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Featured Application: The outcomes of this research can be implemented in the design of fast
and easily tunable low-level controllers of redundant pneumatic parallel robots. This control
algorithm allows for online stiffness changes of the robot, providing safe manipulation while
maintaining the ability to use high amounts of force if needed.

Abstract: Redundant cascade manipulators actuated by pneumatic bellows actuators are passively
compliant, rugged and dexterous, making them exceptionally well suited for application in agricul-
ture. Unfortunately, the bellows are notoriously difficult to precisely position. This paper presents a
novel control algorithm for the control of a parallel platform actuated by pneumatic bellows, which
serves as a module of a cascade manipulator. The algorithm combines a feed-forward controller and
a variable-gain I-controller. The mathematical model of the module, which serves as the feed-forward
controller, was created by applying two simple regression steps on experimentally acquired data.
The gain of the I-controller is linearly dependent on the total reference error, thereby addressing the
prevalent problem of “a slow response or excessive overshoot”, which, in the described case, the sim-
ple combination of a feed-forward and constant-gain I-controller tends to suffer from. The proposed
algorithm was experimentally verified and its performance was compared with two controllers: an
ANFIS controller and a constant gain PID controller. The proposed controller has outperformed the
PID controller in the three calculated criteria: IAE, ISE and ITAE by more than 40%. The controller
was also tested under dynamic loading conditions, showing promising results.

Keywords: pneumatic bellows; parallel platform; feed-forward controller; variable-gain integral

1. Introduction

Industrial robots are an indispensable part of the manufacturing process in many in-
dustries, where their traits, i.e., precision, speed, and the ability to work basically nonstop,
help increase productivity and decrease cost. It is therefore understandable, that there
is a strong incentive to use industrial robots in other fields, like for example agriculture
and medicine. The most common industrial robots are serial link 6R robots, 2R1T SCARA
robots or parallel Delta robots driven by, most commonly, electric actuators, or in some
cases hydraulic actuators [1]. These industrial robots were developed for many decades,
their design is standardized, and their mathematical description and control design is fairly
well researched. Unfortunately, these robots lack some key features needed in the afore-
mentioned new fields of application. For example compliance, agility and complex modes
of motion [2]. These requirements fulfil new emerging classes of robots i.e., redundant
cascade and continuum robots [3]. Redundant robots are all those that have more degrees
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of freedom than is necessary to perform a certain task [4]. Development of these robots
accelerated after the year 2000. Redundant robots in general, but especially cascade and
continuum robots, have unique characteristics. For example, according to [5,6], compliance,
a good reach to weight ratio, modularity and other. These characteristics arise from their
specific design.

In general, continuum and cascade robots consist of several in-series-connected parallel
modules which, if underactuated, form a continuum robot and if fully actuated form a
cascade robot. To describe the motion of a redundant robot and design a control algorithm
for it, it is first necessary to focus on its individual modules and their properties. The
chosen actuator type influences the achievable properties of a module. Electrical linear
servo motors as used by [7] within the structure of a module or outside it, as by [8],
provide high amounts of force and stiffness. Moreover, they are usually equipped with
position sensors that simplify control. Hydraulic actuators, as seen in [9], provide high
forces and can be precisely positioned, but are slow. Nonstandard actuators such as SMA
springs, as seen in the work of [10], or dielectric materials, as described in [11], can also be
used in this application. Pneumatic actuators are a popular class of actuators in cascade
robot design. They provide high power density, have relatively low weight, and can be
easily manufactured to custom specifications, as described in [1,12], or bought off the
shelf in a variety of types and sizes [13-15]. In addition, the compressibility of air gives
them a natural level of compliance. This property makes them the actuator of choice
for medical applications, like for example in rehabilitation equipment [16] and flexible
endoscopes [17,18], in agriculture [19], as parts in mobile robots [20,21], as the actuator
for high-precision positioning systems [22] or as the stiffness regulating element in hybrid
actuation schemes for continuum tendon driven robots as presented by [23].

