
Citation: Li, G.; Zheng, C.; Ke, Y.; Li,

X. Deep Learning-Based Acoustic

Echo Cancellation for Surround

Sound Systems. Appl. Sci. 2023, 13,

1266. https://doi.org/10.3390/

app13031266

Academic Editor: Yoshinobu

Kajikawa

Received: 23 November 2022

Revised: 11 January 2023

Accepted: 13 January 2023

Published: 17 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Deep Learning-Based Acoustic Echo Cancellation for Surround
Sound Systems
Guoteng Li 1,2, Chengshi Zheng 1,2 , Yuxuan Ke 1,2,* and Xiaodong Li 1,2

1 Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences,
Beijing 100190, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: keyuxuan@mail.ioa.ac.cn

Abstract: Surround sound systems that play back multi-channel audio signals through multiple
loudspeakers can improve augmented reality, which has been widely used in many multimedia
communication systems. It is common that a hand-free speech communication system suffers from
the acoustic echo problem, and the echo needs to be canceled or suppressed completely. This paper
proposes a deep learning-based acoustic echo cancellation (AEC) method to recover the desired
near-end speech from the microphone signals in surround sound systems. The ambisonics technique
was adopted to record the surround sound for reproduction. To achieve a better generalization
capability against different loudspeaker layouts, the compressed complex spectra of the first-order
ambisonic signals (B-format) were sent to the neural network as the input features directly instead
of using the ambisonic decoded signals (D-format). Experimental results on both simulated and
real acoustic environments showed the effectiveness of the proposed algorithm in surround AEC,
and outperformed other competing methods in terms of the speech quality and the amount of
echo reduction.

Keywords: acoustic echo cancellation; surround sound; ambisonics

1. Introduction

Surround sound systems offer the potential for immersive sound field reproduction [1],
enhancing realism in virtual reality and multimedia communication systems [2], such as
immersive teleconference and acoustic human–machine interfaces. In a closed-loop tele-
conference system, the echo signal caused by the acoustic coupling between microphones
and loudspeakers has a significant negative impact on hands-free speech communication
systems. Conventional AEC methods often use adaptive filters to identify the acoustic echo
paths, and the echo signal in each microphone is then estimated and subtracted from each
microphone signal [3,4]. However, the adaptive filtering-based algorithms may suffer from
the well-known non-unique solution problem [5] due to high cross-correlation between
the loudspeaker signals, when there are two or more reproduction channels. Although
many algorithms [6–9] have been proposed to decorrelate the loudspeaker signals so as
to solve the non-unique solution problem, the reproduction quality and immersion of the
far-end may be affected. Besides, as the number of channels increases, the computational
complexity and convergence time will increase, and the control of the step size becomes
much more sophisticated [10].

In recent years, deep learning-based methods have been employed in AEC and have
achieved significant success. Compared with conventional AEC algorithms, deep learning-
based AEC methods have the ability to recover the near-end signals from the microphone
signals directly, and they do not need to identify the acoustic echo paths explicitly and
also do not suffer from the non-unique solution problem. Lee et al. [11] proposed a
deep neural network (DNN)-based residual echo suppression gain estimation, which
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was then used to remove the nonlinear components after a linear acoustic echo canceller.
Zhang et al. [12] formulated AEC as a supervised speech separation problem and proposed
a recurrent neural network with bidirectional long short-term memory (BLSTM) to separate
and suppress the far-end signal, hence removing the echo. However, due to the non-
causality of BLSTM, the usage of this method may be restricted, especially in real-time
applications. Cheng et al. [13] proposed a convolutional recurrent network (CRN) model
to estimate the non-linear gain from the magnitude spectra of both the microphone and
far-end signals for the stereo AEC, which was then multiplied by the spectrum of the
microphone signal to estimate near-end speech. Besides, Peng et al. [14] described a three-
stage AEC and suppression framework for the ICASSP 2021 AEC Challenge, where the
partitioned block frequency domain least mean square (PBFDLMS) with a time alignment
was firstly implemented to cancel the linear echo components, and two deep learning
networks were then proposed to suppress the residual echo and the non-speech residual
noise simultaneously. In addition, Zhang et al. [15] proposed a neural cascade architecture,
including a CRN module and an LSTM module, which is used for joint acoustic echo
and noise suppression to address both single-channel and multi-channel AEC problems.
More recently, Cheng et al. [16] proposed a deep complex multi-frame filtering network
for stereophonic AEC, where two deep learning-based modules were separately used for
suppression of the linear and residual echo components.

