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Abstract: An imperative application of artificial intelligence (AI) techniques is visual object detection,
and the methods of visual object detection available currently need highly equipped datasets pre-
served in a centralized unit. This usually results in high transmission and large storage overheads.
Federated learning (FL) is an eminent machine learning technique to overcome such limitations,
and this enables users to train a model together by processing the data in the local devices. In each
round, each local device performs processing independently and updates the weights to the global
model, which is the server. After that, the weights are aggregated and updated to the local model.
In this research, an innovative framework is designed for real-world object recognition in FL using
a proposed Deep Q Network (DQN) based on a Fractional Political–Smart Flower Optimization
Algorithm (FP-SFOA). In the training model, object detection is performed by employing SegNet,
and this classifier is effectively tuned based on the Political–Smart Flower Optimization Algorithm
(PSFOA). Moreover, object recognition is performed based on the DQN, and the biases of the classifier
are finely optimized based on the FP-SFOA, which is a hybridization of the Fractional Calculus (FC)
concept with a Political Optimizer (PO) and a Smart Flower Optimization Algorithm (SFOA). Finally,
the aggregation at the global model is accomplished using the Conditional Autoregressive Value
at Risk by Regression Quantiles (CAViaRs) model. The designed FP-SFOA obtained a maximum
accuracy of 0.950, minimum loss function of 0.104, minimum MSE of 0.122, minimum RMSE of 0.035,
minimum FPR of 0.140, maximum average precision of 0.909, and minimum communication cost of
0.078. The proposed model obtained the highest accuracy of 0.950, which is a 14.11%, 6.42%, 7.37%,
and 5.68% improvement compared to the existing methods.

Keywords: Federated Learning; Political Optimizer; Smart Flower Optimization; Fractional Calculus;
Conditional Autoregressive Value; Regression Quantiles

1. Introduction

FL is a distributed learning framework that can acquire a global or customized system
from decentralized datasets on edge devices [1] and train the machine learning (ML)
system [2] while preserving user data privacy. FL has the efficiency to restore large-scale
computer vision (CV) applications, where centralized training cannot deal with diverse
problems, like privacy concerns, data transfer, and maintenance expenses. More specifically,
federated learning is a collaborative computing paradigm [3], and the main concept is to
train the model by means of model aggregations instead of data aggregation, and local data
remain at the local device. FL is a fascinating model that promotes end-to-end computer
vision applications with image annotation and the training process moved to the edge while
the model factors are transferred to the central cloud for aggregation purposes. Despite the
tremendous growth in federated learning, current research still depends on existing public
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datasets that are specifically designed for ML. This results in significant constraints in model
evaluations and benchmarks for FL and introduces real-world datasets produced from
street cameras but manually selected and annotated. These datasets are a true illustration
of real-time image data distributions [4] and, hence, are unbalanced. These images are
carefully evaluated and assessed using elaborate statistics for the object distributions.
YOLOv3 and Faster R-CNN are efficient algorithms integrated within federated learning
models [1].

Object detection is the fundamental core of real-world applications like pedestrian de-
tection, face detection, safety controls, and video assessment. With the recent advancements
in deep learning (DL), object-detection algorithms have been highly utilized in the past few
years. A conventional object-detection technique requires the gathering and centralization
of large-scale annotated image data. Image annotation is very costly [5,6], specifically in
fields where professional experts are needed. Moreover, centralizing such data requires
the uploading of bulk information to a database, which experiences a high communication
overhead. Ultimately, centralizing data may breach user privacy and data confidentiality,
and individual data parties have zero control over how their data would be employed
after centralization [7]. To handle the hurdle of data security and privacy in ML processes,
numerous privacy-preserving ML techniques have been developed, like secure multi-party
computing (MPC). MPC enables multiple parties to estimate a conventional parameter in a
negligible way without disclosing their information either to each other or to a trusted third
party. Nevertheless, conventional MPC protocols require a high communication overhead
among parties, making them very difficult to consider in industrial fields. Differential
privacy preserves user data by including noise, but it experiences a tradeoff between the
risk of data leakage and model accuracy [8]. Owing to the unavailability of exploration in
various tasks, the model performance of FL delivers superior results than centralized train-
ing [9]. Visual object detection involves significant AI models with large-scale applications
in safety monitoring.

In recent years, visual-object detection training models have required the centralized
storage of data. In these circumstances, individual users explicate visual information
from locally owned cameras and upgrade such labeled data to the main server. Both the
process of data storage and that of model training take place on the server [8]. For the past
few years, object-detection advancements depending on deep neural networks have been
widely employed in diverse fields, resulting in numerous advantages derived from the
efficient feature extraction and illustration [10] capabilities of deep Convolutional Neural
Networks (CNNs). The deep structure of a CNN yields efficient results in object-detection
tasks [11,12], but the training cost of this network is high, which makes it very difficult for
the model to perform well with sparse training data. Deep-CNN-based object-detection
schemes are generally constructed in highly controlled environments, wherein the data are
shared, centralized, and balanced, with the network having a high throughput. This is not
possible in security, privacy, or regulatory domains. All the training data reside with the
user, and no individual updates are preserved in the cloud [6]. A number of studies have
been introduced on federated optimization and the minimization of the communication
costs of transferring weights of deep networks. The accuracy of ensemble models was high,
as they combined the prediction results from various models to obtain a final result [13–16].
Currently, the federated averaging algorithm has played a significant role in the training
of classification models [17,18]. At the same time, it incurs a lot of problems in handling
object detection, and it experiences more issues. One of the major hurdles is the statistical
issue with highly non-IID and imbalanced data. Because of the complications of object-
detection tasks and the huge weights of CNN models, the FedAvg algorithm is incapable
of performing object-detection tasks.

The primary aim of this work is to construct a productive model for real-world object
recognition in FL using the proposed FP-SFOA-DQN-FL. The entities involved in this
designed model are nodes and servers. Here, local training is performed based on local
data at every node, and the data are updated on the server. After that, model aggregation
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is carried out on the server, and the global model is downloaded at every node. Thereafter,
updated training takes place based on the downloaded global model and local model at
every epoch. In the training model, indoor images are taken into account as inputs, and
they are subjected to a pre-processing stage, where the mechanism is carried out utilizing a
bilateral filter to make the image desirable for further processing. Once the pre-processing
is commenced, object detection is conducted by employing SegNet, and it is trained using
PSFOA. The derived PSFOA is the combination of PO and SFOA. Following this process,
features like ResNet, Shape Local Binary Texture (SLBT), gray level co-occurrence matrix
(GLCM), speeded-up robust feature (SURF), oriented fast and rotated brief (ORB), and
the Hierarchical Skeleton features are extracted. Finally, object recognition is performed
utilizing DQN, in which parameters of the network are tuned optimally using designed
FP-SFOA. The local updation and aggregation at the server are modified based on the
CAViaR model.

Contributions of this research:

• FP-SFOA-DQN-FL for real-world object identification in FL: an efficacious model is
developed for real-world object recognition in FL using FP-SFOA-DQN-FL.

• The object detection is conducted based on SegNet, and this classifier is optimally
biased utilizing PSFOA.

• The object identification is accomplished utilizing DQN, and this network is optimally
tuned based on modeled FP-SFOA.

• The FP-SFOA is derived by the consolidation of the FC concept with PO and SFOA.