There exist many well-known techniques that can be used to obtain robust controllers
for complex systems, as described in [24]. Nevertheless, the control of a parallel platform
module actuated by three or four pneumatic actuators remains a challenging task. One
approach to controlling of these modules is to use a feed-forward controller alone or in
combination with other types of controllers. The authors of [25] presented a modelling
framework to design a model from which a feed-forward controller with satisfactory
performance was developed. Ref. [26] developed a custom bellows-type actuator and
applied it in a parallel platform with three degrees of freedom. Their control algorithm
was a feed-forward controller based on an experimental mapping between pose, external
forces and input pressure. In [27], the authors used a feed-forward controller based on
a mathematical model in combination with a variable P-gain PI controller to combat the
effect of hysteresis in the system. Ref. [28] uses a model-based controller with both feed-
forward and feedback components with a structure similar to a PD controller to position
a soft robot. Similarly ref. [29] used feedback linearisation to decouple the actuators of a
soft pneumatic robot manipulator to achieve very precise and dynamic movements. The
controller for this application was a model-based, feed-forward controler combined with
a low gain PD controller In [30], a planar platform actuated by pneumatic muscles was
controlled using three fuzzy controllers synchronized through an ANFIS (adaptive neuro-
fuzzy inference system)-based controller. Ref. [15] applied a simple constant-gain PID
controller for positioning of a parallel platform actuated by four pneumatic muscles. The
authors of Ref. [31] have demonstrated a nonlinear SMC (sliding-mode controller) based
on a PID-type sliding surface combined with a lumped element model-based controller to
control a soft pneumatically actuated robot. In [32], the authors use a fourier series-based
adaptive sliding-mode controller with Heo tracking performance to address the high non-
linearity and time-varying problem in a parallel platform actuated by rod-less pneumatic
cylinders. while dealing with a tendon-driven redundant manipulator, the authors of
Ref. [33] proposes a population-based model-free control method that could be applied to
pneumatically actuated manipulators.

Based on our previous work we have set out to develop the mechanical design and
control system for a rugged redundant cascade manipulator driven by pneumatic bellows,
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intended for both research and agricultural use. The most difficult part of the development
was the controller design for each separate module, as noted in previously mentioned
articles. This task is notoriously difficult due to the inherent nonlinear hysteresis behaviour
of the chosen actuator type and MIMO system as a whole. In previous research, a simi-
lar approach to in pneumatic parallel platform module control was taken by relying on
experimental data. This concept was expanded upon by applying two regression steps
to the data to obtain a mathematical model of the module, which took the place of a feed-
forward controller. This feed-forward controller was then supplemented by a variable gain
I-controller that facilitates disturbance rejection. The gain of the I controller is time-varying,
allowing for specific adaptation dependent on the control error. The advantages of the
ability to dynamically change the gains of a PID controller have been demonstrated by
many authors. For example [34] presents a sigmoid-based variable coefficient PIDwhere
a modified sigmoid function is used to limit the variability of the PID controller coeffi-
cients in a predefined range. Refs. [34,35] added a nonlinear sine cosine algorithm to tune
the coefficients of the PID controller. Ref. [36] utilized reinforcement learning and gain
scheduling to tune the coefficients of their PID controller.

Here, we present a hybrid controller design which, allows for a on demand change
in stiffness of the system during operation and lends itself well to be a part of complete
control system for the whole cascade manipulator.

Based on previous papers survey, the novelty of the paper can be defined as follows:

*  Development of a novel hybrid FEvI controller (Feed-forward variable gain integral
controller) with time-varying gain and experimentally derived model using two
regression steps;

*  Establishment of controller design methodology for cascade redundant robots;

¢  Experimental positioning analyses under dynamic disturbance effects.

