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Abstract: The principal objective of the paper is the study of the three-dimensional Navier–Stokes
system with non-autonomous perturbation force term and increasing damping term, which often
appears in the fluid system within saturated porous media and other complex media. With some
suitable assumptions on the system parameters and external force term, based on the known result
on global well-posedness, the existence of pullback attractors is educed, and the system robustness is
shown via the upper semicontinuity of system attractors as the perturbation parameter approaches a
certain value.
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1. Introduction

The Navier–Stokes system depicts the conservation law about mass and momentum
of fluid, reflects the basic relationship among gravity, pressure and other factors inside the
viscous fluid, and is widely applied in many fields, such as materials, weather forecast
and so on. There has been a good deal of interesting research results on Navier–Stokes
equations, such as well-posedness of system solution, asymptotical behaviour, existence
and dimension evaluation of several attractors, determination, invariant measures and so
on, which can be referred to [1–9].

Given that the 3D NS system is extremely complex, especially in the case of solution
well-posedness, the 3D NS system with damping becomes one of the hot research topics.
About the increasing damping form |u|γ−1u, it is necessary for us to study the porous
media. Porous media is very common in our lives, such as coal, animal fur, aluminium
foams, ceramics and so on. Further, the applications of porous media involve many
aspects of our lives—heat transfer device design, sound testing in medicine, food drying,
underground water flow, ice melting, sound propagation in building materials, noise
reduction in automotive design, heat retention in materials, etc. The porosity is the most
representative concept in studying porous media, which is the ratio of fluid volume to the
total, a nonnegative number less than or equal to 1, where the fluid is the compound of air
and some liquids. From the Darcy law, we know, in the flow within porous media, the flow
speed u and the pressure p satisfy

µu = −k∇p,

where the viscosity coefficient µ and permeability coefficient k are both positive. Further,
the flow in saturated porous media can be described as

µu = −k∇p + ρ f ,

where ρ denotes the fluid density in porous media and f is the force. When the flow speed
in porous media becomes large to a certain extent, to obtain an accurate description for
porous media, the left term µu will be replaced by a new one, such as au + bu2 + cu3.
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Therefore, the increasing damping form |u|γ−1u appears naturally in the fluid system
within the porous media, some detailed conclusions can be referred to [10]. Further, we can
find some meaningful results on models with the increasing damping for non-Newtonian
fluid in [11–13], and also the simulations on a system with the damping form |u|γ−1u is
one of the future research directions, where the ideas in [14,15] can be used for reference.

In this paper, we investigate the following three-dimensional incompressible NS
system with the increasing damping |u|γ−1u

ut − ν∆u + (u · ∇)u + β|u|γ−1u +∇p = εg(x, t), (x, t) ∈ Ω× (ς,+∞),
divu = 0, (x, t) ∈ Ω× (ς,+∞),
u(x, t)|∂Ω = 0, t ∈ (ς,+∞),
u(x, ς) = u(ς), x ∈ Ω,

(1)

where Ω ⊂ R3 is a bounded domain with a smooth boundary, u = u(x, t) is the unknown
velocity field, p is the pressure, ν > 0 is the viscosity coefficient, εg(x, t) is the external force
and ε > 0, β > 0, γ ≥ 1. Meaningful results on system (1) can be found in [16–20]. Where
the well-posedness of the strong solution was shown in [16,19], based on which three types
of attractors were given in [17,18,20].

In practice, due to measurement errors and circumstances, the parameters of the
system are inevitably perturbed. In this case, the study of robustness is particularly
important, and robustness has become one of the important indicators of control system
design. For the conclusion of studying the robustness through upper semicontinuity, we
could refer to [21–25]. Thus far, there is no result about the robustness of the system (1),
and the aim of this paper is to study the upper semicontinuity of the pullback attractor
to (1).

The general outline is demonstrated as follows. The second and third parts recall
some basic definitions, theorems, frequently used Sobolev spaces and assumptions and
show the main results. Based on the well-posedness and estimation of the solution, we
obtain a pullback attractor of (1) and verify the robustness through semicontinuity in the
fourth part.