The organization of this article is as follows: the literature review of former approaches
associated with real-world object recognition in FL is explained in Section 2, along with its
benefits and constraints that provoke the investigators to construct an effective framework.
The designed model and its whole process associated with real world object recognition
are enumerated in Section 3 and 4 discusses the outcomes of developed FP-SFOA-DQN-FL.
Section 5 provides the satisfactory conclusion of this research along with its future scope.

2. Motivation

The pros and cons incurred by existing methods of the real object-recognition model
in federated learning are reviewed along with its merits and issues that motivate research
scholars to put forward effort to design an effectual framework for real object recognition
in federated learning.

2.1. Literature Survey

Luo, J. et al. [1] designed a real-world image dataset to assess federated object-detection
algorithms. This data distribution was non-IID and unbalanced, highlighting the properties
of real-world federated learning conditions. Depending upon this dataset, two mainstream
object-recognition techniques were introduced: YOLO and faster R-CNN. This method was
considered a desirable benchmark for future federated learning research on how to miti-
gate the non-IID issue. The method was not able to augment the dataset. He, C. et al. [9]
developed a federated learning library and benchmarking paradigm called FedCV to assess
FL on three various computer vision tasks: image segmentation, image classification, and
object detection. This method also provided non-IID benchmarking databases and different
reference FL algorithms. However, non-IID databases generally deteriorated the model
exactness to a certain degree in various processes. Also, increasing the effectiveness of
federated learning is still a challenging problem. The method also lacks in exploring diverse
tasks. Zhu, R. et al. [19] devised a Dilation RetinaNet Face Location (DRFL) Network that
consists of an Enhanced Receptive Field Context (ERFC) system with the dilation convolu-
tion to minimize network parameters and found faces of various scales. Here, adaptation to
embedded camera devices was accomplished using SRNet20 generated by a Neural Archi-
tecture Search (NAS). Because of security, SRNet20 was trained in federated learning. The
DRFL network provided better performance, but the model was not capable of identifying
the long-distance faces that were occluded. The implementation was not achieved using
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high-scale datasets that improve network detection. Liu, Y. et al. [8] modeled FedVision to
assist the improvement in federated learning-powered computer vision applications. This
advanced model effectively reduced the communication overhead. This method improved
the operational efficiency but failed to obtain a sustainable mechanism.

Bommel, J.R. et al. [20] presented active learning that easily solved the unlabeled
data and labeled it with an oracle. This article utilized various approaches using active
learning to represent images locally and then exploit federated learning to train a global
object-detection scheme. The developed model increased the precision level but decreased
the communication costs. However, this model did not work well with non-homogeneous
data. Yu, P. and Liu, Y. [21] introduced FedAVg to train models that provide the benefits of
good privacy and security. Here, the weight divergence among various models trained with
non-IID data was performed by exploiting KullbackLeibler Divergence (KLD). The newly
developed FedAvg surpassed the effects of weight divergence influenced by non-IID and
unbalanced data. In order to represent object detection, a Single Shot MultiBox Detector
(SSD) was employed as the base model. This approach reduced the divergences, but the
data found were ineffective due to the reduction in mapping. Hu, Z. et al. [22] designed a
novel Inconsistency Capture module (ICM) to achieve the dynamic inconsistencies among
successive frames of face forgery videos. The ICM comprised two parallel branches in
which the first one took the entire successive frames as input to determine a global incon-
sistency illustration. The second one acquired the inter-frame difference of crucial areas
to acquire the local instability. This model effectively worked on decentralized data. This
model also ensured a high level of privacy and security. The method was incapable of
enhancing the communication effectiveness of system factors to maximize the practica-
bility of the FL paradigm. Tam, P. et al. [23] devised an adaptive model communication
approach for edge federated learning using a Deep Q-learning algorithm to construct
a self-learning agent communicating with network parameters and a software-defined,
networking-based framework. The designed approach trained the learning model and
weights for specific network states employing an epsilon-greedy approach. This method de-
livered maximum precision and effective QoS measures for dealing with future congestion
scenarios. However, the method failed to compute the offloading decisions.

A review of existing methods is given in Table 1.

Table 1. Review of literature survey.

Reference Method Advantages Disadvantages

Luo, J. et al. [1] Federated object-detection algorithms It is able to mitigate non-IID issues. It was not able to augment the dataset.

He, C. et al. [9] FedCV It is able to perform various
computer vision tasks.

Increasing the effectiveness of
federated learning was difficult.

Zhu, R. et al. [19] DRFL It provided better performance. The implementation was not achieved
using high-scale datasets.

Liu, Y. et al. [8] FedVision It reduced the
communication overhead.

It failed to obtain
sustainable mechanism.

Bommel, J.R. et al. [20] Active learning It increased the precision level. It did not work well with
non-homogeneous data.

Yu, P. and Liu, Y., [21] FedAVg It reduced the divergences. It leads to reduction in mapping.

Hu, Z. et al. [22] ICM

It effectively worked on
decentralized data.
It ensured high-level privacy and
security.

It was incapable of enhancing the
communication effectiveness of
system factors.

Tam, P. et al. [23] Adaptive model
communication approach

It effectively deals with future
congestion scenario.

It failed to compute the
offloading decisions.

2.2. Major Issues

Some of the limitations experienced by traditional models of real-world object recogni-
tion in federated learning are listed below:
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• Achieving real-time detection in crowded areas becomes a challenging issue in the
existing models.

• Imbalanced data handling is another major issue in the existing object-detection models.
• Owing to network slicing in resolution image sensing, it was unable to update the

needs of resource allocation, computation offloading resolutions, and service caching.
• The communication overhead of the conventional models is high.

3. Proposed FP-SFOA-DQN-FL for Real-World Object Recognition in FL

The foremost goal of this research is to predict real-world object recognition in feder-
ated learning using the proposed FP-SFOA-DQN-FL. The overall process will be explained
as follows: initially, the dataset from [24] are fed as input to the device at the time, and the
appropriate local training is achieved based on the local data at every node.

The architecture for a proposed model for real-world object recognition in FL is shown
in Figure 1. In every node, the data are updated to the server, while model aggregation
takes place at the server. Thereafter, the global model is downloaded at the nodes. Then,
update training is carried out based on the downloaded global model and local model at
every epoch. Here, object recognition is accomplished using the proposed FP-SFOA, which
is a consolidation of the FC concept with PO and SFOA. The local updation and aggregation
at the server will be modified based on the Conditional Autoregressive (CAViaR) [25].
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Figure 1. The proposed model for real-world object recognition in FL.

3.1. Local Training Depending upon Local Data

This segment delineates the local training process depending on local data. In order to
preserve the privacy of image data and to minimize the burden of the network, a predictor
that is trained in a distributed way is preferred rather than transferring the original data
to a central authority. In this module, local devices interact with a server continuously to
learn the global model. At every epoch, a group of selected devices performs local training
depending on local data and transmits the local updates to the server. After aggregating
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the updates at the server, it resends the global model to the devices. This process continues
over the network till the specific criterion is satisfied [26].

3.1.1. Training at Every Node

For every time t, image data are trained on each device node. In addition, the object-
recognition process is performed at the training model of each device, which is elaborately
described in the following sections.

3.1.2. Training Model

The process of object recognition is performed at the training model of each device.
The first step is to acquire the indoor images from a specific dataset field [24], and it is then
pre-processed using a bilateral filter for the purpose of discarding the noises. The object-
detection process is successfully accomplished through SegNet, which is trained using the
designed PSFOA, and it is the combination of PO and SFOA. After detecting the objects,
features, namely ResNet feature, SLBT, GLCM, SURF, ORB, and Hierarchical Skeleton,
features are extracted at the feature-extraction phase. The refined feature vector is fed as
an input to the object-recognition module, where the objects are clearly identified using
DQN, and this network is tuned based on developed FP-SFOA. This modeled approach is
obtained by the integration of the FC concept with PO and SFOA.