This paper focuses on the development of a novel controller for a 2 DOF pneumatic
parallel platform that represents one module of the pneumatic manipulator PneuTrunk
(see Figure 1), developed by our ARM-Lab. The first part of the paper presents the design
and kinematic model of one module of PneuTrunk. In the second part, a feed-forward
controller based on an experimentally identified system with stiffness regulation capabilities
combined with a error dependent variable gain I controller for disturbance rejection is
presented. In the third part, the proposed controller is compared with a simple PID
controller and ANFIS controller. The reason for adopting an experiment driven controller
design for this application when very robust alternatives in the form of model based feed-
forward controllers, see [29], already exist is that in some cases a mathematical model is
difficult or impractical to obtain. As an example, soft robots with complex couplet internal
structures can be named. For these cases, our approach will be valid. As another benefit,
this controller has the potential for periodic self-tuning, based on real online data gathered
during use.

Figure 1. CAD model of PneuTrunk.

2. Design of Pneutrunk Module

As can be seen in Figure 1, the redundant manipulator PneuTrunk is a cascade type
manipulator constructed out of parallel platform modules ordered in series. The number
of modules depends on the required degrees of freedom. One module, shown in Figure 2,
consists of two duraluminium plates connected by an universal joint and three evenly
spaced pneumatic bellows. The tilt angles between the top and the bottom plates are
measured by two potentiometric rotation sensors, placed in such a way that the axis of
the universal joint is colinear with both axes of the sensors and the y sensor axis is always
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parallel to the bottom plate and the x sensor axis is always parallel to the top plate. The
pneumatic actuators are off-the-shelve Dunlop 2 3/4 x 3 bellows. The pressure in the
pneumatic bellows is controlled by three separate electro-pneumatic pressure controllers
SMC ITV1050-31F20. In our experience, these controllers have little lag and no discernible
overshoot. All tubing is of inner diameter of 6 mm to eliminate the effects of tubing
diameter on the dynamic behavior of the bellows. The module is controlled by a B&R PLC
type 4PPC70-0702-20B and was programmed using B&R Automation studio version 4.9.

Top plate

Pneumatic
fitting

Pneumatic
bellows

Bottom plate

Universal joint +
Two potentiometric
angle sensor

Figure 2. One module of the manipulator PneuTrunk and top sketch of the module. Letters G, B, Y
denote the center-points of the bellows.

The maximum operating pressure for one bellow is 7 bar, but to prevent damage to
the system and especially the universal joint, the allowable pressure range is set to 0-5 bar.
The x-axis is oriented towards the center of one bellows. The asymmetric layout of the
bellows with respect to the axes x and y in combination with the mechanical limits of the
bellows themselves, causes the rotational extremes around both axis to be different, as can
be seen in Table 1.

Table 1. Tilt extremes.

Tilt [deg] Tilt [deg]
axis min max
y —24.4 16.6
X —21.2 20

It is expected that the module will be driven only by positive pressure. This has
important implications when designing the control algorithm for such a device. While
the extension of one bellows is facilitated by simply supplying pressure, compression is
achieved by applying external forces that predominantly originate from the extension of
one or both remaining bellows. This fact is also the reason why the minimum number of
pneumatic bellows is three. Coincidentally, because the module only has two degrees of
freedom, this design is inherently overactuated. This causes one posture of the module to
be reachable by an infinite number of bellows input pressure combinations and, in theory,
giving the system the ability to change its stiffness without changing the posture. This was
taken into account when designing the control algorithm for one module.

The flow of information and energy is visualized in Figure 3. The whole system is
simple and contains only the necessary components. It could be argued that adding a center
closed 2/2 valve between each bellows and its corresponding electropneumatic pressure
controllers could give the system the ability to pneumatically lock the bellows extension,
improving the systems positioning performance. Unfortunately, this would also complicate
the system and its regulation, introducing other challenges and distracting from the aim of
this paper.
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Figure 3. Flow of information and energy.

3. Mathematical Modeling
3.1. Mathematical Model of One Module

An important step before attempting to design a controller for a module is, to create
an inverse kinematic model of the module first. In other words, to find a way to map
the desired output parameters to the input parameters; in this case, the tilting angles
to the extension/contraction of the bellows, see Figure 4. Inspiration is taken from the
work of [37], where bellows-type actuators are represented by two elements connected
by a translational joints and connected to the bottom and top plate by universal joints.
This approach greatly simplifies kinematic modelling. For the purpose of modelling the
dynamics of an actuator, the model needs to be augmented by adding torque on both
universal joints that represent resistance to bending of the actuator.

