results 
Our study has been tested over CASIA 1.0 [32], CASIA 2.0 [32], and CUISDE [33] 

datasets. The results obtained were evaluated against recently published methods (A. 
Alahmadi et al. [10], N. Kanwal et al. [20], Y. Zhang et al. [23], H. Ding et al. [29], V. Itier 
et al. [34], K. Kadam et al. [30], E. Abd El-Latif et al. [35], S. Nath et al. [28] and P. Niyishaka 
et al. [22]). Results of confusion matrices are specified in Table 3. The sensitivity and spec-
ificity of the proposed model over CASIA 1.0, CASIA 2.0, and CUISDE datasets are shown 
in Table 4. The feature map for a forgery image from a CASIA 1.0 dataset is shown in 
Figure 5. 

Table 3. Confusion matrices of the proposed model over CASIA 1.0, CASIA 2.0, and CUISDE da-
taset. 

Dataset Classes + − Total 

CASIA 1.0 
+ 115 0 115 
− 2 110 112 

Total 117 110 227 
CASIA 2.0 + 1850 22 1872 

Figure 4. Samples of datasets CASIA v1.0, CASIA v2.0, and CUISDE.

4.3. Experimental Results

Our study has been tested over CASIA 1.0 [32], CASIA 2.0 [32], and CUISDE [33]
datasets. The results obtained were evaluated against recently published methods (A. Alah-
madi et al. [10], N. Kanwal et al. [20], Y. Zhang et al. [23], H. Ding et al. [29], V. Itier et al. [34],
K. Kadam et al. [30], E. Abd El-Latif et al. [35], S. Nath et al. [28] and P. Niyishaka et al. [22]).
Results of confusion matrices are specified in Table 3. The sensitivity and specificity of the
proposed model over CASIA 1.0, CASIA 2.0, and CUISDE datasets are shown in Table 4.
The feature map for a forgery image from a CASIA 1.0 dataset is shown in Figure 5.

4.4. The Results and Comparison over the CASIA 1.0, CASIA 2.0, and CUISDE Datasets

Through the present study, we computed the F1-score for the proposed model and
compared it with the other recently published approaches over the CASIA 1.0 [32], CASIA
v2.0 [32], and CUISDE [33] datasets. The obtained results are specified in Table 5.

Over CASIA 1.0, the proposed approach reveals high superiority in terms of the F1-
score, which has achieved an F1-score value of 97.34% for A. Alahmadi et al. [10], 97.03% for
E. Abd El-Latif et al. [35], 98.3% for N. Kanwal et al. [20], and 61.0% for K. Kadam et al. [30],
and the proposed model achieves an F1-score of 99.14%.

Table 3. Confusion matrices of the proposed model over CASIA 1.0, CASIA 2.0, and CUISDE dataset.

Dataset Classes + − Total

CASIA 1.0
+ 115 0 115
− 2 110 112

Total 117 110 227

CASIA 2.0
+ 1850 22 1872
− 0 1280 1280

Total 1850 1302 3152

CUISDE
+ 45 0 45
− 0 45 45

Total 45 45 90
The positive (+) sign stands for the original classes, while the negative (−) sign stands for the forgery classes. Blue
color indices are the number of corrected detected images by the proposed approach.

Table 4. Sensitivity and specificity of the proposed model over CASIA 1.0, CASIA 2.0, and
CUISDE dataset.

Dataset Sensitivity % Specificity %

CASIA 1.0 98.29 100

CASIA 2.0 100 98.31

CUISDE 100 100
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Table 5. A comparison of F1-score, precision, and recall in the case of the proposed model and other
recently published approaches over the CASIA 1.0, CASIA 2.0, and CUISDE dataset.

Methods
CASIA 1.0 CASIA 2.0 CUISDE

Recall % Precision % F1-Score % Recall % Precision % F1-Score % Recall % Precision % F1-Score %

A. Alahmadi et al. [10] 98.2 96.75 97.34 96.84 98.45 97.64 97.07 98.3 97.68

E. Abd El-Latif
et al. [35] 98.99 95.14 97.03 99.03 97.14 98.08 - - -

N. Kanwal et al. [20] 100 - 98.3 100 - 97.52 - - -

K. Kadam et al. [30] 66.0 67.0 61.0 - - - 66.0 67 66.0

H. Ding et al. [29] - - - 88.93 89.12 86.67 91.76 99.81 94.98

S. Nath et al. [28] - - - 94.15 96.69 95.4 - - -

P. Niyishaka et al. [22] - - - 99 97 98 - - -

Y. Zhang et al. [23] - - - - - - 93.99 89.58 91.73

Proposed method 100 98.3 99.14 98.83 100 99.4 100 100 100

Over CASIA 2.0, our approach reveals high superiority in terms of the F1-score, which
has achieved an F1-score value of 97.64% for A. Alahmadi et al. [10], 98.08% for E. Abd
El-Latif et al. [35], 97.52% for N. Kanwal et al. [20], 86.67% for H. Ding et al. [29], 95.4% for
S. Nath et al. [28], and 98% for P. Niyishaka et al. [22], and the proposed model achieves an
F1-score of 99.4%.
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Over the CUISDE, the presented approach reveals high superiority in terms of the
F1-score, which has achieved an F1-score value of 97.68% for A. Alahmadi et al. [10], 66.0%
for K. Kadam et al. [30], 94.98% for H. Ding et al. [29], and 91.73% for Y. Zhang et al. [23],
and the proposed model achieves an F1-score of 100%.