The pictorial representation of the object-recognition process performed in the training
model is illustrated in Figure 2.

3.2. Data Acquisition

The process begins by acquiring the input image data from a specific database O with
b count of total image samples, and it is expressed as

O = {I1, I2, I3, . . . , Ia, . . . , Ib} (1)

Here, Ia represents the ath image available at dataset O, and the overall amount of
training samples in the database is denoted as Ib.

3.3. Pre-Processing Utilizing Bilateral Filter

The image, Ia, is subjected to the pre-processing phase to eliminate the calamities and
noises that exist in the image. The bilateral filter [27] substitutes the center pixel of a block
with an estimated pixel, which is a weighted average that considers the spatial as well as tonal
distances among pairs of pixels in the block. The weighted average considers the information
of the same pixels with the same tone. The benefit of a bilateral filter is that it efficiently
eliminates the noise and preserves the edge information. The bilateral filter is expressed by

< [P]x =
1

wx
∑

y∈M
GaσSD (‖x− y‖) GaσTD

(∣∣Px − Py
∣∣) Py (2)

Here, < [P]x signifies the restored measure of pixel x, and the standard deviation
of spatial distance and tonal distance of neighboring cells are specified as σSD and σTD,
respectively. Ga shows the Gaussian parameter, and P sub x and P sub y signify the
pixel contrasts of pixels and. Moreover, the group of neighboring pixels fixed at x is
represented as M and, and the total weights within the block are depicted as wx. Finally,
the pre-processed outcome is expressed as Ba.
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3.4. Object Detection Using SegNet

The pre-processed outcome Ba is injected into the object-detection stage, where objects
are accurately detected by employing SegNet. It is specifically developed to be an effective
structure for pixel-wise semantic segmentation. The spatial differences between diverse
classes are very comprehensible. Also, the SegNet used few trainable parameters, so it is
more efficient in terms of computation time, accuracy, and memory.

i. Structural diagram of SegNet

SegNet [28] consists of an encoder and decoder network, succeeding with a pixel-wise
classification layer. The encoder includes 13 convolutional layers, which are particularly
designed for object classification. The training process will be initialized from weights
tuned for categorization on huge databases. The fully connected layers are eliminated to
extract the higher-resolution feature maps, and it also minimizes the quantity of SegNet
parameters. Each encoder has its respective decoder, so the decoder network consists of
13 layers. Finally, the decoder result is subjected to a softmax classifier to generate class
probabilities for individual pixels. The layers in the SegNet are elaborated as follows:
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1. Encoder network

This network applies convolution operation with a filter bank to generate a pool of
feature maps. After that, the feature maps undergo a batch-normalized operation, and an
element-wise function is performed utilizing a Rectified Linear Unit (ReLU). Following
this, a max-pooling operation and non-overlapping window are carried out, and the final
outcome is sub-sampled utilizing a parameter of 2. Sub-sampling generates a huge input
image context within the feature map. However, numerous max-pooling and sub-sampling
layers result in high translation invariance for effective classification. This lossy image
illustration is not suitable for the segmentation process. In order to address this gap, it is
imperative to grasp and preserve the boundary data in the encoder feature maps.

2. Decoder network

In this network, it up-samples its feature maps employing the retained max-pooling
indices from respective encoder feature maps. During this phase, sparse feature maps
are generated. Such feature maps are again convolved with a trained decoder filter bank
to generate dense feature maps. Then, the feature maps are processed using a batch-
normalization step. It is notable that the decoder, with respect to its first encoder, generates
a multi-channel feature map, even if the encoder input has three channels.

3. Softmax classifier

The result of the final decoder, which is a high-dimension feature representation, is
subjected as an input to the trainable soft-max classifier. The outcome of the soft-max
classifier is a K channel image of probabilities, which specifies the count of classes. The
detected result obtained through SegNet is denoted as Da. Figure 3 portrays the structural
diagram of SegNet.
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ii. Training of SegNet using proposed PSFOA

In order to attain an accurate detected object result, it is significant to train the SegNet
with an efficient hybrid optimization at every epoch until the satisfied result is obtained.
Here, a hybrid algorithm named PSFOA is employed, which is designed by the combination
of PO with SFOA. SFOA [29] is inspired by the immature sunflowers that generate he-
liotropic movements. Here, two growth strategies are managed on the heliotropic motions
of baby sunflowers. The initial process is the sun-tracking occurrence, which is influenced
by a growth hormone known as Auxin. On the other hand, the second strategy is the
biological clock. Moreover, this technique has been introduced in two stages, namely,
sunny and rainy or cloudy phases. PO [30] is a socially inspired metaheuristic algorithm
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that is inspired by the multi-phased process of politics. This algorithm allocates a double
role by partitioning the population into political parties and constituencies. Integrating
these two algorithms can provide better detection results with high convergence speed.

Smart Flower position encoding

The purpose of position encoding is to determine the supreme solution that solves the
optimization problem in an efficient way. Here, the population in a G-dimensional area is
solved, such that G = [1 X η], and η is the learning factor of SegNet.

Objective function

The prime objective of the fitness factor is to evaluate the finest solution using the expression
that defines the change in variation between the targeted output and the output of SegNet.

= =
1
b

b

∑
a=1

[τa − Da]
2 (3)

where b symbolizes the overall quantity of image samples, τa is the targeted result, and the
output of SegNet is indicated as Da.

1. Algorithmic steps of proposed PSFOA

The algorithmic procedures included in the devised PSFOA are enumerated as follows:

Step 1. Initialization of Sunflower population

The population of sunflowers is initialized in a G-dimensional area, and in this algo-
rithm, the updating mechanism of search agents can be accomplished depending on the
growth of baby sunflowers. Here, individual baby sunflowers are taken into account to
have a stem length in a G-dimensional search area. Thus, the group of immature sunflowers
can be expressed in the form of a matrix as

S =


S1, 1 S1, 2 · · · · · · S1, G

S2, 1 S2,2 . . . . . . S2, G
...

...
...

So, 1 So,2 . . . . . . So, G

 (4)

Here, o refers to the overall count of baby sunflowers, and the quantity of variables in
the search area is indicated as G.

Step 2. Determine objective function

The stem length of an individual sunflower delivers the optimal solution to an opti-
mization problem. Each sunflower has a fitness parameter in accordance with the measure
of the fitness value of the optimization issue that illustrates the long sunflower’s stem. The
objective function is evaluated using Equation (3).

Step 3. Evaluate the first mode

New solutions are generated depending upon an internal process that enables sunflowers
to get ready to fulfill their development level during the latest day in the decision area. This
internal mechanism purely depends upon solar tracking during the daytime and the biological
clock during night-time. The development process of the baby sunflower is introduced in two
stages: sunny and cloudy modes. The factor “Sun” is employed to represent sunny or cloudy
modes. If it is set to 1, then the day is said to be sunny, and if it is set to 0, then the day is said
to be cloudy. The mathematical expression of the sunny mode is given by

Xi+1
new, S =


Xi

old, S + c× Sin (ω)×
[
χ× Xi

best, S − Xi
old, S

]
, hours day ≤ 24

Xi
old, S + c× Sin (ω)×

[
Xi

best, S − Xi
old, S

]
, Otherwise

(5)
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Here, Xi
new, s shows the Sth component of the current optimal length of the sunflower’s

stem at the ith iteration. Moreover, the Sine parameter defines heliotropic mechanism of the
immature sunflowers, and ω represents the angle. Moreover, Auxin(x) serves a significant
part in sunflower as well as stem growth. It is highly responsible for variation in the natural
motion of sunflowers, and x signifies growth hormone, which is in an active mode during
normal hours of the day.