Figure 4. Schematic representation of the pneumatic module

For our design, there exists a closed form solution to inverse kinematics in the form of
li =| ai —Hibj(y, 0,) | )
H; = T:01Ry12Rx23 T34 2

where i € {1,2,3} denotes the bellows, a; € R3 are the coordinates of the center of the
bellows on the bottom plate, b; € R3 are the coordinates of the center of the bellows on
the top plate, [; is the distance between point a; and b;. Matrix H; € R4x4 represents
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the transformation matrix between the fixed coordinate frame x,y,z, and the top plate
coordinate frame xpYp2p. T201, T234, Ra23, Ry12 € R**4 where T, is the translation matrix
between the base frame and a parallel but offset frame x"y'z’, R, is the rotation matrix
rotating frame x'y’z" around its y axis by a,, into x”"y"z", R,3 is the rotation matrix rotating

frame x"y"'z" around its x axis by a, into x"'y"’z"" and T34 is the translation matrix

between the frame x""'yy"'z"" and a parallel but offset top plate frame x;y;z;, see Figure 5.
Angle a is the tilt angle of the top plate around axis x and «,, is the tilt angle of the top

plate around axis .

Figure 5. Transformation steps between frame x,Y,z, and xy;z,

The role of the established kinematic model in relation to the posture control of
the module described in later chapters is a central one. The goal of posture control of
the platform is achieved indirectly by controlling the extension and total pressure in the
respective bellows. The presented inverse kinematic model converts the reference tilt and
actual tilt sensed by rotation sensors into the required extension/contraction and actual
deformation of the bellows.

3.2. Model of Pneumatic Bellows

A pneumatic bellows is a linear pneumatic actuator consisting of a bellows type
body and mounting flanges. The free length of the bellow is dependent on the difference
between the ambient pressure and the pressure inside the bellows. From a physical point
of view, the pneumatic bellows is a pneumatic spring with variable equilibrium length. The
equilibrium length is dependent on the geometric and material properties of the bellows
and the internal pressure within the bellows Figure 6.

P +P

A b .
P P,- atmospheric pressure

P,- mano/vakuo-metric

pressure
z,- free length

Az- length increment

z +Az

I i ' I O 2

Figure 6. Bellow length in dependence on internal pressure.

The bellows can be modelled using the standard mass, spring, damper model rep-
resented by Equation (3), see Figure 7. The dominant force on the system is the spring
force. The spring force is dependent on the pneumatic spring stiffness and the equilibrium
height of the bellows at the current internal pressure. Equation (4) shows this relationship.
Without being pressurized, the bellow behaves like a spring whose stiffness depends on
the shape of the bellow. The current material properties that are also dependent on other
factors like ambient temperature. Therefore, if the bellows are deformed, a spring force
appears in the direction opposing the deformation. The equilibrium length is the length of
the bellows at which the deformation force from the internal pressure is at equilibrium with
the spring force. It can be seen that, the equilibrium height is a nonlinear parameter that
depends on multiple other coupled parameters. Therefore, instead of a physical modelling
approach, the model for the equilibrium height was derived from experimental data by
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measuring the equilibrium height at different internal pressures; see Figure 8. The data was
then approximated by a third-order polynomial function resulting in Equation (5).

Fy + Fp + Fe(kp, Py) + Fo =0 ®3)
Fe = kp(ze(Fo ) — 2r) ()
ze = 0.45P] + 5.6P7 + 23P, + 1200 (5)

where F is the inertial force, F, the is damping force, Fy the is pneumatic spring force, F, is
outside the disturbance force, k; is the pneumatic spring stiffness, P, is internal the pressure,
z, is the equilibrium length, z; is the actual length and F, is the material spring force.

