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Abstract: The Fengcheng Formation in the Mahu sag of the Junggar Basin was primarily composed
of detritus, pyroclastic material, carbonates, and evaporites. In order to establish the diagenesis
pathways of the Fengcheng Formation, some methods of polarized light microscope, SEM, CL,
EPMA, LR, and fluid inclusion analysis were applied to discuss the diagenesis process. The results
showed the following: (a) The formation of an alkaline lake was the result of the influence of a
high concentration of sodium-rich sources, and it led to the preservation of alkaline minerals in
the stratum. (b) After the sediments were buried, three mineral assemblages were formed in the
Fengcheng Formation, which are carbonate mineral assemblages (i.e., calcite + ferreous dolomite),
reedmergnerite and carbonate mineral assemblages (i.e., reedmergnerite + calcite + ferreous dolomite),
and reedmergnerite and alkaline mineral assemblages (i.e., reedmergnerite + shortite + trona),
respectively. (c) According to the homogenization temperature of reedmergnerite primary fluid
inclusions, the alkaline diagenesis of Fengcheng Formation was divided into an early stage (≤100 ◦C)
and a middle stage (>100 ◦C), respectively. The earlier stage is marked by the formation of ferrous
saddle dolomite, quartz dissolution, and the agglutination of laumontite. These processes occurred
under normal burial conditions. The latter is marked by the reedmergnerite’s appearance, which
is correlated with the deep hydrothermal activity controlled by faults. (d) Based on sedimentary
and diagenetic factors, including climate, provenance, diagenetic surroundings, and the action of
subsurface fluid, the alkaline deposition-diagenesis model for shale series in four stages of the
Fengcheng Formation was established.

Keywords: diagenesis pathways; Fengcheng Formation; Mahu sag; northwest China

1. Introduction

Traditional early and middle diagenesis is mainly conducted in acidic diagenetic
environments, which are characterized by carbonate mineral, feldspar, and clay minerals
being in an unstable state and easy to be dissolved [1–5]. When the reservoir experiences
an alkaline diagenetic environment, reservoir property is often changed due to the role of
alkaline formation water, quartz dissolution, feldspar enlargement, and carbonate mineral
replacement becoming the most distinctive diagenetic phenomena [6–11]. The theory of
alkaline diagenesis has enriched, improved, and deepened the traditional theory of di-
agenesis. At present, the understanding of alkaline diagenesis is relatively insufficient
compared to traditional diagenesis. The conditions of alkaline diagenesis generally include

Appl. Sci. 2023, 13, 13186. https://doi.org/10.3390/app132413186 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132413186
https://doi.org/10.3390/app132413186
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app132413186
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132413186?type=check_update&version=1


Appl. Sci. 2023, 13, 13186 2 of 20

a sedimentary environment, climate, organic acids, and thermal fluid evolution [12,13].
Alkaline diagenesis can have constructive effects on reservoirs [14,15]. For example, mica
interlaminar pores and albite pores formed under the action of alkaline fluids are good oil
storage spaces. The diagenetic phenomena of alkaline diagenesis are diverse, including
alkali lacustrine salt rocks [16], alkaline evaporative salt minerals [17], and quartz dissolu-
tion under the action of alkaline groundwater [18]. In addition, alkaline diagenesis may
also provide a new explanation for the silicification of metal deposits, the origin of siliceous
cementation, and the reddening and fragmentation of rocks [11–19].