Step 4. Generate damping parameter;

In SFOA, the factor c is the damping parameter. It is employed to initiate the termina-
tion of sunflower’s stem growth, and it is eventually decreased during every epoch using
the below expression

c = cmax − i× (cmax − cmin)

imax
(6)

Here, Cmax and Cmin represent the maxima and minima measures of the damping
factor, respectively. In addition, the latest iteration and the maximum count of iterations
are, respectively, specified as i and imax.

Step 5. Generate the Hours’ day parameter

The baby sunflowers managed their heliotropic growth based on the biotic clock, which
is described as the period to execute one turn of 24 h day/night. If the time period increases,
the immature sunflowers have a minimal capability to move forward and backward on a
regular basis. In this algorithm, the hours’ day factor offers an uneven hour that is chosen
within the limit of [0, 100].

Step 6. Update the solution;

As mentioned earlier, immature sunflowers grow with respect to a mechanism known
as heliotropism, which is proved to not be controlled only by direct sunlight but also by its
biological clock. This movement rate is found to be minimal during rainy or cloudy days.
This expression is mathematically formulated as follows:

Xi+1
new, S = Xi

old, S + c× Sin (ω) ∗
[

Xi
best, S − Xi

old, S

]
(7)

Xi+1
new, S = Xi

old, S (1− c× Sin (ω)) + c× Sin (ω)
[

Xi
best, S

]
(8)

The standard expression for PO is stated as follows:

Mh
g, k(j + 1) = Mh

g, k(j− 1) + R
(

Mh
g, k (j)−Mh

g, k (j− 1)
)

i f Mh
g, k (j− 1) ≤ z∗ ≤ Mh

g, k(j) or

Mh
g, k(j− 1) ≥ z∗ ≥ Mh

g, k(j)
(9)

Let us assume
Mh

g, k(j + 1) = Xi+1
new, S (10)

Mh
g, k(j− 1) = Xi−1

S (11)

Mh
g, k(j) = Xi

old, S (12)

Then, the above expression becomes

Xi+1
new, S = Xi−1

S + R
(

Xi
old, S − Xi−1

S

)
(13)

Xi
old, S =

Xi+1
new, S + Xi−1

S (R− 1)

R
(14)
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Substituting Equation (14) in Equation (8), the equation becomes

Xi+1
new, S =

(
Xi+1

new, S + Xi−1
S (R− 1)

R

)
(1− c× Sin (ω)) + c× Sin (ω)

[
Xi

best, S

]
(15)

Xi+1
new, S −

Xi+1
new, S

R
(1− c× Sin (ω)) =

(
Xi−1

S (R− 1)
R

)
(1− c× Sin (ω)) + c× Sin (ω)

[
Xi

best, S

]
(16)

Xi+1
new, S

[
R− 1 + c× Sin (ω)

R

]
=

Xi−1
S (R− 1) (1− c× Sin (ω)) + R.c× Sin (ω)

(
Xi

best, S

)
R

(17)

The updated solution of PSFOA is expressed as

Xi+1
new, S =

Xi−1
S (R− 1) (1− c× Sin (ω)) + R.c× Sin (ω)

(
Xi

best, S

)
R− 1 + c× Sin (ω)

(18)

where Xi
best,S represents the Sth component of the current supreme length of the sunflower’s

stem at the ith iteration, and the damping factor is denoted as c. The mamum number of
iterations is signified as imax, and the Sth component of the length of the sunflower stem at
the (i− 1)th iteration is implied as Xi−1

S .

Step 7. Termination

The process is iterated over and over till it satisfies the optimal solution. The pseudo-
code of the proposed PSFOA is elucidated in Algorithm 1.

Algorithm 1 Pseudo-code of devised PSFOA

1 Input: Population size 0, maximum count of iterations (imax), Number of decision variables (G), Sun
parameter (Sun)
2 Output: Xnew, S
3 Begin
4 Initialized the population
5 Evaluate fitness function utilizing Equation (3)
6 for i = 1 to imax
7 Generate damping parameter c using Equation (6)
8 for d = 1 to 0
9 Generate parameter ω
10 for e = 1 to G
11 if Sun = 1
12 Generate the growth hormone (X) and biological clock

(
Hours′day

)
13 Update the population using Equation (5)
14 Else
15 Generate

(
Hours′day

)
parameter

16 Update the population using Equation (18)
17 end if
18 Upgrade the angle parameter φ
19 ωe+1 = ωe + φ
20 end for e
21 end for d
22 Replace Xbest by Xnew, S
23 end for i
24 Return best solution
25 Terminate

The flowchart of the proposed PSFOA is shown in Figure 4.
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3.5. Feature Extraction

The extraction of features is the most significant phase performed to extract the
relevant features for future processing of object recognition. More appropriate features
being extracted results in accurate object-recognition performance. Here, the features
extracted at this step are described as follows:

Regarding the detected result Da of the object-detection process, the features are extracted.

i. Shape Local Binary Texture (SLBT)

The SLBT feature [31] is an integration of shape and texture information. SLBT is
similar to that of the active appearance model (AAM), and it considers LBP texture features
rather than intensity measures. In AAM, direct intensity values from shape-free patches are
employed for texture modeling. However, SLBT performs LBP over a shape-free patch to
obtain illumination and unchanged noise features. LBP feature extraction is fast and simple.

Consider a 3× 3 window with a center pixel, where its intensity measure is represented
as lc, and its local texture is represented as

Pix = pix
(
lJ
)

(19)

Here, lJ is associated with the grey measures of eight adjacent pixels in which
(J = 0, 1, 2, 3, . . . , 7). These adjacent pixels are threshold with the middle value lc as
pix(Aa(l0 − lc), . . . , Aa (l7 − lc)), and the function Aa(N) is expressed as

Aa (N) =

{
1, N > 0
0, N ≤ 0

(20)

LBP =
7

∑
J=0

Aa
(
lJ − lC

)
2J (21)

The LBP pattern at the middle pixel lc is achieved using the above equation, and the
image result obtained from SLBT is denoted as V1.

ii. Speeded-Up Robust Feature (SURF);

SURF [32] is a local feature descriptor that is highly employed for functions like
classification, object recognition, and 3D reconstruction. The identifier determines the
interest points highlighted in the image, whereas the descriptor explains the features of
interest points. Such features are invariable to shifting, rotation, and scaling. The SURF
feature result V2 is defined as follows:

V2 (ℵ, δ) =

{
Huu (ℵ, δ) Huv (ℵ, δ)

Huv (ℵ, δ) Hvv (ℵ, δ)
(22)

Here, Huu (ℵ, δ) , Huv (ℵ, δ), and Hvv (ℵ, δ) represent the convolution of the Gaussian
second-order derivative.

iii. Scale-Invariant Feature Transform (SIFT)

SIFT [33,34] is a local key point descriptor, and this descriptor effectively refines
the object features by considering various scales, illumination, rotation, and geometric
transformations. It completely eliminates the probability of distortion caused by clutter,
occlusion, or noise. It acquires the detected object image and results in a group of features
as an outcome. The four phases included in SIFT are scale-space extrema identification,
key point localization, orientation allotment, and key point descriptor. SIFT constructs a
multi-resolution pyramid on the input image. At the initial phase, a variation of Gaussian
is performed to determine the local extrema. The selected extrema are assumed as the key
points. The Gaussian blurred image is represented as

Ll (Uu, Vv, µ) = Gg (Uu, Vv, µ) ∗ Da (23)
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Here, Da is the detected object image. The variation of the Gaussian point is obtained
by convolving the Gaussian distribution with the detected object image.