A Fout
mtotal
A
kp N b A
F Fv F “ )
k m b

Figure 7. Mass-spring-damper model of pneumatic bellow.

155 T

=@ data D
150 F cubic fit 4
145
E
£ 140
E=J
Q
< 135
£
2 130 -
S
S125+
120
[
115

0 1 2 3 4 5 6
pressure [bar]

Figure 8. Relationship between internal pressure and Equilibrium height.

To create a simulation model of a pneumatic spring, it is necessary to determine the
stiffness of the spring. This parameter can be derived from the Equations (6)—(8).

dF,
kp = 6)
where
Fe = (Py—Py)A ()

Assuming that the change in bellows internal volume is polytropic we get

PyV? = constant (8)



Appl. Sci. 2023,13, 13261 8 of 23

Combining the above equations

dA

dz

- P()i’lA2

P
v T

)

kp =
where V is total volume of air within the bellows and corresponding pneumatic tube, P
is the absolute pressure inside the bellows, A is an effective surface of the bellow, n is
polytropic constant. The movement of the platform is expected to be slow, therefore we can
approximate the process to be isothermal, hence n = 1. According to Equations (3)—-(9) a
simulation model in MATLAB version R2021b was developed.

The results of this model were compared with experimental data, where the bellow
was pressurized to different pressures, a positive extension force was applied to the bellow
and the total extension was measured. The results are in Figure 9.

Pressure 1 [bar] Pressure 2 [bar]

Pressure 3 [bar]

144 3 150 152
’E‘ ——simulation 'E ——simulation 'E‘ ‘ ——simulation
——experiment ——experiment ——experiment
£ 143 peri 5149 peri E. 151 peri
c 142 c
S § 148 H ‘
g 141 2 2 150
147
W39 w46 w (
[
138 145 148
0 10 20 30 40 50 60 70 0O 10 20 30 40 50 60 70 0O 10 20 30 40 50 60 70
Loading force [N] Loading force [N] Loading force [N]
E Pressure 1 [bar] E Pressure 2 [bar] E . Pressure 3 [bar]
| .4
—0.6 - A =
£ E° £
6o 9-0.2 @
‘g. Qo o 0.2
502 s-0.4 b
@ o ]
g 0 g 0.6 g o
. g -0.8 g
9-0.
= J £a £ 02
B-0. | ! ! J [ || . I ! I
0O 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Loading force [N] Loading force [N] Loading force [N]
Pressure 4 [bar] Pressure 5 [bar] Pressure 6 [bar]
153.5 153.5 154.5
E‘ —simulatio‘z 'E ——simulation 'E'
153 —experiment | | ——experiment
£ 5 ’ ‘ E 3 i E 154
152.
< c c
9 8 152:% S
g 152 2 2 153.5
21515 g 192 ]
X X X 153
o151 w151, o
150.5 151 " . R il 152.5 " " 1 L ] ]
0 10 20 3_’0 40 50 60 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Loading force [N] ] Loading force [N] Loading force [N]
E o Pressure 4 [bar] £ Pressure 5 [bar] Pressure 6 [bar]
= 02 Eoz z
E o £ Eo
2 G £
g-0.2 g o ?
o-0.4 9 502
v} ] 8
§ -0.6 £.0.2 £
L-0.8 g S04
o B-o0. a

10 20 30 40 50 60
Loading force [N]

-1
0 70

ok

10 20 30 40 50 60 70
Loading force [N]

0

10

20 30 40 50 60
Loading force [N]

70

Figure 9. Experiment vs. simulation (1st and 3rd row) and the difference between simulation and
experiment (2nd and 4th row).

The model of a pneumatic bellow gives satisfactory results. The maximum deviation
for pressures between 1 bar and 6 bar does not exceed 1 mm, while for pressure 0 bar the
deviation is nearly 4 mm, which points to either a measurement error or to some unknown
effect that is much less pronounced in higher pressures.
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This model represents the static behaviour of an air bellow performing linear defor-
mation. It does not capture its bending behaviour or its dynamics. To be able to design
a controller for one module of the manipulator PneuTrunk, it is necessary to also have a
basic understanding of the dynamic behaviour of one bellow. This can be seen in the step
response of one bellow to an input pressure step of 5 bar, shown in Figure 10.