Additionally, the time of our model was compared to those in these recently published
papers, as shown in Table 6, which achieved a speed of 156 s for Alahmadi et al. [10], 143 s
for Kanwal et al. [20], and 280 s for Kadam et al. [30], and the proposed model achieves
a speed of 15.7 s over the CASIA 1.0 dataset. When tested on the CASIA 2.0 dataset, the
proposed model took the shortest time of 15.7 s compared with 326 s for Alahmadi et al. [10]
and 234 s for Kanwal et al. [20]. When tested on the proposed model on the CUISDE dataset,
it took 7.54 s compared with 126 s for Alahmadi et al. [10], 193 s for Kanwal et al. [20], and
295.2 s for Kadam et al. [30]. The results of Table 6 have been depicted in Figure 6.

Table 6. A comparison of speed recognition (time) in the case of the proposed model and other
recently published approaches over the CASIA 1.0, CASIA 1.0, and CUISDE dataset.

Speed Recognition (Time)

CASIA 1.0 CASIA 2.0 CUISDE

A. Alahmadi et al. [10] 156 326 126

N. Kanwal et al. [20] 143 234 193

K. Kadam et al. [30] 280 - 295.2

Proposed method 15.7 220 7.54
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The proposed model achieved high accuracy with a small number of parameters when
compared to recently published approaches, as shown in Table 7.

In the CASIA 1.0 dataset, the proposed model achieved 97.0% accuracy for A. Alah-
madi et al. [10] in the number of parameter “16,458,966”, 98.25% accuracy for N. Kan-
wal et al. [20] in the number of parameter “18,534,965”, 64.0% accuracy for K. Kadam et al. [30]
in the number of parameter “23,812,574” and 99.1% accuracy for the proposed model in the
number of parameter 97,698.



Appl. Sci. 2023, 13, 1272 11 of 13

Table 7. A comparison of accuracy and number of parameters in the case of the proposed model and
other recently published approaches over the CASIA 1.0, CASIA 1.0, and CUISDE dataset.

CASIA 1.0 CASIA 2.0 CUISDE

Accuracy % Parameter Accuracy % Parameter Accuracy % Parameter

A. Alahmadi et al. [10] 97.0 16,458,966 97.5 16,458,966 97.77 16,458,966

E. Abd El-Latif et al. [35] 94.55 - 96.36 - - -

N. Kanwal et al. [20] 98.25 18,534,965 97.59 18,534,965 96.66 18,534,965

K. Kadam et al. [30] 64.0 23,812,574 - - 64.0 23,812,574

H. Ding et al. [29] - - 97.93 97.27 -

S. Nath et al. [28] - - 96.45 - - -

P. Niyishaka et al. [22] - - 94.59 2,542,144 - -

Y. Zhang et al. [23] - - - - 91.46 -

V. Itier et al. [34] - - - - 98.13 -

Proposed method 99.1 97,698 99.3 97,698 100 97,698

In the CASIA 2.0 dataset, the proposed model achieved 97.5% accuracy for A. Alah-
madi et al. [10] in the number of parameter “16,458,966”, 97.59% accuracy for N. Kan-
wal et al. [20] in the number of parameter “18,534,965”, 94.59% accuracy for P. Niy-
ishaka et al. [22] in the number of parameter “2,542,144” and 99.3% accuracy for the
proposed model in the number of parameter 97,698.

In the CUISDE dataset, the proposed model achieved 97.77% accuracy for A. Alahmadi
et al. [10] in the number of parameter “16,458,966”, 96.66% accuracy for N. Kanwal et al. [20]
in the number of parameter “18,534,965”, 64.0% accuracy for K. Kadam et al. [30] in the
number of parameter “23,812,574” and 100% accuracy for the proposed model in the
number of parameter 97,698. The results of Table 7 have been depicted in Figure 7.
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5. Conclusions

This study introduces an efficient and lightweight approach for ISFD. We create a
lightweight CNN model that gives high accuracy and compares the recent other used
methods such Markov features in DCT and DWT domain, PCA, SVM, and C2RNet. Good
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results were conducted with appropriate convolutional layers and max-pooling layers.
These results revealed that the proposed model is efficient and accurate against the other
discovered models. Our experiments were achieved based on benchmark datasets: CASIA
1.0, CASIA 2.0 and CUISDE. The proposed model reached an F1-score of 99.14%, 99.4%,
and 100% in CASIA 1.0, CASIA 2.0, and CUISDE, respectively. On the other hand, the
presented model achieved an accuracy of 99.1%, 99.3%, and 100% for CASIA 1.0, CASIA 2.0,
and CUISDE, respectively. Moreover, our model obtained this accuracy in the number of
parameters (97,698) for CASIA 1.0, CASIA 2.0, and CUISDE. Overall, the proposed model
can be a strong tool for detecting image splicing forgery in the real world.

The proposed model is distinguished from previous works in that it achieves high
accuracy and uses fewer parameters compared to previous works. Reducing the number of
parameters enables us to implement this model in an environment with limited capabilities
for memory and processors.

6. Future Work

The proposed approach worked only with the image splicing forgery problem; how-
ever, there are no experiments on other problems such as medical images or other types of
forgery to prove its effectiveness in dealing with images in general.

Author Contributions: Methodology, K.M.H., A.M.M., N.A.L. and M.M.F.; software, A.M.M.; inves-
tigation, K.M.H., A.M.M., N.A.L. and M.M.F.; writing—original draft, K.M.H., A.M.M., N.A.L. and
M.M.F.; supervision, K.M.H. and N.A.L. All authors have read and agreed to the published version
of the manuscript.
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