Nowadays, with the widespread adoption of virtual reality and immersive teleconfer-
ence, the surround sound-based real-time communication system will be popularized in
the future trend. It is well known that the Ambisonic technique [17–19] is one basic and
common surround sound recording and reproduction approach, where the Ambisonics
encoder decomposes a sound field signal into spherical harmonics, i.e., B-format, and the
Ambisonic decoder transforms the B-format signal into a multi-channel sound field signal,
i.e., D-format, and they are then played back by multiple loudspeakers with a special
layout, for example, the 5.1 channel surround sound layout. To the best of our knowledge,
Ambisonics-based surround AEC methods have not been well studied yet. This paper
proposes a gated convolutional recurrent network (GCRN) model to suppress the echo
signal for the surround sound reproduction system. The input features of the GCRN
model are the compressed complex spectra of the microphone signal and the B-format
signals of the far-end instead of the D-format signals. This setting is mainly under the
consideration that the actual loudspeakers layout in the near-end room may be different
from the desired layout due to the obstacles or artificial errors, leading to the mismatch
of the Ambisonic decoding matrix. The output of the GCRN model was the compressed
complex spectrum of the near-end speech and the cost function was calculated between the
estimated and real near-end speech signals with regard to their real and imaginary parts
of the compressed complex spectra, respectively. The proposed algorithm was evaluated
using the perceptual evaluation of speech quality (PESQ) [20] in double-talk scenarios and
echo return loss enhancement (ERLE) in single-talk scenarios. The GCRN-based algorithm
showed its effectiveness in both the simulated and real acoustic environments. In summary,
this paper has two main contributions. On the one hand, the surround AEC is taken into
consideration and the Ambisonics technique is adopted to record the surround sound for
reproduction. On the other hand, the B-format signals instead of the D-format signals
are used as the references to achieve better generalization against different non-standard
loudspeaker layouts.

The rest of this paper is organized as follows. A brief introduction to the fundamentals
of Ambisonics is described in Section 2. The surround AEC problem and symbols definition
are formulated in Section 3. Section 4 presents the used network architecture and the
compressed complex spectrum. Experimental settings and results as well as analysis are
given in Section 5. In Section 6, we give our conclusions.
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2. First-Order Ambisonics (B-Format)

Ambisonics is unique in being a total systems approach to reproducing or simulating
the spatial sound in all its dimensions [17] and the Ambisonic encoder decomposes the
sound field at a particular point of space on the orthogonal basis of spherical harmonics
functions [21]. The B-Format is the first-order Ambisonics, which encodes the directional
information of a given three-dimensional sound field into four channels called W, X,
Y, Z, where W is the omini-directionial channel, X, Y and Z are the three figure-of-eight
directional channels [22]. For a point sound source p(n) assimilated to a plane-wave coming
from azimuth φ and elevation δ, where n denotes the time index, the decomposition of the
sound field on these four channels can be formulated as follows [22,23]:

W(n)
X(n)
Y(n)
Z(n)

 =


1√
2

cos(φ) cos(δ)
sin(φ) cos(δ)

sin(δ)

p(n). (1)

Ambisonic-encoded signals carry the spatial information of the entire sound field. To
drive the loudspeaker signals with a particular layout, an Ambisonic decoder is needed
to transform the B-format signals into D-format (loudspeaker signals). The decoding
matrix used in this paper can be found in [24]. To show the characteristics of the B-format
signals and their corresponding echo components received by a microphone intuitively, the
waveforms and spectrograms of a randomly chosen sample are shown in Figure 1. In the
left panel of Figure 1, from top to bottom, Figure 1a–d plots the time-domain W-, X-, Y- and
Z-channel signals of B-format recording, respectively, and Figure 1e plots the echo signal.
In the right panel of Figure 1, Figure 1f–j plot spectrograms of Figure 1a–e.
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Figure 1. Waveforms and Spectrograms of B-format and echo signals. (a,f) B-format W-channel
signal, (b,g) B-format X-channel signal, (c,h) B-format Y-channel signal, (d,i) B-format Z-channel
signal, (e,j) echo signal.
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3. Signal Model