The Junggar Basin is located in northwestern China (Figure 1a), with an area of
about 1393 square kilometers [20]. The basin is divided into six first-level structural units:
Ulungu sag, Luliang uplift, Western uplift, Central sag, Eastern uplift, and North Tianshan
thrust band [21] (Figure 1a). The Mahu sag, located northwest of the Central sag of the
Junggar Basin in an NE trend, is the most petroliferous sag (Figure 1). The most important
source rock in the northwestern part of the Mahu sag is the lower Permian Fengcheng
Formation [3,21,22]. The Fengcheng Formation consists of a mixed shale series comprising
carbonate rocks, alkaline intermediate to basic volcanic rocks, and terrigenous detrital rocks.
It contains alkaline minerals such as kanemite, bradleyite, and eitelite, suggesting formation
in an alkaline lake environment [23]. The rocks of the Fengcheng Formation also contain
bands and clumps of the uncommon mineral reedmergnerite [Na(BSi3O8)], indicating
that it has undergone complex diagenetic processes [4–6]. The Fengcheng Formation is a
fair-to-good source rock development horizon with high organic matter content, which has
the characteristics of multi-phase hydrocarbon generation peak and large-area hydrocarbon
generation [23,24]. Meanwhile, the Fengcheng Formation has good exploration prospects
and development value for oil and gas exploration, which has been widely concerned in
the oil field recently. Studies show that the alkali lake of the Fengcheng Formation has
experienced five stages of drought-wet-dry-heat-continuous dry-heat-humid [25], forming
major reservoir types, including dolomite, clastic rock, and volcanic rock, and the formation
of alkaline minerals is closely related to the evaporative salinization of lake brine [26]. The
study of the alkaline lake environment and its diagenesis is still in the initial stage and
needs to be further studied. Focused on the Fengcheng Formation, this study tried to
obtain (1) the petrological and mineralogical characteristics, (2) diagenetic types, (3) and
sedimentary diagenetic models, and this study is helpful for promoting the theoretical
innovation of the Fengcheng Formation for further oil and gas exploration purposes.
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Figure 1. Tectonic and lithofacies paleogeographic maps of the Mahu Depression in the Junggar
Basin: (a) map of tectonic units in the Mahu Depression, Junggar Basin (with well location) (adapted
from [14,27]); (b) lithologic columns of the Permian and Fengcheng Formation in the Mahu Depression
(adapted from [26]); (c) source-reservoir-cap assemblage diagram (taking well FN1 as an example).
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2. Geological Setting and Samples

The northeastern part of the Junggar Basin is close to the Qingridi Mountains and
Kelamei Mountains, the southern part is adjacent to the Tianshan Mountains, and the north-
west/western parts are the Delun Mountains, Halaalate Mountains, and Zaire Mountains,
which are nearly triangular, with a sharp southeast and a wide northwest (Figure 1a). The
Junggar Basin, an important part of the Central Asian Orogenic Belt [21], belongs to the
superimposed basin [28,29], whose Late Devonian/Early Carboniferous contribution was
rift basins, while the Late Carboniferous/Permian period formed foreland basins, and the
Triassic/Paleogene periods formed intracontinental depression basins [27]. From the Early
Paleozoic to the end of the Late Paleozoic Carboniferous period, the Junggar Basin had a
long-term multi-island oceanic paleogeographic pattern with discrete island arcs and ocean
basins arranged alternately [28], and with the evolution of the Paleo-Asian Ocean Basin,
the marine area gradually diminished [28]. When the Jiamuhe Formation was deposited in
the Early Permian period, some areas in the basin evolved into residual marine facies [30],
until the Early Permian Fengcheng Formation. During this period, the Fengcheng, Wuerhe,
and Xiazijie areas in the Mahu sag evolved into salinized lake basin facies after the closure
of the residual sea [25].

The Mahu sag is located in the northwest part of the Central sag of the Junggar Basin
in an NE trend. It is a secondary structural unit in the basin [28], with a length of about
100 km, a width of about 50 km, and an area of about 5000 square kilometers [30]. The
tectonic unit dips gently to the southeast as a whole [31] and is one of the sags with the
richest oil and gas content in the basin [32,33]. The Mahu sag is adjacent to the Kebai and
Wuxia large fault zones in the northwest [34], the Yingxi sag in the east, the Dabasong-
Xiayan uplift in the southeast, and the Zhongguai uplift in the southwest [25,35] (Figure 1a),
and it was developed on the pre-Carboniferous folded basement [27]. The Lower Permian
Fengcheng Formation is the main source of rock formation in the Mahu sag [36], with a
maximum formation thickness of 1500 m [26]. It is the oldest alkali lacustrine source rock
discovered in the world so far [37]. It experienced three periods of hydrocarbon generation
peaks: Late Permian, Late Triassic, and Late Cretaceous [29], and the generated oil and gas
were accumulated in the Fengcheng Formation and its overlying Wuerhe Formation and
Baikouquan Formation [38]. According to the rock combination, from bottom to top, the
Fengcheng Formation can be divided into three sections, including Feng 1, Feng 2, and
Feng 3. The Feng 1 Member mainly develops volcanic rocks, the Feng 2 Member develops
mudstone and carbonate rocks, which are rich in reedmergnerite, and the Feng 3 Member
mainly develops terrigenous detrital rocks (Figure 1b,c).

3. Analytical Methods

Castings and multi-purpose slices of exploratory well cores such as FN1, FN14, AK-1,
and MH7 are used as the main experimental objects.

