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Abstract: Crop yield prediction is essential for tasks like determining the optimal profile of crops to
be planted, allocating government resources, effectively planning and preparing for aid distribution,
making decisions about imports, and so on. Crop yield prediction using remote sensing data during
the growing season is helpful to farm planning and management, which has received increasing
attention. Information mining from multichannel geo-spatiotemporal data brings many benefits to
crop yield prediction. However, most of the existing methods have not fully utilized the dimension
reduction technology and the spatiotemporal feature of the data. In this paper, a new approach is
proposed to predict the yield from multispatial images by using the dimension reduction method and
a 3D convolutional neural network. In addition, regions with similar crop yields should have similar
features learned by the network. Thus, metric learning and multitask learning are used to learn more
discriminative features. We evaluated the proposed method on county-level soybean yield prediction
in the United States, and the experimental results show the effectiveness of the proposed method.
The proposed method provides new ideas for crop yield estimation and effectively improves the
accuracy of crop yield estimation.

Keywords: crop yield prediction; metric learning; 3D convolutional neural network; feature
constraint; multitask learning

1. Introduction

Crop yield prediction [1] refers to giving the average yield of a particular crop in an
area before its crop is harvested. Crop yield prediction is essential for tasks like determining
the optimal profile of crops to plant, allocating government resources, effective planning
and preparation of aid distribution, and decision making about imports and exports in
more commercialized systems and is becoming more important because of the growing
concern about food security under the impact of the Russian-Ukrainian War.

Based on the development of space satellite technology, remote sensing data are widely
used for agricultural applications. The reason for its success is due to large global and tem-
poral availability and easy accessibility. Other traditional methods are based on statistical
data that rely heavily on manpower to estimate crop yields based on many characteristics.
The labor cost is higher, and the timeliness is poor. However, the characteristics of changes
in weather, environment, and other factors can be reflected in remote sensing data captured
at different time periods. Therefore, crop yield estimation based on remote sensing data
is fast, timely, and has strong application prospects. This is also the starting point of the
research content of this article.

However, there are many challenges for crop yield prediction based on remote sensing
data. Many factors that affect crop yield are shown in Figure 1. Among the factors that
can be obtained from remote sensing data are the land temperature and growth of the crop
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in the area where the crop is grown. However, some factors are still unavailable through
remote sensing data, which makes the prediction of crop yield using remote sensing data a
challenging problem. Thus, a powerful method is needed to achieve a satisfactory result.
Deep learning-based algorithms [2,3] have shown excellent performance in many fields,
and currently, they have become the predominant method in crop prediction.
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But there are also some difficulties in using deep-learning methods for crop yield
estimation:

(1) The inconsistency of the input data’s dimensions. The input to a typical crop yield
prediction task is a satellite image of a specific region, such as a county. The size
of this area can vary greatly. However, the deep-learning method requires that the
dimensions of the input data be fixed. Most previous studies have avoided dealing
with the full spatiotemporal data directly through various dimensionality reduction
techniques. Therefore, a feature embedding method is needed that can map input
data with different dimensions to a fixed dimension.

(2) Methods with time series processing capabilities are required. The growth of crops is
a dynamic process that has to be assessed serially. It is essential to design a method
capable of modeling crops’ long-term growth dynamics. Some research has shown
that the accuracy of the results using CNN is better than those using LSTM [1–5],
indicating that the growth dynamics of crops are so complex that it is not feasible to
simply apply time series neural networks to crop yield prediction tasks.

(3) Lack of labeled data. Remote sensing data [6,7] are widely available at a relatively low
cost. The scarcity of labeled training data becomes an even more severe issue for deep-
learning models that deal with high-dimensional data. However, crop yield data are
relatively scarce. For example, crop yield data in the United States are more detailed,
while in other regions, especially in developing countries, data are less available and
at a coarser granularity (only accurate to the provincial administrative area).

In this paper, we propose a crop yield prediction method that uses a 3D convolutional
neural network with dimension reduction and metric learning. The proposed method is
evaluated on county-level soybean yield prediction in the United States, and the experi-
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mental results show the effectiveness of the proposed method. The contributions of this
work are summarized as follows:

• We propose the crop yield prediction method by using time series multispatial im-
ages [8–10] and a 3D convolutional neural network [11,12], which has been proven to
be effective.