35 Step response to input 5 bar
] I 1

|——Step response
30+ ——5 bar input step time
0 bar input step time

Travel [mm]
= = N N
© u o w

(4]

1] 5 10 15
Time [s]

Figure 10. Step response of one bellows to step input 5 bar.

There is no discernible overshoot and the rise time from 0 s to maximum value is
about 0.4 s. This means that the system is overdamped and 0.4 s represents the maximum
possible regulation speed. It is also important to note the behaviour of the bellows when
going back from 5 bar to 0 bar, where the actuator is passively returning to the original
length. Here, not even after 8 s does the actuator reach the original length.

One important property of a pneumatic bellow, as noted by [38], is its hysteresis
behaviour, where inflating and deflating a bellow results in a different free length at zero
internal pressure. In our experiments, this behaviour resulted in a deviation of 2 mm. To
combat this effect, the bellow was forced by an external stop to always be extended at zero
internal pressure securing a stable free length. Creating a comprehensive bellow model falls
outside the scope of this paper and will be a topic of further research. Nevertheless, it gives
important insights into the behaviour of one bellow regarding controller development.

4. Controller Design

Controlling the posture of one module requires the combined effort of all three of its
bellows actuators. The presented controller is designed to deal both with the non-linearity
of the actuators and the over-actuation of the system. We define the controller consisting of
two parts, a feed-forward controller and a variable gain I-controller (FFvI) see Figure 11.

o - Py -jff: Por Pur_ o P P Py a, 50,
| ‘ i

P

. B P.; P.;
q, ;- actual tilt angles Variable gain wea s
P Py Py~ feed-forward control pressures | controller
P,; P,; Py~ I-controller control pressures A 4
P,; P,; P,- final control pressures
P, - Aggregated pressure

O,ers O~ reference tilt angles ‘

agr”

Figure 11. Block diagram of FFvI regulator.

The feed-forward control is widely used in research for these applications, for example,
Refs. [25,26]. It uses an inverse model of a controlled system without a feedback loop.
For this application, it will provide the rough estimate input. This leverages the lack of
overshoot of the actuators even at large input pressure steps, as can be seen in Figure 10,
it maximizes the controller speed, and it is generally easy to design and implement. As
will be shown later, this system can also be driven by a pure constant gain PID controller,
but a feed-forward controller is faster and has fewer errors. On the other hand, because
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of its lack of a feedback loop, as seen in [25], it is unable to compensate for disturbance
forces and system-model deviation. These are the reasons why the feed-forward controller
is supplemented by a variable gain I-controller designed to complement the feed-forward
controller and dynamically react to any differences between the reference values and actual
values of the controlled variables.

4.1. Feed-Forward Controller Design

The feed-forward controller developed in this paper was designed using experimental
data. Various pressure combinations were supplied to each bellows and the resulting
posture was measured. The supplied pressures ranged from 0 bar to 5 bar with a 0.2 bar
increment. This results in 18275 different pressure combinations and their corresponding
tilt angles. The module workspace can be seen in Figure 12.

Module workspace

rotation around x axis [°]
5 & o o B &

=
o

N
S

25 -20 -15 -10 -5 0 5 10 15
rotation around y axis [°]

Figure 12. Module workspace.

The pointcloud matrix structure is organized as seen in Equation (10)

Ppc = [ax, a0y, Pic, Poc, P3c] (10

where &y and &, are the measured stable tilt angles which are the result of corresponding
input pressures for the respective bellows Pjc, Poc and Psc.

Because of over-actuation and the parallel nature of the module design, one orientation
of the module is achievable by an infinite combination of input pressures. This can be seen
in Figure 13. Here the x-axis and y-axis are the tilt about the respective axis in degrees and
the z-axis is the aggregate pressure, which is the sum of all bellows input pressures in bars.
A higher aggregate pressure corresponds to a higher mechanical stiffness of the system.
The control algorithm needs to take this into account.