2. Preliminaries
2.1. Some Definitions and Theorems

Consider a Banach space X with metric dX (·, ·) and norm ‖ · ‖X . {S(t, ς)}t≥ς is a
process in X , its definition and properties can be referred to in [26].

Definition 1. Suppose that Ã(t) is a family of compact subsets {Ã(t)}t∈R, and satisfies
(i) Characteristic of invariance: S(t, ς)Ã(ς) = Ã(t), ∀t ≥ ς.
(ii) Characteristic of pullback attraction: for any subset D̃ bounded in X , there holds

lim
ς→+∞

distX (S(t, t− ς)D̃, Ã(t)) = 0,

then we call Ã(t) = {Ã(t)}t∈R the pullback attractor.

Definition 2. For arbitrary subset D̃ bounded in X , if there always exists T̄(t, D̃) > 0 satisfying

S(t, t− ς)D̃ ⊂ D̃(t), ς ≥ T̄(t, D̃), t ∈ R,

then we call the subset family D̃ = {D̃(t)}t∈R the pullback absorbing set of {S(t, t− ς)}.

Definition 3. For arbitrary t ∈ R, let D̃ = {D̃(t)}t∈R be a subset family in X . For arbitrary
sequence {ςn} with ςn → +∞ (n→ +∞) and ξn ∈ D̃(t− ςn), if {S(t, t− ςn)ξn} possesses the
relative compactness in space X , then we call {S(t, t− ς)} pullback D̃−asymptotically compact in
space X .
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Theorem 1. Suppose that D̃ = {D̃(t)}t∈R is the pullback-absorbing set for {S(t, t− ς)}, which
is continuous and possesses the pullback D̃−asymptotical compactness in X topology. Then the
subset family Ã(t) = {Ã(t)}t∈R, where

Ã(t) = Λ(D̃, t) = ∩
s≥0
∪

ς≥s
S(t, t− ς)D̃(t− ς)

X
,

is the pullback attractor to {S(t, t− ς)} in space X .

Definition 4. Let ε ∈ (ε0 − h̄, ε0 + h̄), {D̃ε(t)}t∈R ⊂ X denotes a subset family in space X , and
function Φ(t, ·, ·, ·, ·) (t ∈ R) is defined on

(ε0 − h̄, ε0 + h̄)× (ε0 − h̄, ε0 + h̄)× ∪
ε∈(ε0−h̄,ε0+h̄)

D̃ε(t)× ∪
ε∈(ε0−h̄,ε0+h̄)

D̃ε(t).

If for any sequences {εn}n∈N ⊂ (ε0 − h̄, ε0 + h̄) and {ξn}n∈N ⊂ D̃εn(t), there always exist
subsequences {εnk}k∈N and {ξnk}k∈N such that

lim
k→∞

lim
l→∞

Φ(t, εnk , εnl , ξnk , ξnl ) = 0,

then the function Φ(t, ·, ·, ·, ·) is said to be contractive.

Definition 5. Let distX (·, ·) be the Hausdorff semidistance in X , if there holds

(H) lim
ε→ε0

distX (Ãε(t), Ãε0(t)) = 0, ∀t ∈ R,

then it is said that Ãε(t) is upper semi-continuous at ε0.

Theorem 2 ([27]). Let εn, ε0 > 0, xn, x ∈ X , εn → ε0, xn → x (n → +∞), and for arbitrary
t ∈ R and ς ∈ R+ there hold

(i) lim
n→∞

Sεn(t, t− ς)xn = Sε0(t, t− ς)x.

(ii) ∃T̄ = T̄(t) > 0 and θ ∈ (0, 1) satisfying

Uε0(t− θς, t− ς)( ∪
ε0−h̄<ε≤ε0+h̄

Ãε(t− ς)
X
) ⊂ D̃ε0(t− θς), ∀ ς > T̄.

(iii) ∪
ε∈(ε0−h̄,ε0+h̄)

Ãε(t) possesses the relative compactness in X .

Then (H) holds.