• We believe that regions with similar crop yields should have similar features learned by
the network. Thus, the triplet constraint is used for the penultimate feature learned by
the 3D convolutional neural network. As a result, the discriminative feature learning
in the crop yield prediction task can be facilitated by the above constraints.

• We propose a multitask learning method to simultaneously learn regression and deep
feature embedding for crop yield prediction.

2. Related Works

The research of crop yield prediction is mainly based on two kinds of data. One is
statistical data (locally sensed data), mainly genetic characteristics (data from seeds (with a
tendency to improve year by year)), soil conditions, environmental factors that changes
in time and space (weather, etc.), planting density, management specifications (irrigation
conditions, etc.). The other is remote sensing data, such as multispectral remote sensing
images. Currently, leading crop yield prediction techniques mostly rely on locally sensed
data since the locally sensed data can provide detailed information [13]. But locally sensed
data are expensive to collect, often noisy, and extremely difficult to scale. Remote sensing
data, on the other hand, is a cheap and globally accessible resource that is more suitable for
surveying large areas and monitoring national and regional agricultural changes. Thus,
crop yield prediction based on remote sensing data is a hot research topic. Currently,
the deep learning-based method is the predominant method in the crop prediction task
since it has shown excellent performance in many fields. There are many papers based on
deep-learning approaches.

Jiaxuan You et al. from Stanford University published “Deep Gaussian Process for
Crop Yield Prediction Based on Remote Sensing Data” in 2017 [1], which won the Best
Student Paper Award in the Computational Sustainability Track of AAAI 2017, and the
work also won the Best Big Data Solution in the World Bank Big Data Innovation Challenge.
They used multispectral remote sensing images (nine bands) from MODIS satellites [6,14]
to estimate soybean and corn yields in 11 U.S. states. Their contributions to the technical so-
lution are threefold. Firstly, the raw data are embedded using a histogram. The embedding
method is motivated by the author’s belief that the location of spectral information is not
related to yield estimation. However, the method in this paper also has some problems: The
spectral information of different bands at the same location should be correlated with each
other, which is equivalent to a feature vector, but the paper constructs separate histograms
for different spectral bands and then stitches these histograms together, which separates the
correlation between different spectral information at the same location. Secondly, the Deep
Gaussian Process is combined with a neural network. The motivation for this approach is
that yields should obey the continuity assumption. The reason is that the remote sensing
data alone cannot cover all the factors that affect crop yield. Moreover, these factors, such
as land fertility, should have continuity in space and time. Jiaxuan You et al. proposed inte-
grating the continuity assumption of yield into a neural network using the Deep Gaussian
Process. Finally, two neural networks based on LSTM and CNN were used to estimate the
yield, respectively.

Anna X. Wang et al. of Stanford University conducted corn and soybean yield estima-
tion on remotely sensed images from Argentina and Brazil based on the method of You
et al. mentioned above [7]. They also used the MODIS self-contained Land cover mask to
determine the planting areas of maize and soybean. Since the MODIS Land cover mask
does not distinguish between crop types, they used the setting that all cropland in the
major crop production areas is planted with this type of crop. For example, the arable land
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with the highest soybean production in Argentina’s provinces is all considered soybean
growing areas.

Helena Russello of the University of Amsterdam proposed using 3D convolution to
estimate crop yields on remotely sensed images [5]. They replicated the work of Jiaxuan
You et al. at Stanford University and found that the yield estimation results are prone to
high prediction for low yields and low prediction for high yields. We speculate that this
may be related to the uneven labeling in the dataset. The labels in the dataset become
approximately normally distributed, with most values concentrated around the mean.
Potential improvements are increasing the samples’ weights far from the mean. Helena
Russello also conducted an experimental analysis of the factors that influence the estimation
of yields. His experimental results showed that for soybean yield estimation in 2016, using
2003–2015 as training data progress was only 8.437 (RMSE), while using 2009–2015 as
training data, the amount of data became smaller, but the accuracy instead increased to
7.532 (RMSE). The experimental results show that older data do not help much in improving
the accuracy of the yield estimation but may also introduce more noise.