Assuming there are L loudspeakers and one microphone in the near-end room, and
there is an Ambisonics recording device in the far-end room, then the typical diagram of
the AEC method is shown in Figure 2, and the microphone signal in the near-end room can
be formulated as:

y(n) =
L

∑
l=0

xD
l (n)∗hl(n) + s(n) + v(n)

= d(n) + s(n) + v(n),

(2)

where xD
l (n) denotes the signals played back by the loudspeakers with l denoting the index

of loudspeakers, which can be regarded as the D-format signals in the surround sound
system. hl(n) denotes the room impulse responses (RIRs) from the loudspeakers to the
microphone in the near-end room and ∗ denotes the linear convolution operation. The
near-end speech signal is denoted as s(n), and v(n) represents the additive noise signal.
The echo signals transmitted from the loudspeakers to the microphone are denoted as
d(n). In the far-end room, as shown in Figure 2, the Ambisonics recordings are denoted
as xB

m(n), with m denoting the index of Ambisonics input channels, which are generated
by the source signal r(n) via the acoustic paths characterized by the impulse responses
gm(n). xB

m(n) can be decoded to the loudspeaker signals xD
l (n) via a decoding matrix. The

adaptive filtering-based AEC methods attempt to cancel out the echo signal d(n) from
y(n) by subtracting the estimated echo signal d̂(n) via the adaptive filters. However, it is
difficult for a conventional AEC method to entirely reduce the echo signals and the residual
echo signal inevitably exists in the estimated near-end signal ŝ(n). Besides, in the surround
sound condition, the conventional AEC methods may suffer from the non-unique solution
problem due to the high cross-correlation between the loudspeaker signals.
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  y n
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Figure 2. Diagram of a surround sound acoustic echo system.

4. Proposed GCRN-Based Surround AEC

To recover the near-end signal from microphone recordings directly without decor-
relating the far-end signals, a GCRN model-based algorithm was proposed as shown in
Figure 3. Note that we chose the B-format signals together with the microphone signals
as the inputs of the neural network. In Figure 3, Xc

m,R and Xc
m,I represent the real and

imaginary part of the compressed complex spectrum of B-format signal xB
m(n), respectively.

They can be defined as follows:

Xc
m,R = |XB

m|β · cos(θ), Xc
m,I = |XB

m|β · sin(θ), (3)
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where XB
m denotes the complex spectra of xB

m(n), |XB
m|, and θ represents the magnitude

and phase information of XB
m, respectively. The value of the power compressed coefficient

β was set as 1/2 in this work [25,26]. Accordingly, Yc
R, Yc

I and Ŝc
R, Ŝc

I denote the real and
imaginary part of the spectra of the microphone and estimated near-end speech signal
correspondingly.
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Figure 3. The architecture illustration of the GCRN model for surround AEC.

4.1. Feature Extraction and Signal Reconstruction

In the GCRN model, the compressed complex spectra of the microphone signal and
the four-channel B-format signals were used as the input features. All signals were sampled
at 16 kHz. A 20 ms Hanning window with 50% overlap between adjacent frames was used
to produce a set of time frames in this work, and a 320-point STFT (short-time Fourier
transform) was adopted to generate input features, leading to a 161-dimensional spectral
feature in each frame. The compressed complex spectra of the microphone signal y(n) and
the four-channel B-format signals xB

m(n) were concatenated as input feature maps, which
have a shape of [10, T, 161], where T represents the total frames. They were taken as the
input features to train the GCRN model. As for the output, the real and imaginary parts of
the compressed complex spectrum of near-end speech s(n) were used. The loss function
can be formulated as follows:

J
(
Sc, Ŝc) = 0.5 ·

(
|Sc

R| − |Ŝc
R|
)2

+ 0.5 ·
(
|Sc

I | − |Ŝc
I |
)2. (4)

In the enhancement stage, the estimated real and imaginary parts were used to recover
the spectrum near-end signal, which was then used to reconstruct the estimated near-end
signal in the time domain by the inverse STFT and the overlap-add method. The estimated
magnitude and phase information is given by

|Ŝc| =
(√
|Ŝc

R|2 + |Ŝc
I |2
) 1

β

, θ̂ = arctan(
Ŝc

I

Ŝc
R
), (5)

finally, the spectrum can be written as:

Ŝc = |Ŝc|ejθ̂ , (6)
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where |Ŝc| and θ̂ are the estimated magnitude and phase information of the near-end speech
s(n), respectively.

4.2. Model Architecture

In this paper, the GCRN model was used to recover the near-end speech, which is
mainly comprised of three components, namely one convolutional encoder, LSTM modules,
and two decoders for both real and imaginary part reconstruction. The encoder consists
of five convolutional-gated linear units (Conv-GLUs) layers [27], which extract the high-
level dimension feature patterns from the inputs, while the decoder serves as the mirror
version of the encoder to gradually recover the original size [28]. Each decoder has five
deconvolutional-gated linear units (Deconv-GLUs). Each convolution or deconvolution
layer is successively followed by a batch normalization (BN) [29] and an exponential linear
unit (ELU) [30] activation function. Between the encoder and the decoder, two LSTMs
are stacked to effectively establish the sequential correlation between adjacent frames.
Additionally, the skip connection [31] was also adopted to concatenate the output of each
encoder layer to the input of the corresponding decoder layer, which effectively mitigates
the information loss. One linear layer is stacked in the end of each decoder to obtain the
real or imaginary estimation.

The detailed parameter setup of the GCRN architecture is presented in Table 1. The
f eatureMaps× timeSteps× f requencyChannels format was used to specify the input size
and output size of each layer. The (kernelSize, strides, outChannels) format was adopted to
represent the hyperparameters of each layer. The number of input feature maps in each
decoder layer is doubled because of the skip connections.

Table 1. Detailed parameter setup for GCRN.

Layer Name Input Size Hyperparameters Output Size

En
co

de
r

conv2d_1 10× T × 161 1× 3, (1, 2), 16 16× T × 80
conv2d_2 16× T × 80 1× 3, (1, 2), 32 32× T × 39
conv2d_3 32× T × 39 1× 3, (1, 2), 64 64× T × 19
conv2d_4 64× T × 19 1× 3, (1, 2), 128 128× T × 9
conv2d_5 128× T × 9 1× 3, (1, 2), 256 256× T × 4

D
ec

od
er

1(
2)

reshape_1 256× T × 4 - T × 1024
LSTM_1 T × 1024 1024 T × 1024
LSTM_2 T × 1024 1024 T × 1024

reshape_2 T × 1024 - 256× T × 4

skip_connection_1 256× T × 4 - 512× T × 4
deconv_1 512× T × 4 1× 3, (1, 2), 128 128× T × 9

skip_connection_2 128× T × 9 - 256× T × 9
deconv_2 256× T × 9 1× 3, (1, 2), 64 64× T × 19

skip_connection_3 64× T × 19 - 128× T × 19
deconv_3 128× T × 19 1× 3, (1, 2), 32 32× T × 39

skip_connection_4 32× T × 39 - 64× T × 39
deconv_4 64× T × 39 1× 3, (1, 2), 16 16× T × 80

skip_connection_5 16× T × 80 - 32× T × 80
deconv_5 32× T × 80 1× 3, (1, 2), 1 1× T × 161
reshape_3 1× T × 161 - T × 161