Lemma 1. Let ε ∈ (ε0− h̄, ε0 + h̄). For arbitrary t ∈ R and δ0 > 0, if there exist positive constant
T̄, depending on t, δ0 and {Ãε(t)}, and a contractive function Φ(t− T̄, ·, ·, ·, ·) with domain

(ε0 − h̄, ε0 + h̄)× (ε0 − h̄, ε0 + h̄)

× ∪
ε∈(ε0−h̄,ε0+h̄)

Ãε(t− T̄)× ∪
ε∈(ε0−h̄,ε0+h̄)

Ãε(t− T̄),

such that, for any ε1, ε2 ∈ (ε0 − h̄, ε0 + h̄), ξ ∈ Ãε1(t− T̄) and η ∈ Ãε2(t− T̄), there holds

‖Sε1(t, t− T̄)ξ − Sε2(t, t− T̄)η‖X ≤ δ0 + Φ(t− T̄, ε1, ε2, ξ, η),

then ∪
ε∈(ε0−h̄,ε0+h̄)

Ãε(t) is relatively compact in X .
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2.2. Some Sobolev Spaces

Denote

E := {u1|u1 ∈ (C∞
0 (Ω))3, divu1 = 0}, H = E (L2(Ω))3

, V = E (H1(Ω))3
,

whereH and V are Hilbert spaces with inner product and norm

(u1, u2) =
3

∑
j=1

∫
Ω

u1
j (x)u2

j (x)dx, |u1| = (u1, u1)1/2, ∀ u1, u2 ∈ H,

and

((u1, u2)) =
3

∑
i,j=1

∫
Ω

∂u1
j

∂xi

∂u2
j

∂xi
dx, ‖u1‖ = ((u1, u1))1/2, ∀ u1, u2 ∈ V .

V ↪→ H ≡ H′ ↪→ V ′, where V ′ is the dual space of V with norm ‖ · ‖∗ and dual product
〈·, ·〉. Specifically, ‖ · ‖p denotes the norm of (Lp(Ω))3.

P is the orthonormal projection in space (L2(Ω))3 to H, and some properties and
spectral analysis for the operator A := −P∆ could be found in [28], where we know A
possesses the eigenvalues{λj}∞

j=1 and eigenfunctions {ωj}∞
j=1, which make an orthonormal

system. For any u1, u2 ∈ V , there holds 〈Au1, u2〉 = ((u1, u2)). The power As is defined as
follows

As f = ∑
j

λs
j ajωj, s ∈ C, j ∈ R, f = ∑

j
ajωj,

D(As) = { f : As f ∈ H} = { f = ∑
j

ajωj : ∑
j

λRes
j |aj|2 < +∞},

and denote ED(As)
by D(As) with norm |Asu|.

The properties of the bilinear operator B(u1, u2) := P((u1 · ∇)u2) and the trilinear
operator

b(u1, u2, u3) = 〈B(u1, u2), u3〉 =
3

∑
i,j=1

∫
Ω

u1
i

∂u2
j

∂xi
u3

j dx,

can be found in [6], such as

b(u1, u2, u2) = 0, b(u1, u2, u3) = −b(u1, u3, u2), ∀ u1, u2, u3 ∈ V .

In particular, B(u1) = B(u1, u1).

2.3. Assumptions

Definition 6. For any w ∈ V and t > ς, we call u a strong solution to system (1) on Ω× [ς, T],
if u ∈ L∞(ς, T;V) ∩L2(ς, T; D(A)) ∩L∞(ς, T; (Lγ+1(Ω))3), and satisfies{ d

dt (u, w) + ν((u, w)) + b(u, u, w) + (Pβ|u|γ−1u, w) = (Pεg, w),
u(x, ς) = u(ς).

(2)

Let G(u) = Pβ|u|γ−1u, system (1) can be replaced by the following abstract form{
ut + νAu + B(u) + G(u) = Pεg(x, t), ∀ t > ς,
u(x, ς) = u(ς).

(3)

To derive the well-posedness of the solution, let the following conditions hold
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(I) ∃K > 0 satisfying

sup
t∈R
|g(x, t)| < K, sup

t∈R

∫ t+1

t
|gt|2ds < +∞.

(II) ∀t ∈ R, there holds∫ t

−∞
eδs|g(x, s)|2ds < ∞, 0 < δ < νλ1/2.