Hanzi Mao et al. of Facebook AI proposed a new feature extraction method [15].
They assumed that the features extracted from regions that are closer in geospatial location
should also be closer in the feature space. Based on this assumption, they proposed a semi-
supervised Context-aware Representation Learning method for the problem of scarcity of
labeled data faced in the crop yield prediction problem. We argue that this hypothesis is
not reasonable. For crop yield prediction, it should be that for regions with similar yields,
the extracted features should be closer in the feature space.

Thus, in this paper, we not only utilize the 3D convolutional neural network to extract
the temporal information of crops but also incorporate the triplet constraint to predict the
crop yield, which is more effective.

3. Materials and Methods
3.1. Problem Definition

We consider using a series of remote sensing images to predict the average yield of a
certain crop (such as soybeans) in an area of interest before the harvest season. Specifically,
we will use a multispectral image sequence

(
I(1), · · · , I(T)

)
covering the region of interest

as input. Each multispectral image I(t) ∈ Rl×w×d corresponds to images at different time t
within a year. And l and w are the number of horizontal and vertical pixels, and d is the
number of bands of image. Our goal is to learn a mapping to characterize the relationship
between these original images

(
I(1), · · · , I(T)

)
and the average crop yield y.

y = F
(

I(1), · · · , I(T)
)

(1)

3.2. Framework Overview

In this section, we use the multitemporal and multichannel remote sensing data as the
input of the network for crop yield prediction. The architecture of the proposed framework
is presented in Figure 2. In the training stage, first, at each time step, the multispectral
image is mapped to histogram matrix representation through the global feature extraction
part. Then, we stack the extracted histogram matrix representations into the 3D histogram
as the input of the 3D convolutional neural network to learn deep features. It is worth
mentioning that we believe that regions with similar crop yields should have similar
features learned by the network. And the triplet constraint is used for the penultimate
feature learned by the 3D convolutional neural network. Finally, we propose multitask
learning to learn the regression and the deep feature embedding simultaneously for crop
yield prediction. As a result, the discriminative feature learning in the crop yield prediction
task can be facilitated by the above constraints. In the test stage, the test multispectral
image is mapped to histogram matrix representation through the global feature extraction
part at each time step. Then, the extracted histogram matrix representations are stacked
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into the 3D histogram, which is sent into the trained 3D convolutional neural network to
obtain the final crop yield prediction value.

Appl. Sci. 2023, 13, 13305 5 of 14 
 

and the deep feature embedding simultaneously for crop yield prediction. As a result, the 
discriminative feature learning in the crop yield prediction task can be facilitated by the 
above constraints. In the test stage, the test multispectral image is mapped to histogram 
matrix representation through the global feature extraction part at each time step. Then, the 
extracted histogram matrix representations are stacked into the 3D histogram, which is sent 
into the trained 3D convolutional neural network to obtain the final crop yield prediction 
value. 

 
Figure 2. The architecture of the proposed framework. 

3.2.1. Global Feature Extraction 
Due to the different sizes of the area in each county used for crop yield prediction, it is 

not feasible to directly feed different sizes of images that contain an entire county into the 
network to learn deep features. The strategy adopted in [15] is to extract image patches of the 
same size from each county. As a result, the county with a larger area can only partially be 
included in the extracted image patch. Furthermore, for the county with a smaller area, the 
extracted image includes not only this county but also part of other regions. However, You et 
al. [1] designed a new dimension reduction algorithm based on the assumption of 
permutation invariance, which can map a high-dimensional image with different sizes into a 
histogram with equal dimensions without losing information. 