Linear T × 161 161 T × 161

5. Experimental Results and Discussions
5.1. Experiment Settings

The English reading speech of the DNS-challenge dataset [32] was used as the near-end
and the far-end reference signals to perform experiments in the surround AEC situation,
which was derived from Librivox, consisting of 65,348 clean clips from 1948 speakers. Each
speaker was taken from about 33 utterances with about 30 s for each. Eighty percentages
of speakers were used for training and the remaining twenty percentages for testing. For
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each training sample, two speakers were randomly selected, and one was used as the
far-end speaker and the other was used as the near-end speaker. We randomly cut 12 s
long segments from each utterance of the far-end speaker, and the segment was used as
the far-end speech. For the near-end speech, we randomly cut 3 s long segments from
each utterance of the near-end speaker, and this segment was zero-padded on both sides
to ensure that each near-end speech had the same duration as the far-end speech. The
zero-padding operation was used to simulate the single-talk scene in real-world scenarios.

The RIRs were generated using the image method [33]. In the far-end room, four
microphones with different directivities were used to simulate an Ambisonics recording de-
vice located in the center of the room, including an omni-directional microphone, dubbed
W, and three figure-of-eight directional microphones, dubbed X, Y and Z, respectively.
Signals recorded by these four microphones constitute the B-format signal. Thus, for each
sound source and Ambisonics microphone pair, we can get four RIRs, which were then
defined as an Ambisonic RIRs group. In the near-end room, the RIRs were generated
according to the position of the microphone, its directivity, and loudspeakers. To improve
the generalization capacity of the DNN, the length and width of the simulated rooms
were randomly sampled from [3, 10]m with 1 m interval and the height was sampled form
[3, 5]m. In each simulated room, the reverberation time RT60 value was randomly sampled
from {0.3 s, 0.5 s, 0.6 s, 0.7 s, 0.9 s}. The locations of the microphones and loudspeakers in
the simulated room are shown in Figure 4, where the 5.1 surround sound system without
the center and subwoofer channels was taken into consideration and the microphones
were fixed in the center of each simulated room. As illustrated in Figure 4, four sur-
round loudspeakers p1–p4 were used and α represents the angle between loudspeakers
and the horizontal axis. λ represents the distance between the loudspeakers and micro-
phones. For standard (ITU-R BS 77) 5.1 surround set-up [34], the α angles for p1–p4 were
set to {190◦, 120◦, 60◦, 350◦}. The nonstandard 5.1 surround set-up was also considered.
In the nonstandard conditions, the α angle for loudspeaker p1 was randomly sampled
from [190◦, 260◦] with 10◦ interval, and similarly, the α ranges for p2, p3, p4 were set to be
[100◦, 170◦], [10◦, 80◦] and [280◦, 350◦] with 10◦ interval, respectively. λ was sampled from
{1 m, 1.2 m, 1.5 m}. In the far-end room, the angle between the speaker and horizontal axis
was randomly sampled from [10◦, 360◦] with 10◦ interval, and the distance between the
speakers and microphones was sampled from {0.3 m, 0.5 m, 0.7 m, 1 m, 1.2 m}. Besides, the
height of the microphones, loudspeakers and sound sources were all set to 1.2 m.

The far-end speech was convolved with four RIRs, which are from the same Ambisonic
RIRs group as mentioned above, resulting in the four-channel Ambisonic B-format signals.
The B-format signals were then decoded to the D-format signals by using the decoding
rules as described in [21,24]. The echo signals were generated by convolving the D-format
signals with randomly selected RIRs. Finally, the near-end speech was mixed with the echo
signals under a signal-to-echo ratio (SER) value randomly selected from {0, 5, 10, 15} dB to
get the near-end microphone signals. The SER is evaluated on double-talk scenarios, which
is defined as:

SER = 10log10

(
∑n s2(n)

∑l ∑n d2
l (n)

)
. (7)

As described in [13], white Gaussian noise was also taken into consideration as the
microphone internal noise and the signal-to-noise ratio (SNR) was set as 30 dB, which is
defined as:

SNR = 10log10

(
∑n s2(n)
∑n v2(n)

)
, (8)
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Figure 4. Location of microphones and loudspeakers.