3. Main Results

Theorem 3. Let 3 < γ ≤ 5, u(ς) ∈ V ∩ (Lγ+1)3, then the strong solution u to system (1) exists
uniquely, and

sup
ς≤t≤T

(‖u(t)‖2 + ‖u(t)‖γ+1
γ+1) ≤ CeC(T−ς) × (‖u(ς)‖2 + ‖u(ς)‖γ+1

γ+1 + Cε2
∫ T

ς
|g|2dt).

The proof can be referred to in Theorem 3.1 in [20]. Similarly, we can show that the
system solution u possesses the continuity to the initial datum and then obtain the existence
of a family of processes {Sε(t, ς) : V → V}.

Theorem 4. Let 3 < γ ≤ 5, u(ς) ∈ V ∩ (Lγ+1)3, then for any t ∈ R, system (3) possesses the
pullback attractor Ãε(t) = {Ãε(t)}t∈R in V .

Theorem 5. Let 3 < γ ≤ 5, u(ς) ∈ V ∩ (Lγ+1)3, then for any t ∈ R, the pullback attractor
Ãε(t) is upper semi-continuous at ε0, and

lim
ε→ε0

distX(Ãε(t), Ãε0(t)) = 0.

4. Proof
4.1. Estimation of Solutions

Lemma 2. Let 3 < γ ≤ 5, u(ς) ∈ V ∩ (Lγ+1)3, and t ∈ R is arbitrary. Then, there exist T0 > 0
and ρ1(t) > 0 satisfying

|u(t)|2 ≤ ρ2
1(t), ς < −T0.

Proof. Multiplying (3) by eδtu, we can get

d
dt
(eδt|u(t)|2) + K1eδt(‖u‖2 + ‖u‖γ+1

γ+1) ≤
ε2

νλ1
eδt|g|2, (4)

where K1 = min{ν− δ
λ1

, 2β}, then integrating it over [ς, t], we also get

eδt|u(t)|2 + K1

∫ t

ς
eδs(‖u(s)‖2 + ‖u(s)‖γ+1

γ+1)ds ≤ ε2

νλ1

∫ t

−∞
eδs|g|2ds + eδς|u(ς)|2. (5)

Finally, there holds

|u(t)|2 ≤ eδ(ς−t)|u(ς)|2 + ε2

νλ1
e−δt

∫ t

−∞
eδs|g|2ds,

which means there is a positive constant T0 satisfying

|u(t)|2 ≤ 2ε2

νλ1
e−δt

∫ t

−∞
eδs|g|2ds ≡ ρ2

1(t), ∀ ς ≤ −T0. (6)
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Lemma 3. Let 3 < γ ≤ 5, u(ς) ∈ V ∩ (Lγ+1)3, and t ∈ R is arbitrary. Then, there are positive
constants T1 and ρ2(t) satisfying

‖u(t)‖2 + ‖u(t)‖γ+1
γ+1 ≤ ρ2

2(t), ς ≤ −T1.

Proof. Multiplying (3) by ut and Au, respectively, we have

2|ut|2 + ν
d
dt
‖u‖2 +

2β

γ + 1
d
dt
‖u‖γ+1

γ+1

≤ 2|((u · ∇)u, ut)|+ 2|(ut, εg)| ≤ |ut|2 + 2|u · ∇u|2 + 2|εg|2 (7)

and

d
dt
‖u‖2 + 2ν|Au|2 + 2β||u|γ−1∇u|2 + 8β(γ− 1)

(γ + 1)2 |∇|u|
γ+1

2 |2

≤ 2|((u · ∇)u, Au)|+ 2|(Au, εg)| ≤ ν

2
|Au|2 + 4

ν
|u · ∇u|2 + 4

ν
|εg|2. (8)

Using the estimates in [20] that

C|u · ∇u|2 ≤ β||u|γ−1∇u|2 + ν

2
|Au|2 + C‖u(t)‖γ+1

γ+1,

and adding (7) and (8) together, we get

(ν + 1)
d
dt
‖u‖2 +

2β

γ + 1
d
dt
‖u(t)‖γ+1

γ+1 + 2ν|Au|2 + 2β||u|γ−1∇u|2 + |ut|2

≤ β||u|γ−1∇u|2 + ν

2
|Au|2 + C‖u(t)‖γ+1

γ+1 + (
4
ν
+ 2)ε2|g|2,

and

d
dt
(eδt(‖u‖2 + ‖u‖γ+1

γ+1)) + Ceδt(|Au|2 + ||u|γ−1∇u|2)

≤ Ceδt(‖u(t)‖2 + ‖u(t)‖γ+1
γ+1) + Cε2eδt|g|2.