Thus, we perform the transformation using the same procedure as [1], and the operation 
process of the global feature extraction is shown in Figure 3. Firstly, at every time t, we extract 
the multispectral images, which is the minimal matrix containing each county. Then, the land 
cover information is used to mask the pixels that are not masked as croplands. Accordingly, 
the values of these pixels are set to 0. Thirdly, we discretize the pixel values of each band 

( ) , 1, ,t
kI k d=   in the image ( )tI  into b  bins and produce a b-bins histogram 
( ) , 1, ,t b
kh R k d∈ =  . And d is the number of the bands for each image. By concatenating all 
( )t
kh  into ( )tH , the b d×  histogram matrix ( )tH  is produced per image and regarded as a 

compact representation of the original multispectral image. Thus, the desired mapping 
( ) ( )( )1 , , TI I y→  is converted to the desired mapping ( ) ( )( )1 , , TH H y→ . The sequential nature 

of the inputs ( ) ( )( )1 , , TH H  suggests the use of temporal models. And we stack ( ) ( )( )1 , , TH H  

Figure 2. The architecture of the proposed framework.

3.2.1. Global Feature Extraction

Due to the different sizes of the area in each county used for crop yield prediction, it is
not feasible to directly feed different sizes of images that contain an entire county into the
network to learn deep features. The strategy adopted in [15] is to extract image patches of
the same size from each county. As a result, the county with a larger area can only partially
be included in the extracted image patch. Furthermore, for the county with a smaller area,
the extracted image includes not only this county but also part of other regions. However,
You et al. [1] designed a new dimension reduction algorithm based on the assumption of
permutation invariance, which can map a high-dimensional image with different sizes into
a histogram with equal dimensions without losing information.

Thus, we perform the transformation using the same procedure as [1], and the opera-
tion process of the global feature extraction is shown in Figure 3. Firstly, at every time t, we
extract the multispectral images, which is the minimal matrix containing each county. Then,
the land cover information is used to mask the pixels that are not masked as croplands.
Accordingly, the values of these pixels are set to 0. Thirdly, we discretize the pixel values of
each band I(t)k , k = 1, · · · , d in the image I(t) into b bins and produce a b-bins histogram

h(t)k ∈ Rb, k = 1, · · · , d. And d is the number of the bands for each image. By concatenating

all h(t)k into H(t), the b× d histogram matrix H(t) is produced per image and regarded as
a compact representation of the original multispectral image. Thus, the desired mapping(

I(1), · · · , I(T)
)
→ y is converted to the desired mapping

(
H(1), · · · , H(T)

)
→ y . The

sequential nature of the inputs
(

H(1), · · · , H(T)
)

suggests the use of temporal models.

And we stack
(

H(1), · · · , H(T)
)

into the 3D histogram Ψ ∈ Rb×d×T as the input of the 3D
convolutional neural network in the proposed method.
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3.2.2. Network Architecture

In recent years, the 3D convolutional neural network has been successfully used
in human activity recognition and crop classification tasks. Due to the convolutional
kernel covering the receptive field along both spatial and temporal dimensions, the 3D
convolutional neural network can extract features from input from spatial and temporal
dimensions. Thus, the 3D convolutional neural network has been proven to be well-suited
to learning features from spatiotemporal data. Inspired by these works, we used a 3D
convolutional neural network for crop yield prediction in this paper. As shown in Figure 4,
the 3D histogram Ψ is fed into the 3D convolutional neural network to learn deep features.
The output Fc_7 of the 3D convolutional neural network is used for crop yield estimation.
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The suitable structure is arrived at for the data type, dataset size, and learning objective,
which are listed in Table 1. The whole network contains five 3D convolutional layers and
two fully connected layers. The layer “Conv_BN_ ” means the 3D convolutional layer,
which consists of the operations of the 3D convolution and the batch normalization (BN).
The layer “Fc_ ” means the fully connected layer. ReLU [16] is used as the non-linear
function of the whole network.

Table 1. The architecture of the 3D convolutional neural network.