DoG (Uu, Vv, µ) = (Gg (Uu, Vv, Kµ)− Gg (Uu, Vv, µ)) ∗ Da (24)

DoG (Uu, Vv, µ) = Ll (Uu, Vv, Kµ)− Ll (Uu, Vv, µ) (25)

The candidate key point is selected based on the pixel value.
During the second step, more precise positions of key points are identified by employ-

ing the threshold value, and the orientation is allocated in the third phase to define the key
points with invariable-to-image rotation. Finally, a group of 128 key point descriptors are
computed. The SIFT feature offers better results for both scaled and rotated images. The
result obtained from the SIFT feature is indicated as V3.

iv. Oriented Fast and Rotated Brief (ORB)

The ORB feature [34] was developed by Rublee, and it is much faster than the SURF
and SIFT descriptors. It effectively carried out the feature-extraction process by employing
the FAST keypoint detector. Additionally, ORB refines very few features, but they are
highly meaningful features. Also, the computational cost of the ORB feature is very low.
The outcome resulting from the ORB feature is V4.

The image result achieved through the above texture features is expressed as

Vim = {V1, V2, V3, V4} (26)

This Vim feature is applied over both GLCM and hierarchical features, thereby resulting
in a feature vector F1. For instance, if V1 image is applied over GLCM and hierarchical
skeleton features, the result obtained is expressed as A11 and H12, respectively, described
in the below sections.

v. Gray-Level Co-Occurrence Matrix (GLCM);

GLCM [35] is the statistical technique of determining the textures that prefer the spatial
relationship of the pixels. It determines the texture of an image by estimating the pixel sets
with particular measures in a specific spatial relationship. A GLCM matrix consists of rows
and columns, which is equal to the count of gray levels in the image. The matrix function
E(Ii, J j|∆Xx, ∆Yy) is the relative frequency partitioned by a pixel distance (∆Xx, ∆Yy).
This matrix function also has second-order probability measures ranging from grey level Ii
and J j at distance dis. The result of the GLCM feature is expressed as A11.

EXx (Ii) =
N−1

∑
J j

E (Ii, J j) and EYy (J j) =
N−1

∑
Ii=0

E(Ii, J j) (27)

vi. Hierarchical skeleton features

Hierarchical skeleton features [36] apply the skeleton pruning technique, which effi-
ciently discards the skeleton branches and offers visually unimportant regions iteratively
utilizing the discrete curve evolution (DCE). The expression is given as follows:

HS (m1, m2) =
α (m1, m2)T(m1)T(m2)

T(m1) + T(m2)
(28)

Here, m1 and m2 imply the line segments, whereas the angle of the corner is indicated
as α(m1, m2). The output of the hierarchical skeleton feature is expressed as H12. Thus, the
f1 feature is expressed as

f1 = {A11, H12} (29)

In a similar way, the remaining features are extracted, which is given by

f2 = {A21, H22} (30)
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f3 = {A31, H32} (31)

f4 = {A41, H42} (32)

Hence, the resultant feature vector obtained at this step is formulated as follows:

F1 = { f1, f2, f3, f4} (33)

vii. ResNet features

The algorithm that can be employed to collect pre-trained ResNet representations
of arbitrary images is referred to as ResNet features, and it is a standard model utilized
in large-scale applications. In this process, the detected object image Da is fed into the
traditional pre-trained neural network and utilizes the representation for that specific image
at the intermediate layer. The result of the ResNet feature is represented as F2.

The resultant extracted feature is given as follows:

Fa = {F1, F2} (34)

3.6. Object Recognition Using Proposed FP-SFOA

The extracted feature Fa is subjected to the object-recognition stage, where objects are
identified employing the DQN classifier. The training of DQN is efficiently conducted
using the proposed FP-SFOA, which includes the incorporation of the FC concept with
PO [26,30] and SFOA [29].

i. Architecture of DQN

A combination of deep learning (DL) and reinforcement learning (RL) was successfully
used to introduce a fascinating network that surpasses all other neural networks, named
DQN [37]. This DQN is very popular in solving most of the highly dimensional optimiza-
tion problems. Moreover, this network consists of a deep convolution neural network for
Q-function approximation, whereas mini-batches are employed for uneven training data.
The remaining network parameters are utilized to estimate the Q-values of the next state.
The architectural diagram of DQN is portrayed in Figure 5. The feature vector Fa is applied
over DQN for a given state Nn, jj vector of action value Q(Nn, jj; θ), in which θ shows
the learning factor of DQN. In addition, the loss parameter of DQN is computed using the
below expression:

Lossii (θii) = ENn, jj, v, Nn′
[
(Lii −Q (Nn, jj, θii))

2
]

(35)

where
Lii =

(
vii + λmaxjj′ Q

(
Nn′, jj′, θ−

))
(36)

The obtained error is denoted as Lossii if the factor is θii Here, θ− refers to the factors
of a partitioned target structure, and the online structure factors are specified as θii. The
gradient descent function is expressed in the following manner:

∇θii Lossii (θii) = ENn, jj, v, Nn′
[
(Lii −Q (Nn, jj; θii))∇θii Q (Nn, jj)

]
(37)

In order to discard the associated updates, both the experience replay and constant
maximal volume are fed to DQN. Thus, the divergence problem is solved in an effective
way, and the recognized object result obtained from DQN is illustrated as Ha.



Appl. Sci. 2023, 13, 13286 16 of 28

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 31 
 

In order to discard the associated updates, both the experience replay and constant 
maximal volume are fed to DQN. Thus, the divergence problem is solved in an effective 
way, and the recognized object result obtained from DQN is illustrated as 𝐻௔. 

 
Figure 5. Structure of DQN. 

ii. Training of DQN using FP-SFOA 
The parameters of DQN are optimally tuned using FP-SFOA; thus, the optimal solu-

tion for the recognized object result is attained. However, the introduction of hybrid algo-
rithms results in superior performance with a high convergence speed that can easily solve 
the highly dimensional optimization problem. 

Fractional political position encoding 
This is used to determine the finest solution for a given optimization problem in a 𝐺-

dimensional search area, such that 𝐺 =  [1 × 𝜃]. Here, 𝜃 refers to the learning parameter 
of DQN. 

Fitness function 
The fitness factor is employed to find the finest solution, which is described as the 

change in variation amongst the targeted result and outcome of DQN. 

[ ]
=

−=ℑ
b

a
aa H

b 1

21 τ  (38)

where 𝑏 symbolizes the overall quantity of image samples, 𝜏௔ is the targeted outcome, 
and the output of DQN is signified as 𝐻௔. 

The algorithmic steps of FP-SFOA are the same as that of PSFOA, which is already 
elaborated under Section 3.1.2. 