By integration of the inequality and conclusion in Lemma 2, we conclude that

eδt(‖u(t)‖2 + ‖u(t)‖γ+1
γ+1)

≤ eδς(‖u(ς)‖2 + ‖u(ς)‖γ+1
γ+1) + C

∫ t

ς
eδs(‖u(s)‖2 + ‖u(s)‖γ+1

γ+1)ds + Cε2
∫ t

−∞
eδs|g|2ds

≤ Ceδς(‖u(ς)‖2 + ‖u(ς)‖γ+1
γ+1) + C1ε2

∫ t

−∞
eδs|g|2ds + C2,

and there are positive constants T1 and ρ2(t) satisfying

‖u(t)‖2 + ‖u(t)‖γ+1
γ+1 ≤ ρ2

2(t), ∀ ς ≤ −T1.

Lemma 4. Let 3 < γ ≤ 5, u(ς) ∈ V ∩ (Lγ+1)3, and t ∈ R is arbitrary. Then, there are positive
constants T2 and ρ3(t) satisfying

|Au(t)|2 ≤ ρ2
3(t), ς ≤ −T2.

The proof can be referred to in [19].
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4.2. Existence of Pullback Attractor

According to the estimations on the system solution, we get

‖u(t)‖2 + ‖u(t)‖γ+1
γ+1

≤ Ce−δ(ς−t)(‖u(ς)‖2 + ‖u(ς)‖γ+1
γ+1) + C1ε2e−δt

∫ t

−∞
eδs|g|2ds + C2. (9)

We denote Rε(t) = (2C1ε2e−δt ∫ t
−∞ eδs|g|2ds + 2C2)

1
2 , D̃ε(t) = {u ∈ V : ‖u‖ ≤ Rε(t)},

then the subset family D̃ε(t) = {D̃ε(t)}t∈R is just the pullback absorbing set of system (3)
in V .

Choose 0 < δ < δ1 < νλ1/2, and replace δ with δ1, then (9) still holds. For any
u(t− ς) ∈ D̃ε(t− ς), there holds

‖Sε(t, t− ς)u(t− ς)‖2 + ‖Sε(t, t− ς)u(t− ς)‖γ+1
γ+1

≤ Ce−δ1ςR2
ε (t− ς) + C1ε2e−δ1t

∫ t

−∞
e(δ1−δ)seδs|g|2ds + C2

≤ Ce−δ1ςR2
ε (t− ς) + C1ε2e−δt

∫ t

−∞
eδs|g|2ds + C2.

Since lim
ς→+∞

e−δ1ςR2
ε (t− ς) = 0, there is T3 = T3(t, D̃ε(t)) > 0 satisfying

Sε(t, t− ς)D̃ε(t− ς) ⊂ D̃ε(t), ∀ ς > T3.

Lemma 4 and the fact that D(A) ↪→↪→ V lead to that {Sε(t, ς)} possesses the pullback
asymptotical compactness in V . Finally, we obtain Theorem 4 from Theorem 1.

4.3. Robustness

Next, the robustness of the system is obtained by showing that the pullback attractors
Ãε(t) = {Ãε(t)}t∈R are upper semi-continuous.

Lemma 5. Let 3 < γ ≤ 5, u(ς) ∈ V ∩ (Lγ+1)3, and ς > 0. For arbitrary t ∈ R, εn → ε0 and
u0

n,t−ς → u0
t−ς as n→ +∞, then

lim
n→∞

Sεn(t, t− ς)u0
n,t−ς = Sε0(t, t− ς)u0

t−ς.