Layer Name Operation Filters Kernel Size Stride Padding

Conv_BN_1 Conv3D+BN 32 3 × 3 × 3 2 × 2 × 2 1 × 1 × 1

Conv_BN_2 Conv3D+BN 64 3 × 3 × 2 2 × 2 × 2 1 × 1 × 1

Conv_BN_3 Conv3D+BN 128 3 × 3 × 2 2 × 2 × 2 1 × 1 × 1

Conv_BN_4 Conv3D+BN 256 3 × 3 × 3 2 × 1 × 1 1 × 1 × 1

Conv_BN_5 Conv3D+BN 512 3 × 3 × 2 2 × 2 × 2 1 × 1 × 1

Fc_6 Linear 1024

Fc_7 Linear 1

3.2.3. Triplet Constraint for Feature Constraint

In [14], the authors make an assumption that spatial images that are close spatially
should have similar features to those that are far apart. However, this assumption is not
very reasonable. And we believe that regions with similar crop yields should have similar
features learned by the 3D convolutional neural network. Conversely, the features learned
through the 3D convolutional neural network should be far apart for regions with large
differences in crop yield. Thus, the metric learning strategy [17] is applied in this paper to
learn discriminative features. The structure of the triplet network for discriminative feature
learning is shown in Figure 5.
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Generally, a triplet contains an anchor image, a positive image and a negative image.
In our task, xa has similar crop yield with xp, while xa and xn have large differences in
crop yield. That is to say, xa is an anchor image, xp is a positive image, and xn is a negative
image. And by using the embedding function, a triplet is mapped to a high-dimensional
space. In the proposed method, xa, xp, and xn are respectively fed into the network to
obtain the deep features, i.e., f (xa), f (xp), and f (xn) in layer Fc_7, respectively, for crop
yield estimation. The triplets should satisfy the distance constraint in the embedding space:

D(xa, xp) + α < D(xa, xn)∀(xa, xp, xn) (2)

where α is the constant margin value greater than 0. The above formula enforces the
Euclidean distance between the positive pair (xa, xp) smaller than that of the negative pair
(xa, xn) by a certain margin α. The Euclidean distance between the positive or negative pair
can be computed as follows, which has been proven effective for metric learning [18].

D(xa, xp) = ‖ f (xa)− f (xp)‖2 (3)

D(xa, xn) = ‖ f (xa)− f (xn)‖2 (4)

Then, the triplet network is optimized by the triplet loss to enforce the features f (xa)
and f (xp) to get closer and closer, while f (xa) and f (xn) have large differences.

L = h(D(xa, xp)− D(xa, xn) + α) (5)

where h(x) utilizes the hinge loss function, i.e., h(x) = max(0, x). And we can see that
the triplet loss can enforce the learned features of samples with similar yields to be closer,
while the learned features of samples with different yields have larger reparability. Thus,
the discriminative feature learning in the crop yield prediction task can be facilitated by the
above constraints.

3.2.4. Multitask Learning of Regression Prediction and Deep Feature Embedding

From the above description, it can be seen that the entire network framework includes
two loss functions, i.e., regression prediction loss and the triplet loss for training together.
By jointly training two loss functions, the features learned by the network can better predict
crop yield accurately.

(1) Regression prediction: For a regression task, the regression prediction loss for crop
yield prediction is calculated through the mean squared error:

Ls =
1
N

N

∑
i=1

(yi − ŷi)
2 (6)
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(2) Deep feature embedding learning: The regression prediction loss just penalizes the
regression error equally for each county, which cannot enforce the learned deep
features discriminatively enough. Thus, inspired by the metric learning strategy, we
utilize the triplet loss as the similarity constraint.

L f =
1
N

N

∑
i=1

h
(

D
(

xa
i , xp

i

)
− D(xa

i , xn
i ) + α

)
(7)

where xa
i has similar crop yield with xp

i . xa
i and xn

i have large differences in crop yield.

(3) Multitask learning: To incorporate the advantages of regression prediction and metric
learning, we apply multitask learning to learn more discriminative features for crop
yield prediction. The framework is formulated by integrating the two losses above
as follows:

Lall = Ls + L f (8)

Benefiting from the multitask learning of regression prediction and deep feature
embedding, the deep neural network is jointly optimized by propagating the regression
prediction error information and the similarity constraint information backward simul-
taneously. In such a way, more powerful deep features suitable for crop yield prediction
are obtained.