The mean squared error (MSE) between the estimated and true compressed complex
spectra of the near-end signal was used as a loss function, and optimized by the Adam
algorithm [35]. The learning rate was set to 3× 10−4. The mini-batch size was set to 16 at the
utterance level and each batch took about 1.20 s in the training stage. The GCRN network
was trained for 50 epochs. All training samples were padded with zeros to have the same
number of time frames as the longest sample within a mini-batch and cross-validation was
used to select the best model and prevent overfitting.

In single-talk scenarios, the AEC performance is evaluated in terms of ERLE and it is
defined as:

ERLE = 10log10

(
∑n y2(n)
∑n ŝ2(n)

)
. (9)

In double-talk scenarios, PESQ is used to evaluate the AEC performances of different
algorithms. PESQ is a widely used speech quality metric which ranges from−0.5 to 4.5,
and highly correlates with subjective scores [20]. For both the ERLE and PESQ metrics, a
higher score indicates better performance.

The least mean square (LMS) algorithm is one of the most widely used adaptation
methods in the echo path identification. Among LMS algorithms, the partitioned block
frequency domain LMS (PBFDLMS) algorithm is popular for its lower computational
complexity than the time-domain LMS algorithms and its lower latency than frequency-
domain LMS algorithms, especially when the acoustic echo path is relatively long [14]. To
validate the proposed algorithm, the PBFDLMS algorithm with Wiener post-filtering was
chosen as the baseline. The PBFDLMS algorithm should be combined with the double-tale
detector (DTD) algorithm [36,37]. In order to reduce the performance degradation caused
by the DTD method, an ideal DTD was assumed for the PBFDLMS algorithm. The test
mixtures were generated in the same way, which were not used in the training procedure.

5.2. Performance and Analysis

The performance of the proposed GCRN-based AEC algorithm trained with B-format
data (denoted as B-format Model) was firstly analyzed through comparison with the
traditional PBFDLMS with the Wiener post-filtering method. Besides, we also trained a
model using the D-format signals as the reference signal (denoted as D-format Model). For
this model, the standard 5.1 surround sound set-up, as mentioned in Section 5.1, was used,
and the decoding rules for this model were fixed. As for the B-format model, the decoding
rules are in accordance with the loudspeaker layouts. Moreover, a model using only one
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channel B-format data and the microphone signal (denoted as Singlechn Model) as inputs
was also performed to compare with the B-format model.

The performance of the B-format and D-format model was firstly tested in standard
5.1 surround sound set-up condition without the center and the subwoofer channels. One
test set generated with standard loudspeaker layouts was used, where the α sets were the
same as the ones used to train the D-format model. The PESQ and ERLE results in this
situation are shown in Table 2. The RT60 value was set to 0.5 s in the far-end room. From
Table 2, one can see that in the standard loudspeaker assignment condition, the D-format
model outperformed the B-format model in all conditions in terms of the ERLE criterion,
because the tested surround sound set-up matched the training dataset of the D-format
model completely. Both models had similar performances in terms of the PESQ criterion.

To further evaluate the generalization capability of GCRN-based AEC algorithm to
unseen RIRs and loudspeaker layouts, different α settings were used to generate the RIRs
in the near-end room. As shown in Figure 4, the α angle for loudspeaker p1 was randomly
sampled from [186◦, 261◦] with 15◦ interval, and similarly, the α ranges for p2, p3, p4 were
set to be [99◦, 174◦], [9◦, 84◦] and [276◦, 351◦] with 15◦ interval, respectively. The room
dimensions were the same as the ones used in the training set. Note that the α settings
were different from that in the training sets, thus no RIRs were overlapped between the
training and test sets. In this experiment, the RT60 value was set to 0.5 s in the far-end room,
and we tested the performance of each algorithm in different RT60 values (0.3 s, 0.6 s, 0.9 s)
of the near-end room. The PESQ and the ERLE results for different SER conditions are
shown in Table 3. One can find that the GCRN-based surround AEC method performed
much better than the other algorithms in every test condition. For the D-format model,
the decoding rules mismatched with ones used in the training procedure, which is the
main reason for its performance degradation. As for the one-channel model, it seemed that
one-channel information was insufficient for the model to achieve the best performance.
Besides, compared with Tables 2 and 3, one can find that the D-format model performed
much worse in the nonstandard surround set-up, while the B-format model had similar
performance in each test condition.