The updated solution of PSFOA is given by 

( ) ( )( ) ( )( )
( )ω

ωω
SincR

XSincRSincRX
X

i
Sbest

i
Si

Snew ×+−
×+×−−

=
−

+

1
.11 ,

1
1

,  (39)

Figure 5. Structure of DQN.

ii. Training of DQN using FP-SFOA

The parameters of DQN are optimally tuned using FP-SFOA; thus, the optimal solution
for the recognized object result is attained. However, the introduction of hybrid algorithms
results in superior performance with a high convergence speed that can easily solve the
highly dimensional optimization problem.

Fractional political position encoding
This is used to determine the finest solution for a given optimization problem in a

G-dimensional search area, such that G = [1× θ]. Here, θ refers to the learning parameter
of DQN.

Fitness function
The fitness factor is employed to find the finest solution, which is described as the

change in variation amongst the targeted result and outcome of DQN.

= =
1
b

b

∑
a=1

[τa − Ha]
2 (38)

where b symbolizes the overall quantity of image samples, τa is the targeted outcome, and
the output of DQN is signified as Ha.

The algorithmic steps of FP-SFOA are the same as that of PSFOA, which is already
elaborated under Section 3.1.2.

The updated solution of PSFOA is given by

Xi+1
new, S =

Xi−1
S (R− 1) (1− c× Sin (ω)) + R.c× Sin (ω)

(
Xi

best, S

)
R− 1 + c× Sin (ω)

(39)

In order to apply the FC concept, X i
S, old is subtracted on both sides, and the equation

becomes

Xi+1
new, S − Xi

S, old =
Xi−1

S (R− 1) (1− c× Sin (ω)) + R.c× Sin (ω)
(

Xi
best, S

)
R− 1 + c× Sin (ω)

− Xi
S, old (40)
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By applying the FC concept,

D}
[

Xi+1
new, S

]
=

Xi−1
S (R− 1) (1− c× Sin (ω)) + R.c× Sin (ω)

(
Xi

best, S

)
R− 1 + c× Sin (ω)

− Xi
S, old (41)

Xi+1
new, S − } Xi

old, S −
1
2 } Xi−1

S − 1
6 (1− }) Xi−2

S − 1
24 } (1− }) (2− }) Xi−3

S =
Xi−1

S (R−1) (1−c×Sin (ω))+R.c×Sin (ω) (Xi
best, S)

R−1+c×Sin (ω)
− Xi

S, old (42)

Hence, the updated solution of FP-SFOA is represented as

Xi+1
new, S = (}− 1) Xi

old, S +
1
2 } Xi−1

S − 1
6 (1− }) Xi−2

S − 1
24 } (1− }) (2− }) Xi−3

S +
Xi−1

S (R−1) (1−c×Sin (ω))+R.c×Sin (ω) (Xi
best, S)

R−1+c×Sin (ω)
(43)

where Xi−1
S , Xi−2

S , and Xi−3
S represent the Sth component of the length of the sunflower

stem at the (i− 1)th, (i− 2)th, and (i− 3)th iteration, respectively. Moreover, the maximum
number of iterations is specified as imax, while the damping parameter is notated as C.

3.7. Aggregation at the Server Using CAViaR Model

Each local node generates a weight, and these local nodes are collectively known as
the local model. The weights from the local model are aggregated at the global model,
which is a server, and the aggregation process at the global model is effectively conducted
using the CAViaR model.

The CAViaR model [25] defines the evolution of the quantile over a time period
utilizing an autoregressive mechanism and determines the factors with regression quantiles.
Let us consider the weight of the global model as Wglobal, and it is expressed as

Wglobal = {Wloc1, Wloc2, . . . , Wloc n} (44)

Here, Wloc, n represents the nth weight of the local node, which is the total quantity of
local nodes present in the local model.

Applying the CAViaR model to the local node Wloc, n, the expression is computed
as follows:

Wglobal = β0 + β1 Wloc1 (q− 1) + β2 Wloc2(q− 2) + β f it (Wloc1 (q− 1)) + β2 f it (Wloc2 (q− 2)) (45)

Here, the weight of local mode 1 at the (q− 1)th iteration and the weight of local
node 2 at the (t− 2)th iteration is denoted as Wloc1(q− 1) and Wloc2(q− 1), respectively.
The pvector of unknown parameter is indicated as β. Moreover, the fitness of value
of weight at the (q− 1) iteration is termed f it(Wloc1(q− 1)), and f it(Wloc2(q− 2)) is the
fitness of value of weight at the (q− 2) iteration.

3.8. Apply Global Training Model to Every Local Node

After averaging the weights at the global model using the CAViaR model, the averaged
weights are updated at every local node at the local model. This global training model can
decrease the computational time and enhance the efficiency of the designed system.

4. Results and Discussion

A discussion of the results of FP-SFOA-DQN-FL and a comparison with existing
models can help to prove the efficacy of the designed model, which is interpreted in
this section.

4.1. Experimental Setup

The demonstration of this research work is carried out using the MATLAB tool. Table 2
shows the parameters of FP-SFOA-DQN-FL.
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Table 2. Parameter details.

Parameters Values

Learning rate 0.01
Batch size 32
Epoch 50

4.2. Dataset Description

The datasets used for the implementation of FP-SFOA-DQN-FL are the YOLO object-
detection dataset and the MyNursingHome dataset.

4.2.1. YOLO Object-Detection Dataset

This dataset [38] consists of five classes, which includes animals, food, human, bird,
and object. In addition, the overall file size of this YOLO-coco dataset is 6 GB.

4.2.2. MyNursingHome Dataset

This dataset [24] is a fully labeled image dataset collected from elder home cares
situated in Malaysia utilized for the purpose of image detection and classification. This
repository includes 37,500 images from 25 diverse indoor objects generally available in
homes, such as beds, benches, walkers, chairs, tables, and wheelchairs.

4.3. Experimental Results

The experimental results of this research are shown in Figure 6. The input images are
given in Figure 6a, and the corresponding filtered and object-detection outputs are depicted
in Figures 6b and 6c, respectively.
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4.4. Evaluation Metrices

The evaluation metrics considered for experimentation of FP-SFOA-DQN-FL are
defined as follows:

4.4.1. Accuracy

Accuracy is the capability of a measure to match the original value of the quantity
being estimated.

4.4.2. Loss Function

A loss function is defined as a function that represents an event of more than one
variable, illustrating certain costs corresponding to the event. In order to mitigate the loss
function, optimization is used.

4.4.3. Mean Square Error (MSE)

The MSE is described as the mean squared error between actual values and expected
outcomes, and it is computed using Equation (38).

4.4.4. Root Mean Square Error (RMSE)

The RMSE is defined as the average deviation of the estimations from the observed
values, and it is the square root of the mean square error.

RMSE =

√√√√1
b

b

∑
a=1

[τa − Ha] 2 (46)

4.4.5. False-Positive Rate (FPR)

The FPR is the proportion of the number of negative objects wrongly detected of the
total count of actual negative objects, and it is given by

FPR =
Fp

Fp + Tn
(47)

Here, Fp and Tn denote as false-positive and true-negative, respectively.

4.4.6. Mean Average Precision

This is employed to calculate the performance of systems performing an object-
detection process.

4.4.7. Communication Cost

The communication cost is determined by the division of bytes from the local server
to the global server with a normalization factor.

4.5. Performance Analysis

The performance of FP-SFOA-DQN-FL is analyzed by varying the epochs, and the
results are depicted in this section.