In this paper, we utilize the stochastic gradient descent (SGD) algorithm [19] to solve
the minimization problem of the objective function. As the triplet networks have been
trained, we only need one branch for inference. That is to say, the triplet loss is removed
during testing. And the test samples are directly fed to the backbone network trained to
extract the deep embedding features. Then, the output of the network is used to predict the
crop yield of each test sample.

4. Results
4.1. Data Description and Metrics

In this section, extensive experiments were performed to verify the effectiveness of the
proposed method. To compare with prior work, we evaluated our method in the United
States and chose soybean as the target crop since it has been widely investigated in prior
work [6,14]. The input data are remote sensing data with nine channels. The first seven
channels contain the remote sensing data on the surface reflectance from seven bands,
which are shown in Figure 6. The remaining two-channel data contain the remote sensing
data on the surface temperature from two bands, which are shown in Figure 7 [20]. These
data are all derived from the MODIS satellite, which are L3-level products of MODIS
products. The maturity of these data is usually relatively high. They are generated based
on calibrated L1B- or L2-level data. In addition, MODIS L3-level data is usually composed
of multiple satellite observation data combinations, and the differences caused by sensors
have been corrected accordingly. There is no need to further calibrate the data source to
eliminate the differences caused by sensors. In addition, we also use cropland data derived
from the USDA website, which is used as mask data to process MODIS remote sensing
data to highlight the focus area. The above three types of data are resampled and cropped
in counties within the United States administrative region to form the final dataset.

We use multispectral images collected 32 times a year, from the 49th day to the
305th day at 8-day intervals. We discretize all the images using 32 bins to compute the
pixel histogram. The resulting input histogram is Ψ =

(
H(1), · · · , H(T)

)
, H(t) ∈ Rb×d

with b = 32, d = 9, and T = 32. The ground truth output data are the yearly average
soybean yield at the county level measured in bushels per acre, publicly available on
the USDA website [21]. We selected 11 states in the U.S. that account for over 75% of
the national soybean production and used data from 2010 to 2021. All sources of remote
sensing data were cropped according to county borders, while non-soybean pixels were
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removed with the help of a cropland data layer. To evaluate the generalization ability
of the proposed method for unseen data in future years, the temporal nested validation
approach was used. We conducted prediction experiments for 6 years, from 2016 to 2021,
independently. When a year y was selected to collect the test data, data from year y− 1
were used for validation. And data collected from year y− y0 − 1 to y− 2 were used for
training. y0 was used to control the size of the training data and the performance of a model.
In the experiments, the hyperparameters of the proposed method were optimized in cross-
validation. Accordingly, the grid search from reasonable hyperparameter combinations
was adopted, and 300 epochs were run, with the best model saved based on validation
performance. For the triplet margin α in (7), a value too large would lead to overfitting, so
we properly set this parameter to 0.2. And y0 was set to 6.
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In addition, the ground truth crop yield data were downloaded from the Quick
Stats database. The Quick Stats database is the most comprehensive tool for accessing
agricultural data published by NASS. We used the Root Mean Square Error (RMSE) as
the evaluation metric for the experiment, which has been widely used to evaluate the
performance of crop yield prediction in previous studies [22]. The smaller the RMSE, the
better the performance of the network. When estimating crop yields for a certain year, ỹi is
the prediction yield learned from the network for state i. yi is the corresponding true crop
yield. For N states, the RMSE formula is presented as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ỹi)
2 (9)
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4.2. Proposed Method Validation

To verify the effectiveness of the 3D convolutional neural network and triplet con-
straint, we compare the proposed method with Net_3Dcnn and Net_cnn, which are shown
in Figures 8 and 9, respectively. Net_3Dcnn is constructed by removing the triplet constraint
of the proposed method. And Net_cnn is the method proposed in [4], which sends the
histogram representation to the CNN to predict the crop yield directly.