To test the performance of the proposed method in the real acoustic environment,
real-world experiments were conducted in one meeting room. The RT60 values of the
far-end room and near-end room were about 0.8 s and 0.25 s, respectively. The sizes of
the two meeting rooms were about 6.2× 4.6× 2.7 m3 and 4.2× 4.1× 3.3 m3, separately.
In the far-end room, the distance between the speaker and Ambisonics microphone was
about 0.85 m. The recorded B-format signal in the far-end room was then decoded and
played by the loudspeakers in the near-end room. Meanwhile, the echo signal was picked
up by a microphone. Here, two different α settings, as illustrated in Figure 4, were used
to represent the standard and nonstandard loudspeakers assignment situations and the
two α sets for loudspeakers p1–p4 are {190◦, 120◦, 60◦, 350◦} and {225◦, 135◦, 45◦, 315◦},
separately. As the reverberation of near-end speech was not taken into consideration,
the near-end signal was directly mixed with the recorded echo signal at SER = 5 dB to
generate the near-end microphone signal. The spectrogram of the real recordings with
standard or nonstandard loudspeaker layouts processed by different algorithms are plotted
in Figures 5 and 6. Figure 5 represents the standard loudspeakers assignment situation; the
nonstandard scene is shown in Figure 6. The ERLE and PESQ scores of two models were
also presented in the two figures. As shown in these two figures, both the D-format and
B-format models performed well in the standard situation. Note that in the real experiment,
the deviation of angle and distance between the loudspeakers and microphone inevitably
existed. Although the decoding rules were the same as the training stage, the contribution
of each loudspeaker signal for the echo signal was different from the standard condition
due to the existence of the deviation. This can be the main reason for the performance
degradation of the D-format model. Besides, the characteristics of each loudspeaker can
also affect the produced echo. In the unknown decoding rule scene, the performance of
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the B-format model was much superior than the D-format model, indicating the greater
robustness of the B-format model for practical applications.

Table 2. Performance comparisons among different algorithms in different SERs and the standard
surround set-up conditions.

Algorithms ERLE (dB) PESQ

SER(dB) - 0 5 10 15 0 5 10 15

RT60 = 0.3 s

Unprocessed - - - - 1.85 2.15 2.46 2.71
PBFDLMS 14.54 16.13 16.00 13.89 2.46 2.71 2.85 2.93

Singlechn Model 57.94 58.88 56.44 51.96 2.66 3.02 3.27 3.51
D-format Model 62.30 60.72 58.40 53.60 2.81 3.15 3.37 3.63
B-format Model 61.49 59.91 57.57 52.30 2.85 3.18 3.34 3.63

RT60 = 0.6 s

Unprocessed - - - - 1.79 2.18 2.39 2.71
PBFDLMS 13.63 12.54 13.04 14.08 2.44 2.57 2.74 2.97

Singlechn Model 56.32 57.66 56.25 52.36 2.66 3.02 3.27 3.44
D-format Model 58.53 59.68 57.62 53.83 2.63 2.95 3.27 3.50
B-format Model 57.34 58.56 56.34 52.44 2.67 3.02 3.31 3.53

RT60 = 0.9 s

Unprocessed - - - - 1.86 2.09 2.42 2.72
PBFDLMS 11.31 13.02 12.75 13.55 2.23 2.44 2.76 2.99

Singlechn Model 57.26 56.18 56.53 52.14 2.46 2.82 3.18 3.46
D-format Mode 58.82 58.59 56.98 53.62 2.52 2.89 3.23 3.50
B-format Model 57.56 56.86 56.88 52.63 2.57 2.95 3.26 3.52

Table 3. As in Table 2 but for the nonstandard surround set-up conditions.