Proof. Let

zεn(t) = Sεn(t, t− ς)u0
n,t−ς − Sε0(t, t− ς)u0

t−ς = uεn(t)− uε0(t),

then zεn(t) satisfies

zεn
t + νAzεn + B(uεn)− B(uε0) + G(uεn)− G(uε0) = P(εn − ε0)g(x, t), (10)

where zεn(t− ς) = u0
n,t−ς − u0

t−ς.
Multiplying (10) by zεn(t), there is

1
2

d
dt
|zεn |2 + ν‖zεn‖2 + β||uεn |

γ−1
2 |zεn ||2

≤
∫

Ω
|zεn |2|∇uε0 |dx + β

∫
Ω
|zεn ||uε0 |||uεn |γ−1

−|uε0 |γ−1|dx + (εn − ε0)|(g, zεn)|. (11)
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Using the technique employed in Theorem 3.1 in [20], for 3 < γ ≤ 5, we can obtain

d
dt
|zεn |2 ≤ C(1 + |uεn |

γ−1
2 + |u|

γ−1
2 )|zεn |2 + C(εn − ε0)|g|2. (12)

Applying the Gronwall inequality to (12) yields

|zεn(t0)|2 ≤ C(|u0
n,t0−ς − u0

t0−ς|2 + (εn − ε0)
∫ t0

t0−ς
|g|2ds)

×exp(
∫ t0

t0−ς
(1 + |uεn |

γ−1
2 + |uε0 |

γ−1
2 )ds)→ 0 (n→ ∞).

Lemma 6. Let 3 < γ ≤ 5, u(ς) ∈ V ∩ (Lγ+1)3, and t ∈ R is arbitrary. Then there are positive
constants θ ∈ (0, 1) and T4, depending on ε0 and t, such that

Sε0(t− θς, t− ς) ∪
ε0−h̄<ε≤ε0+h̄

Ãε(t− ς)
X
⊂ D̃ε0(t− θς), ∀ ς ≥ T4.

Proof. For the pullback attractors Ãε(t) = {Ãε(t)}t∈R, we have

Ãε(t) = ∩
s≥0
∪

ς≥s
Sε(t, t− ς)D̃ε(t− ς)

X
,

and
∪

ε0−h̄<ε≤ε0+h̄
Ãε(t)

X
⊂ ∪

ε0−h̄<ε≤ε0+h̄
D̃ε(t)

X
⊂ D̃ε0(t).

Let θ = 1− δδ−1
1 , for any u0

t−ς ∈ D̃ε0+h̄(t− ς), applying Lemma 3, we know that

‖Sε0(t− θς, t− ς)u0
t−ς‖2 + ‖Sε0(t− θς, t− ς)u0

t−ς‖
γ+1
γ+1

≤ Ce−θ1(1−δ)ςR2
ε0+h̄(t− ς) + C1ε2

0e−δ1(t−θς)
∫ t−θς

−∞
eδ1s|g|2ds + C2

≤ Ce−θ1(1−δ)ςR2
ε0+h̄(t− ς) + C1ε2

0e−δ0(t−θς)
∫ t−θς

−∞
eδ0s|g|2ds + C2,

and from lim
ς→+∞

e−θ1(1−δ)ςR2
ε0+h̄(t− ς) = 0 we also get

Sε0(t− θς, t− ς) ∪
ε0−h̄<ε≤ε0+h̄

Ãε(t− ς)
X
⊂ D̃ε0(t− θς).

Lemma 7. Let 3 < γ ≤ 5, u(ς) ∈ V ∩ (Lγ+1)3, and t ∈ R is arbitrary. Then, ∪
ε∈(ε0−h,ε0+h)

Ãε(t)

possesses the relative compactness in space X .

Proof. According to the representation of the pullback attractor Ãε(t) = {Ãε(t)}t∈R, we
get

Sε(t, t− ς)D̃ε(t− ς) ⊂ D̃ε(t), ∀ ς > T, t ∈ R

and for any ε ∈ (ε0 − h̄, ε0 + h̄), there always holds that Ãε(t) ⊂ D̃ε(t).
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Suppose that {εn}n∈N ⊂ (ε0 − h̄, ε0 + h̄), and un(t) is the system solution to (1) with
the initial datum un(t− ς) ⊂ D̃εn(t− ς) (n = 1, 2, · · · ), then

d
dt
(um − un) + νA(um − un) + B(um)− B(un) + G(um)− G(un)

= P(εm − εn)g. (13)