4.5.1. Performance Analysis Based on YOLO Object-Detection Dataset

The analysis of the YOLO object-detection dataset is depicted in Figure 7. Figure 7a
denotes the accuracy analysis of FP-SFOA-DQN-FL. For time step = 100 s, the accuracy of
the FP-SFOA-DQN-FL at epochs 20, 40, 60, 80, and 100 is 0.783, 0.825, 0.825, 0.841, and 0.853.
The loss analysis of FP-SFOA-DQN-FL is given in Figure 7b. The loss of FP-SFOA-DQN-FL
at epochs 20, 40, 60, 80, and 100 is 0.206, 0.206, 0.188, 0.184, and 0.181 for time stamp = 160 s.
Figure 7c denotes the MSE analysis of FP-SFOA-DQN-FL. For time step = 120 s, the MSE
of FP-SFOA-DQN-FL at epochs 20, 40, 60, 80, and 100 is 0.180, 0.173, 0.163, 0.162, and
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0.152. The RMSE analysis of FP-SFOA-DQN-FL is given in Figure 7d. The RMSE of FP-
SFOA-DQN-FL at epochs 20, 40, 60, 80, and 100 is 0.463, 0.462, 0.441, 0.441, and 0.436 for
time stamp = 200 s. Figure 7e denotes the FPR analysis of FP-SFOA-DQN-FL. For time
step = 100 s, the FPR of FP-SFOA-DQN-FL at epochs 20, 40, 60, 80, and 100 is 0.206, 0.193,
0.191, 0.180, and 0.179. The mean average precision analysis of FP-SFOA-DQN-FL is given
in Figure 7f. The mean average precision of FP-SFOA-DQN-FL at epochs 20, 40, 60, 80, and
100 is 0.812, 0.819, 0.835, 0.866, and 0.870 for time stamp = 140 s.
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4.5.2. Performance Analysis Based on MyNursingHome Dataset

Figure 8 depicts the analysis of the MyNursingHome dataset. Figure 8a denotes the
accuracy analysis of FP-SFOA-DQN-FL. For time step = 200 s, the accuracy of FP-SFOA-
DQN-FL at epochs 20, 40, 60, 80, and 100 is 0.844, 0.856, 0.872, 0.873, and 0.894. The loss
analysis of FP-SFOA-DQN-FL is given in Figure 8b. The loss of the FP-SFOA-DQN-FL at
epochs 20, 40, 60, 80, and 100 is 0.205, 0.190, 0.188, 0.184, and 0.172 for time stamp = 140 s.
Figure 8c denotes the MSE analysis of FP-SFOA-DQN-FL. For time step = 80 s, the MSE
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of FP-SFOA-DQN-FL at epochs 20, 40, 60, 80, and 100 is 0.172, 0.161, 0.155, 0.155, and
0.143. The RMSE analysis of FP-SFOA-DQN-FL is given in Figure 8d. The RMSE of FP-
SFOA-DQN-FL at epochs 20, 40, 60, 80, and 100 is 0.463, 0.462, 0.441, 0.441, and 0.436 for
time stamp = 200 s. Figure 8e denotes the FPR analysis of FP-SFOA-DQN-FL. For time
step = 100 s, the FPR of FP-SFOA-DQN-FL at epochs 20, 40, 60, 80, and 100 is 0.206, 0.193,
0.191, 0.180, and 0.179. The mean average precision analysis of FP-SFOA-DQN-FL is given
in Figure 8f. The mean average precision of FP-SFOA-DQN-FL at epochs 20, 40, 60, 80, and
100 is 0.850, 0.859, 0.878, 0.882, and 0.887 for time stamp = 200 s.
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4.6. Comparative Methods

The performance of FP-SFOA-DQN-FL was analyzed and compared with former
techniques, like the federated object-detection algorithm [1], FedCV [9], DRFL [19], and
active learning [20].



Appl. Sci. 2023, 13, 13286 22 of 28

4.7. Comparative Evaluation

This part delineates the estimation of FP-SFOA-DQN-FL in accordance with the
evaluation measures based on two datasets by varying the time step from 20 to 200.

4.7.1. Analysis Based on YOLO Object-Detection Dataset

This analysis section describes the assessment of FP-SFOA-DQN-FL based on the
YOLO object-detection dataset depicted in Figure 9. Figure 9a specifies the evaluation of
FP-SFOA-DQN-FL with respect to accuracy. If the time step is 200 s, the accuracy gained by
FP-SFOA-DQN-FL is 0.950, while the existing models gained an accuracy of 0.816 for the
federated object-detection algorithm, 0.889 for FedCV, 0.880 for DRFL, and 0.896 for active
learning. While considering the time step as 200 s, the loss function attained by the designed
approach illustrated in Figure 9b is 0.104, and MSE gained by FP-SFOA-DQN-FL is 0.122,
as shown in Figure 9c. However, the existing models delivered the MSE as 0.249, 0.185,
0.182, and 0.156, respectively, for the federated object-detection algorithm, FedCV, DRFL,
and active learning. Figure 9d implies the evaluation of RMSE. By considering the time
step as 200 s, the RMSE received by the proposed FP-SFOA-DQN-FL is 0.035, and the FPR
attained by the designed scheme is 0.140, as illustrated in Figure 9e. Also, the FPR provided
by conventional schemes, like the federated object-detection algorithm, is 0.264, FedCV
is 0.201, DRFL is 0.199, and active learning is 0.173. Figure 9f signifies the comparative
evaluation of FP-SFOA-DQN-FL in terms of mean average precision. When the time step
was 200 s, FP-SFOA-DQN-FL delivered a mean average precision of 0.909. Figure 9g
depicts the comparative evaluation of communication cost. When the time step was 100 s,
the communication cost of the federated object-detection algorithm, FedCV, DRFL, active
learning, and FP-SFOA-DQN-FL was 0.137, 0.094, 0.097, 0.088, and 0.064, respectively.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 25 of 31 
 

FedCV, DRFL, and active learning. Figure 9d implies the evaluation of RMSE. By consid-
ering the time step as 200 s, the RMSE received by the proposed FP-SFOA-DQN-FL is 
0.035, and the FPR attained by the designed scheme is 0.140, as illustrated in Figure 9e. 
Also, the FPR provided by conventional schemes, like the federated object-detection algo-
rithm, is 0.264, FedCV is 0.201, DRFL is 0.199, and active learning is 0.173. Figure 9f signi-
fies the comparative evaluation of FP-SFOA-DQN-FL in terms of mean average precision. 
When the time step was 200 s, FP-SFOA-DQN-FL delivered a mean average precision of 
0.909. Figure 9g depicts the comparative evaluation of communication cost. When the time 
step was 100 s, the communication cost of the federated object-detection algorithm, 
FedCV, DRFL, active learning, and FP-SFOA-DQN-FL was 0.137, 0.094, 0.097, 0.088, and 
0.064, respectively. 

 
(a) (b) 

  
(c) (d) 

Figure 9. Cont.



Appl. Sci. 2023, 13, 13286 23 of 28Appl. Sci. 2023, 13, x FOR PEER REVIEW 26 of 31 
 

  
(e) (f) 

 
(g) 

Figure 9. Comparative estimation based on YOLO object-detection dataset. (a) Accuracy, (b) Loss, 
(c) MSE, (d) RMSE, (e) FPR, (f) Mean average precision, (g) Communication cost. 