Algorithms ERLE (dB) PESQ

SER(dB) - 0 5 10 15 0 5 10 15

RT60 = 0.3 s

Unprocessed - - - - 1.85 2.12 2.46 2.70
PBFDLMS 13.74 13.89 15.00 14.01 2.36 2.69 2.82 3.00

Singlechn Model 59.54 59.53 56.92 52.43 2.69 3.03 3.25 3.50
D-format Model 53.16 55.80 55.75 52.57 2.72 3.05 3.31 3.56
B-format Model 63.67 61.09 58.11 52.80 2.87 3.17 3.37 3.63

RT60 = 0.6 s

Unprocessed - - - - 1.74 2.18 2.39 2.71
PBFDLMS 12.44 14.04 14.23 14.38 2.41 2.55 2.75 2.89

Singlechn Model 59.47 58.62 56.40 53.34 2.58 2.92 3.23 3.40
D-format Model 54.83 53.77 54.75 53.61 2.56 2.92 3.24 3.51
B-format Model 60.32 59.49 57.97 53.72 2.72 3.05 3.32 3.50

RT60 = 0.9 s

Unprocessed - - - - 1.86 2.09 2.42 2.72
PBFDLMS 12.15 13.10 12.41 14.10 2.38 2.44 2.80 2.96

Singlechn Model 57.44 58.54 57.31 52.76 2.51 2.87 3.21 3.47
D-format Model 52.27 57.94 57.32 53.26 2.51 2.87 3.21 3.49
B-format Model 59.30 59.68 57.65 53.52 2.65 2.98 3.29 3.54
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Figure 5. Spectrograms processed by different methods with standard loudspeakers layout. (a) Mi-
crophone signal, PESQ = 2.42, (b) clean near-end speech, (c) PBFDLMS algorithm, ERLE = 15.04 dB,
PESQ = 2.74, (d) D-format model-based algorithm, ERLE = 41.92 dB, PESQ = 3.01, (e) Singlechn
model-based algorithm, ERLE = 56.21 dB, PESQ = 2.84, (f) B-format model-based algorithm,
ERLE = 58.38 dB, PESQ = 2.98.
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Figure 6. Spectrograms processed by different methods with nonstandard loudspeakers lay-
out. (a) Microphone signal, PESQ = 2.45, (b) clean near-end speech, (c) PBFDLMS algo-
rithm, ERLE = 14.07 dB, PESQ = 2.59, (d) D-format model-based algorithm, ERLE = 17.71 dB,
PESQ = 2.76, (e) Singlechn model-based algorithm, ERLE = 52.56 dB, PESQ = 2.85, (f) B-format
model-based algorithm, ERLE = 54.73 dB, PESQ = 2.97.
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6. Conclusions

This paper proposed a compressed complex spectrum mapping approach for surround
AEC, and the method does not need to identify the acoustic echo paths explicitly, and
thus does not suffer from the non-unique solution problem. The proposed method used
the B-format signals instead of the far-end D-format loudspeaker signals as the reference
signals of the AEC algorithm. Experimental studies showed that the model trained with the
B-format signals was more robust than that trained with D-format signals against various
loudspeaker layouts, including the standard and nonstandard 5.1 surround set-ups. The
proposed algorithm outperformed the traditional PBFDLMS in both the single-talk and
double-talk scenarios. Experimental results in real acoustic scenarios further confirmed
the effectiveness of this method. In the near future, we will explore more effective network
structures, such as Transformer-based networks [38], and compare them with this work.
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Abbreviations
The following abbreviations are used in this paper:

AEC Acoustic echo cancellation
DNN Deep neural network
BLSTM Bidirectional long short-term memory
CRN Convolutional recurrent network
PBFDLMS Partitioned block frequency domain least mean square
GCRN Gated convolutional recurrent network
PESQ Perceptual evaluation of speech quality
ERLE Echo return loss enhancement
STFT Short-time Fourier transform
Conv-GLUs Convolutional gated linear units
Deconv-GLUs Deconvolutional gated linear units
BN Batch normalization
ELU Exponential linear unit
SER Signal-to-echo ratio
SNR Signal-to-noise ratio
MSE Mean squared error
RIRs Room impulse responses
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