Letting w = um − un and multiplying (13) by Aw, we get

d
dt
‖w‖2 + 2ν|Aw|2

≤ ν|Aw|2 + 3
ν
(|(εm − εn)g|2 + |G(um)− G(un)|2 + |B(um)− B(un)|2), (14)

where

|B(um)− B(un)|2 = |B(w, um)− B(un, w)|2

≤
∫

Ω
|w|2|∇um|2dx +

∫
Ω
|un|2|∇w|2dx ≤ C‖w‖2

4‖∇um‖2
4 + ‖un‖2

L∞

∫
Ω
|∇w|2dx

≤ C‖∇w‖2‖Aum‖2 + C‖un‖2
L∞‖w‖2 ≤ C(|Aum|2 + |Aun|2)‖w‖2, (15)

|G(um)− G(un)|2

≤ C
∫

Ω
((|um|γ−1 − |un|γ−1)2u2

n + |um|2γ−2(um − un)
2)dx

≤ C
∫

Ω
((|um|γ−2 + |un|γ−2)2(um − un)

2u2
n + |um|2γ−2(um − un)

2)dx

≤ C
∫

Ω
(|um|2γ−2 + |un|2γ−2)(um − un)

2dx

≤ C(‖um‖2γ−2
L∞ + ‖un‖2γ−2

L∞ )
∫

Ω
(um − un)

2dx

≤ C(|Aum|γ−1 + |Aun|γ−1)‖w‖2. (16)

Using (15) and (16) in (14), we have

d
dt
‖w‖2 + ν|Aw|2

≤ C(|Aum|2 + |Aun|2 + |Aum|γ−1 + |Aun)‖w‖2 +
3
ν
(εm − εn)|g|2, (17)

and

d
dt
(eδt‖w‖2) + (ν− δ

λ1
)|Aw|2

≤ C(|Aum|2 + |Aun|2 + |Aum|γ−1 + |Aun)eδt‖w‖2 +
3
ν
|εm − εn|eδt|g|2. (18)
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Integrating (18) with respect to t and using the estimate of |Au| in Lemma 4 leads to

‖um(t)− un(t)‖2

≤ e−δς(‖um(t− ς)− un(t− ς)‖2 +
3
ν
(εm − εn)e−δt

∫ t

−∞
eδs|g|2ds

+C
∫ t

t−ς
(|Aum|2 + |Aun|2 + |Aum|γ−1 + |Aun|γ−1)‖w‖2ds

≤ Ce−δςR2
ε0
(t− ς) +

3
ν
(εm − εn)e−δt

∫ t

−∞
eδs|g|2ds

+Ct,ς

∫ t

t−ς
‖um(s)− un(s)‖2ds. (19)

According to Lemmas 3 and 4, we show in L2(t− ς, t;V) that

um(·)→ u(·),

and

lim
m→∞

lim
n→∞

∫ t

t−ς
‖um(s)− un(s)‖2ds = 0.

Further, the sequence {εn}n∈N ⊂ (ε0 − h̄, ε0 + h̄), thus there exists a Cauchy subse-
quence such that

lim
m→∞

lim
n→∞

(εm − εn)e−δt
∫ t

−∞
eδs|g|2ds = 0.

We denote

Φ(t− ς, εm, εn, um, un) =
3
ν
(εm − εn)e−δt

∫ t

−∞
eδs|g|2ds + Ct,ς

∫ t

t−ς
‖um(s)− un(s)‖2ds,

then Φ(t− ς, ·, ·, ·, ·) is a contractive function with domain

(ε0 − h̄, ε0 + h̄)× (ε0 − h̄, ε0 + h̄)× ∪
ε∈(ε0−h̄,ε0+h̄)

D̃ε(t− ς)× ∪
ε∈(ε0−h̄,ε0+h̄)

D̃ε(t− ς),

and according to Lemma 3, the proof is complete.

From Lemmas 5–7, Theorem 5 is obtained.

5. Further Study

Our work has studied the robustness of a three-dimensional Navier–Stokes system
with perturbation force term and increasing damping term via the upper semicontinuity
of system attractors on a bounded smooth domain. However, the related research on a
non-smooth domain is still open, and we will take time to study this topic in the future.
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