Appl. Sci. 2023, 13, 13305 11 of 14 
 

evaluation metric for the experiment, which has been widely used to evaluate the 
performance of crop yield prediction in previous studies [22]. The smaller the RMSE, the 
better the performance of the network. When estimating crop yields for a certain year, iy  
is the prediction yield learned from the network for state i . iy  is the corresponding 
true crop yield. For N states, the RMSE formula is presented as follows: 

( )2

1

1 n

i i
i

RMSE y y
n =

= − 
 

(9) 

4.2. Proposed Method Validation 
To verify the effectiveness of the 3D convolutional neural network and triplet 

constraint, we compare the proposed method with Net_3Dcnn and Net_cnn, which are 
shown in Figures 8 and 9, respectively. Net_3Dcnn is constructed by removing the triplet 
constraint of the proposed method. And Net_cnn is the method proposed in [4], which 
sends the histogram representation to the CNN to predict the crop yield directly. 

 
Figure 8. The structure of the Net_3Dcnn. 

 
Figure 9. The structure of the Net_cnn. 

Table 2 shows the empirical results of different methods in terms of RMSE. Smaller 
RMSE implies better performance. Compared with Net_cnn, the RMSE of Net_3Dcnn 
with the best-performing baseline 3D convolutional neural network is lower for all years, 
and a 1.7% improvement in terms of average RMSE is observed. The Net_cnn only uses 
spatial information from the data, while Net_3Dcnn uses both spatial and temporal 
information to estimate crop yield. The experimental results fully demonstrate the 
effectiveness of the 3D convolutional neural network replacing the 2D convolutional 
neural network. Moreover, it can be seen that the proposed method consistently 
outperforms the other two methods for all years. The proposed method outperforms 
Net_3Dcnn, with 2.7% improvement in average RMSE, and outperforms Net_cnn with 
4.2% improvement, which indicates that it is more effective to utilize the proposed feature 
constraint and the 3D convolutional neural network. 

  

Figure 8. The structure of the Net_3Dcnn.

Appl. Sci. 2023, 13, 13305 11 of 14 
 

evaluation metric for the experiment, which has been widely used to evaluate the 
performance of crop yield prediction in previous studies [22]. The smaller the RMSE, the 
better the performance of the network. When estimating crop yields for a certain year, iy  
is the prediction yield learned from the network for state i . iy  is the corresponding 
true crop yield. For N states, the RMSE formula is presented as follows: 

( )2

1

1 n

i i
i

RMSE y y
n =

= − 
 

(9) 

4.2. Proposed Method Validation 
To verify the effectiveness of the 3D convolutional neural network and triplet 

constraint, we compare the proposed method with Net_3Dcnn and Net_cnn, which are 
shown in Figures 8 and 9, respectively. Net_3Dcnn is constructed by removing the triplet 
constraint of the proposed method. And Net_cnn is the method proposed in [4], which 
sends the histogram representation to the CNN to predict the crop yield directly. 

 
Figure 8. The structure of the Net_3Dcnn. 

 
Figure 9. The structure of the Net_cnn. 

Table 2 shows the empirical results of different methods in terms of RMSE. Smaller 
RMSE implies better performance. Compared with Net_cnn, the RMSE of Net_3Dcnn 
with the best-performing baseline 3D convolutional neural network is lower for all years, 
and a 1.7% improvement in terms of average RMSE is observed. The Net_cnn only uses 
spatial information from the data, while Net_3Dcnn uses both spatial and temporal 
information to estimate crop yield. The experimental results fully demonstrate the 
effectiveness of the 3D convolutional neural network replacing the 2D convolutional 
neural network. Moreover, it can be seen that the proposed method consistently 
outperforms the other two methods for all years. The proposed method outperforms 
Net_3Dcnn, with 2.7% improvement in average RMSE, and outperforms Net_cnn with 
4.2% improvement, which indicates that it is more effective to utilize the proposed feature 
constraint and the 3D convolutional neural network. 

  

Figure 9. The structure of the Net_cnn.