Workspace dependent on total pressure

= =
o w

Total pressure in all bellows combined [b
(%]

Figure 13. Aggregate pressure augmented workspace.
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The experimentally measured data represents points in aggregate pressure-augmented
workspace. To find the inlet pressures from the measured point-cloud, Algorithm 1
was applied.

Algorithm 1 Extract required bellows input pressures from point cloud

Input: Reference tilt angles ay,.f, ay.r, required aggregate pressure level Phq and
Ppc = [ax, &y, Pic, Pac, Pac]
Output: Required bellows input pressures Py, P, and Ps to reach ay.r and &y
while isEmpty(Region) do
Add all points to Region that pass the criterion:

\/(‘chloud - D‘xref)z <anT & |Plcloud + Pocioud + Pacioud — Pﬂgr| < agng
if isEmpty(Region) then
anT = anT+ incrementAngle
aggrT = aggrT+ incrementPressure
end if
end while
Find point Q € Region with minimal expression

\/(o‘xregion - "‘xref)z - ("‘yregion - D‘yref)z

if \/ (xQ = Xxref)? — (&yQ — &ypef)? < acceptableTol then
[P1, Py, P3] = [P1g, Pag, P30

else

[P1, Py, P3| = [mean(Py,), mean(Py, ), mean(Py,q)]
end if

Region-matrix of measured input pressures and corresponding posture that will be used
to calculate the ended required input pressures to reach the desired posture; anT-maximum
Euclidean distance of a measured point from the reference point in the augmented workspace
in the ay &y, plane to be eligible for inclusion in Region; aggrT-maximum Euclidean distance of
a measured point from the reference point in the augmented workspace along the aggregate
pressure axis to be eligible for inclusion in Region; increment Angle-increment to expand anT
in case the previous search yielded empty Region; incrementPressure-increment to expand
aggrT in case the previous search yielded empty Region.

Algorithm 1 will already supply a set of usable input pressures. Unfortunately, the
results are influenced by the errors in measurement and effects of hysteresis. In a smooth
trajectory tracking task, this can produce erratic, non-smooth input pressures. To solve these
issues, the above Algorithm 1 was supplied with a set of reference angles ranging from —10°
to 10° with an increment of 0.05° for both ay and ay and a constant aggregate pressure Pyg;.
The result is three 3D meshes representing the relationship between the reference angles
and the three input pressures separately. These meshes were then separately approximated
as a surface using a second order x and second order y surface plot. The result for input
pressure 1 can be seen in Figure 14 and the equation describing this surface is Equation (11)

Py = 2.964 — 01113, + 0.000344a, + 0.00072642 + 0.00407a,ar, — 0.0012322 (1)

This process was repeated for aggregate pressures between 3.6 bar and 15 bar with
increments of 0.6 bar for all three bellows. The result is a set of smooth surfaces representing
the complete augmented workspace, see Figure 15 for bellows 1.

The coefficients describing all the surfaces can be further interpolated to get six equa-
tions approximating the complete aggregate pressure augmented workspace. The coef-
ficients were interpolated by a 7-th order polynomial. Figure 16 compares the output
of Algorithm 1 and the interpolated feed-forward controller. The output of Algorithm 1
follows the smooth reference signal, but it shows non-smooth, erratic step behavior, while
the output of the interpolated feed-forward controller is smooth.
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Figure 14. Calculated input pressures and approximated surface for bellow 1.
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Figure 16. Output from algorithm 1 vs. Interpolation.