4.7.2. Evaluation Based on MyNursingHome Dataset 
Figure 10 delineates the assessment of FP-SFOA-DQN-FL based on the MyNursing-

Home dataset with respect to evaluation indicators. Figure 10a signifies the evaluation of 
FP-SFOA-DQN-FL in accordance with accuracy. By increasing the time step from 20 s to 
200 s, the accuracy profited by the developed technique was 0.925, while the classical ap-
proaches attained a loss function of 0.249 for the federated object-detection algorithm, 
0.207 for FedCV, 0.183 for DRFL and 0.159 for active learning as shown in Figure 10b. 
Figure 10c depicts the evaluation of the devised methodology in accordance with MSE. 
When assuming the time step as 200 s, the MSE obtained by FP-SFOA-DQN-FL was 0.125. 
Figure 10d implies the evaluation of RMSE. By considering the time step as 200 s, the 
RMSE received by the proposed FP-SFOA-DQN-FL was 0.034, and the FPR attained by 
the designed scheme was 0.143, as specified in Figure 10e. Also, the FPR provided by the 
existing models, such as the federated object-detection algorithm, is 0.279, FedCV is 0.239, 
DRFL is 0.216, and active learning is 0.192. Figure 10f implies the comparative evaluation 
of FP-SFOA-DQN-FL in terms of mean average precision. When the time step was 200 s, 
FP-SFOA-DQN-FL delivered a mean average precision of 0.895. The comparative evalua-
tion of communication cost is depicted in Figure 10g. When the time step was 100 s, the 
communication cost of the federated object-detection algorithm, FedCV, DRFL, active 
learning, and FP-SFOA-DQN-FL was 0.150, 0.127, 0.118, 0.102, and 0.074, respectively. 

Figure 9. Comparative estimation based on YOLO object-detection dataset. (a) Accuracy, (b) Loss,
(c) MSE, (d) RMSE, (e) FPR, (f) Mean average precision, (g) Communication cost.

4.7.2. Evaluation Based on MyNursingHome Dataset

Figure 10 delineates the assessment of FP-SFOA-DQN-FL based on the MyNurs-
ingHome dataset with respect to evaluation indicators. Figure 10a signifies the evaluation
of FP-SFOA-DQN-FL in accordance with accuracy. By increasing the time step from 20 s
to 200 s, the accuracy profited by the developed technique was 0.925, while the classical
approaches attained a loss function of 0.249 for the federated object-detection algorithm,
0.207 for FedCV, 0.183 for DRFL and 0.159 for active learning as shown in Figure 10b.
Figure 10c depicts the evaluation of the devised methodology in accordance with MSE.
When assuming the time step as 200 s, the MSE obtained by FP-SFOA-DQN-FL was 0.125.
Figure 10d implies the evaluation of RMSE. By considering the time step as 200 s, the
RMSE received by the proposed FP-SFOA-DQN-FL was 0.034, and the FPR attained by
the designed scheme was 0.143, as specified in Figure 10e. Also, the FPR provided by
the existing models, such as the federated object-detection algorithm, is 0.279, FedCV is
0.239, DRFL is 0.216, and active learning is 0.192. Figure 10f implies the comparative
evaluation of FP-SFOA-DQN-FL in terms of mean average precision. When the time step
was 200 s, FP-SFOA-DQN-FL delivered a mean average precision of 0.895. The comparative
evaluation of communication cost is depicted in Figure 10g. When the time step was 100 s,
the communication cost of the federated object-detection algorithm, FedCV, DRFL, active
learning, and FP-SFOA-DQN-FL was 0.150, 0.127, 0.118, 0.102, and 0.074, respectively.
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4.8. Comparative Discussion

The discussion of FP-SFOA-DQN-FL is depicted in Table 3. It is crystal clear that
FP-SFOA-DQN-FL has attained high accuracy of 0.950, low loss function of 0.104, low
MSE of 0.122, minimum RMSE of 0.035, minimum FPR of 0.140, and maximum average
precision of 0.909 based on dataset-1 at time step = 200 s.

Table 3. Comparative discussion.

Datasets Time Step Metrics/
Methods

Federated Object
Detection FedCV DRFL Active

Learning
FP-SFOA-
DQN-FL

Accuracy 0.816 0.889 0.880 0.896 0.950
Loss function 0.234 0.168 0.165 0.139 0.104

Dataset-1
MSE 0.249 0.185 0.182 0.156 0.122

Time Step = 200 s
RMSE 0.050 0.043 0.043 0.040 0.035

FPR 0.264 0.201 0.199 0.173 0.140
Mean average Precision 0.761 0.811 0.839 0.868 0.909

Communication cost 0.148 0.140 0.111 0.097 0.078

Accuracy 0.800 0.828 0.848 0.883 0.925
Loss function 0.249 0.207 0.183 0.159 0.108

Dataset-2
MSE 0.264 0.223 0.200 0.175 0.125

Time Step = 200 s
RMSE 0.049 0.042 0.042 0.039 0.034

FPR 0.279 0.239 0.216 0.192 0.143
Mean average Precision 0.738 0.792 0.829 0.860 0.895

Communication cost 0.156 0.134 0.121 0.108 0.080

4.9. Analysis of Computational Time

The computational time of the models is discussed in Table 4. The computational time
of the implemented FP-SFOA-DQN-FL is compared with the federated object detection,
FedCV, DRFL, and active learning methods, in which minimal computational time is
required for the devised method.

Table 4. Computational time.

Methods Federated Object
Detection FedCV DRFL Active

Learning
FP-SFOA-
DQN-FL

Computational
time (sec) 9.521478523 8.255785244 7.258746581 6.258744698 5.254789502

5. Conclusions

FL is basically machine learning, where the prime objective is to tune a high-standard
centralized system while data are distributed over a huge number of devices with slow
network connections. This research introduces an effective FL model for real-world object
recognition using designed FP-SFOA. In each round, local training is performed based on
local data at every node, and the object-recognition process is performed at the training
model of every node. In the training model, the input indoor image is pre-processed
utilizing a bilateral filter to eliminate the calamities, and following this, object recognition
is conducted employing SegNet, which is tuned by exploiting PSFOA. After, features like
ResNet features, SLBT, GLCM, SIFT, SURF, ORB, and hierarchical skeleton features are
extracted, and finally, object identification is performed based on FP-SFOA. Finally, the
weights from every local node are aggregated at the global model using CAViaR, and
then the aggregated weights are updated back to the global model. The devised FP-SFOA
delivered a maximum accuracy and mean average precision of 0.950 and 0.909, whereas it
gained a minimum loss function of 0.104, MSE of 0.122, RMSE of 0.035, FPR of 0.140, and
communication cost of 0.078. The designed FL framework delivered superior performance
and outperformed other classical models. Despite its magnificent results, some of the
features during the feature extraction module consumed time to compute the feature vector,
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which resulted in inaccurate results on blurring images. This drawback will be considered
in further research.
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Abbreviations

The following abbreviations are used in this manuscript:

FL Federated learning.
CV Computer Vision.
AI Artificial Intelligence.
FC Fractional Calculus.
SFOA Smart Flower Optimization Algorithm.
FP-SFOA Fractional Political–Smart Flower Optimization Algorithm.
CAViaR Conditional Autoregressive Value at Risk by Regression Quantiles.
MPC Multi-Party Computing.
CNNs Convolutional neural networks.
DRFL Dilation RetinaNet Face Location.
FedAvg Federated Averaging.
DL Deep learning.
DQL Deep Q-Learning.
ICM Inconsistency-Capture module.
PO Political optimizer.
SLBT Shape Local Binary Texture.
GLCM Gray level co-occurrence matrix.
SURF Speeded-Up Robust Feature.
ORB Oriented Fast and Rotated Brief.
MSE Mean Square Error.
RMSE Root Mean Square Error.
FPR False-Positive Rate.
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