Table 2 shows the empirical results of different methods in terms of RMSE. Smaller
RMSE implies better performance. Compared with Net_cnn, the RMSE of Net_3Dcnn with
the best-performing baseline 3D convolutional neural network is lower for all years, and a
1.7% improvement in terms of average RMSE is observed. The Net_cnn only uses spatial
information from the data, while Net_3Dcnn uses both spatial and temporal information to
estimate crop yield. The experimental results fully demonstrate the effectiveness of the 3D
convolutional neural network replacing the 2D convolutional neural network. Moreover,
it can be seen that the proposed method consistently outperforms the other two methods
for all years. The proposed method outperforms Net_3Dcnn, with 2.7% improvement in
average RMSE, and outperforms Net_cnn with 4.2% improvement, which indicates that
it is more effective to utilize the proposed feature constraint and the 3D convolutional
neural network.

Table 2. RMSE comparison of different methods.

Method
Year

Avg
2016 2017 2018 2019 2020 2021

Net_cnn 6.918 4.620 6.200 4.883 5.454 5.321 5.566

Net_3Dcnn 6.736 4.524 6.176 4.758 5.315 5.298 5.468

The proposed method 6.428 4.406 6.058 4.664 5.198 5.243 5.333

In addition, the scatter plots of the predicted yield and the observed yield per county
for the different methods are shown in Figure 10. In this figure, the horizontal axis repre-
sents the true crop yield value, and the vertical axis represents the prediction crop yield
value learned from the network. Each point represents a yield prediction for a county,
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and the plots indicate the positive linear relationship between the predicted yield and
the observed yield. We can see the points of the proposed method are more clustered.
Moreover, the points of the proposed method lie closer to the y = x line, which indicates
that the predicted yield of the proposed method is closer to the observed yield. This result
also demonstrates the effectiveness of the feature constraint and the 3D convolutional
neural network of the proposed method from the perspective of data analysis.
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4.3. Competing Methods

In this section, the proposed method is compared with widely used crop yield predic-
tion methods, i.e., ridge regression [22] and decision trees [13], which are the widely used
traditional methods in the field of crop yield estimation. The RMSEs of the different meth-
ods are shown in Table 3. The results show that the RMSEs of the ridge regression and the
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decision trees are unstable in different years. The performance of the decision trees method
was outperformed by ridge regression in 2017–2019 and 2021, while the performance of
the ridge regression method was outperformed by decision trees in 2016 and 2020. But,
the proposed method outperforms competing methods significantly for all years, as 31.9%
and 30.0% improvements in terms of average RMSE are observed, respectively. The above
results also demonstrate the effectiveness of the proposed method.

Table 3. RMSE comparison of different methods.

Method
Year

Avg
2016 2017 2018 2019 2020 2021

Ridge regression 8.586 7.983 8.485 7.235 6.683 7.995 7.828

Decision trees 8.937 6.752 8.324 6.589 7.536 7.563 7.617

The proposed method 6.428 4.406 6.058 4.664 5.198 5.243 5.333

5. Conclusions

In this paper, we propose a deep-learning framework for crop prediction using remote
sensing data. Since the spatial information of an image alone cannot help to estimate the
crop yield well, the temporal information of consecutive images should be considered.
Thus, a series of multispatial images with change information was used as the input for the
3D convolutional neural network proposed in this paper. Moreover, the dimensionality
reduction method used in this paper can map the different images to the same dimensional
feature and prevent the loss of useful information. In addition, the metric learning and
multitask learning strategies make regions with similar crop yields have similar features
learned by the network, which can make the learned features better for crop yield predic-
tion. Experimental results on county-level soybean yield prediction in the United States
also show the effectiveness of the proposed method. Accurate crop yield estimation has
important research significance in the field of agriculture. And the proposed method
provides new ideas for crop yield estimation and effectively improves the accuracy of crop
yield estimation.

In addition, the effectiveness of the proposed method has been validated on soybean
yields in major producing states in the United States. Due to the differences in the character-
istics of different crops and regions, it is possibly not entirely applicable and has limitations
if directly applying the proposed method to estimate yields of other crops and regions. But,
we believe that the strategy of using the temporal network and the feature constraint of
the proposed method is still effective. Thus, it is necessary to modify the model based on
the target characteristics of different crop types and different regions in order to achieve
better yield estimation performance. This is one of the tasks we need to do in the future.
For additional future work, using more information from the images and looking for a
network with better performance to further improve the accuracy of the crop prediction
are considered.
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