4.2. Variable Gain I-Controller Design

The goal of adding an I-part to the controller is to facilitate disturbance rejection by
integrating the reference error over time and scaling it by using a gain. In a constant gain
I-controller, the gain is tuned to and fixed at a value dependent on the controlled plant. It
is simple, easy to implement and does not necessarily require the plant model for correct
design and unlike a proportional controller, it allows for complete error compensation in
a step response. The problem with using a constant gain I-controller is as follows. The
feed-forward controller can immediately supply a rough estimate for input pressures, but
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it is never clear before the movement ends how good this estimation is. Therefore, if the
estimate is optimal, a constant gain I-controller would cause an overshoot, requiring the
controller to be slow. On the other hand, if the estimation is sub-optimal, an aggressive
constant gain I-controller is needed to quickly compensate for the error. This contradiction
in requirements can be solved by applying a variable gain I-controller, with the gain
dependent on the error, see Equation (12)

u(t) = K (e(1)) /Ote(t) dt (12)

where K; (e(t)) is the controller gain, e(t) is the tilt error, ¢ is time and u(t) is the controller

output. The idea behind the error-dependent controller gain is to keep the integral action
small at the beginning of the movement, before it is clear how good the feed-forward
action is, and increase it as the module posture reaches the desired posture. This decreases
overshoot while increasing error elimination speed.

The relationship between I-controller gain and tilt error can be described by different
types of smooth monotonic functions, like linear, exponential etc. For this controller, as a
proof of concept a linear relationship was chosen, see Equation (13).

Ki = aer(t) + b (13)

er(t) = y/ek(t) +e5(t) (14)

where e;(t) is the tilt error, ex(t) is the tilt error about the x-axis and ey (t) is the tilt error
about the y-axis. Parameters a and b were calculated from experimental data, where
K; = 350 was found to work well for small total error values below 1° and K; = 75 was
found to not cause significant overshoot at error values above 5°. This relationship is
described by Equation (15) and can be seen in Figure 17

K; = —68.75¢; + 418.75 (15)
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Figure 17. Tilt error in dependence on I-controller gain.

The comparison between the performance of a constant gain I-controller and our
variable gain controller in combination with our feed-forward controller is depicted in
Figure 18. One can see, that in Figure 18a,b a gain of 350 results in a significant overshoot,
but for small changes in tilt and a large residual error after feed-forward controller action,
like in Figure 18¢, the controller is fast and has acceptable overshoot. On the other hand,
a gain of 75 has no overshoot in any case but is slow and has the best performance if
the residual error from feed-forward controller action is small, like in Figure 18b. The
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performance of both fixed gain controllers in Figure 18c is not satisfactory. Our variable
gain controller performs satisfactory in all cases.
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Figure 18. Comparison between constant and variable gain I-controller under different conditions.
(a) high feed-forward error; (b) low feed-forward error; (c) reference angle change a,= 8°—10°.

As mentioned above, for our controller, we have chosen a linear relationship to
govern the variable gain. A linear relationship is simple, is easy to tune and should
result in predictable behaviour of the module. Nevertheless, other types of functions like
exponential, polynomial or even logarithmic can also be applied and could result in better
controller performance than with a linear equation. The purpose of this article is to show
the viability of the presented controller and using a linear relationship for this purpose is
sufficient. The complexity of comparing different types of governing equations and the
required tuning methods warrants its own article.

5. Experimental Verification of FFvI Controller

This section will focus on the experimental comparison between the FFvI controller
and controllers designed according to established algorithms. First of all, the performance
of the feed-forward part of the FFvI algorithm will be compared with an ANFIS controller
designed using the same data-set as our feed-forward controller. In the second part, the
complete FFvI controller will be compared to a constant gain PID controller.

The ANFIS controller was designed using the MATLAB neuro-fuzzy designer. Three
controllers for each bellows separately were created. The input data are tilt angles ay, and
ay and the output is the corresponding pressure. The teaching data are picked from the
same data, that is used to design the feed-forward controller, but are limited to having
an aggregate pressure of 9 £ 1.5 bar. The feed-forward controller is also set to the same
level of aggregate pressure. This will decrease the teaching time and ensure more reliable
results. The neural network used is a Sugeno-type network [39] with 10 linear generalized
bell-shaped membership functions for each input. The minimum achieved teaching error
is in Table 2.
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