3.1. Morphology and Microscopic Features Analyses

The multi-purpose and cast thin sections were analyzed by a polarized light micro-
scope to obtain key information such as the type, morphology, and mutual relationship
between minerals in thin sections, and the pores were observed. At the same time, the
microscopic features of minerals such as quartz, zeolite, and clay were recorded under the
scanning electron microscope (SEM), and the ring-band structure of carbonate minerals
was observed in the cathode luminescence (CL) test. The scanning electron microscope
(SEM-QUANTA650, FEI Co., USA) experiment was completed in the Mineralization and
Dynamics Laboratory of Chang’an University, and the cathode luminescence (CL 8200mk5-
2, Germany) test was carried out in the Xi’an National Engineering Laboratory for Low
Permeability Oil and Gas Field Exploration and Development.
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3.2. Compositions of Minerals Analyses

For Mg-Ca carbonate minerals and special alkaline minerals widely distributed in
thin slices, electron probe microanalysis (EPMA) was used to determine the composition of
carbonate minerals, to determine the specific content of each component, and to assist in
determining the type of alkaline minerals. Because the reedmergnerite in alkaline minerals
is special, the laser Raman method (LR) was used to analyze it. The LinkamTHMS600
(Britain) geological cold and hot platform was used for testing the homogenization tem-
perature of reedmergnerite primary fluid inclusions. The electron probe (EPMA-JXA8100,
Jeol, Japan) experiment was completed in the Mineralization and Dynamics Laboratory
of Chang’an University, and the laser Raman (Renishaw inVia type confocal laser Raman
spectrometer, Britain) test experiment was completed in the Xi’an Institute of Geology and
Mineral Resources.

In order to avoid the interference of external substances and assure the accuracy of the
experimental results, all core slices were stored in slice boxes before the experiment, and
the experimental process was strictly operated according to the standard [4–8].

4. Results
4.1. Petrological Characteristics

The Fengcheng Formation is a set of mixed shale series composed of alkaline intermediate-
basic volcanic rocks, carbonate rocks, and terrigenous clastic rocks.

4.1.1. Volcanic Rock

Volcanic rocks are one of the rock types in the study area, which were mainly devel-
oped in the Fengcheng 1 Member, and they can be divided into three categories: subvol-
canics, volcanic lava, and volcanic clastic rocks (Figure 2). Subvolcanics are also divided
into basaltic porphyrite and esitic porphyrite. Basalt, andesitic rock, and trachyte could
be determined from volcanic lava. Volcanic clastic rocks mainly consist of tuff and breccia.
Rock and mineral identification and previous studies showed that the volcanic rocks are
mainly intermediate-basic. The discovery of the silica-alkali diagram and titan pyroxene
(Table 1) of volcanic rocks showed that the volcanic rocks of the Fengcheng Formation
are alkaline.

Table 1. EPMA data table of titanaugite and iron dolomite (wt.%).

Na2O TiO2 SO3 SiO2 FeO P2O5 Al2O3 MnO K2O MgO BaO CaO Total

Iron
dolomite

0.07 0.22 - - 9.39 - 0.01 0.46 0.01 15.49 0.09 27.91 53.65
- - - 0.03 9.38 0.06 0.02 0.62 0.02 15.01 - 27.85 52.99
- - 0.06 - 8.01 - - 0.11 0.01 17.58 - 30.84 56.61
- - - - 6.44 0.02 0.02 0.37 - 17.99 0.09 32.02 56.95
- 0.04 0.04 0.01 12.99 - 0.05 0.33 - 13.96 - 29.45 56.87
- - 0.04 - 10.98 0.04 0.01 0.54 0.01 13.74 0.07 28.03 53.46
- - - 0.16 6.69 - 0.08 0.18 0.03 17.85 0.04 31.10 56.13
- - 0.04 - 8.41 0.01 - 1.21 0.04 18.25 - 32.05 60.01
- 0.05 - - 7.45 0.01 - 0.86 - 17.49 0.13 30.46 56.45

0.07 0.08 0.25 8.54 5.43 0.08 1.86 0.16 0.54 15.58 - 23.58 56.17

Titanagite 0.024 20.276 0.056 37.513 8.687 0.051 6.745 0.122 0.116 2.243 0.073 18.156 94.06

4.1.2. Carbonate Rocks

Carbonate rocks are mainly dolostone and argillaceous dolomite developed in the
second member of the Fengcheng Formation, while only thin or small carbonate lenses
are found in the Fengcheng 1 Member and the Fengcheng 3 Member (Figure 1b,c). The
middle striation of dolomite is developed, and most is interbedded with argillaceous
rocks. Dolomites are mostly fine-grained with microcrystalline clays, and the content of
dolomite is 45–65 wt.% (atomic percent). A small amount of volcanic tuff, including volcanic
eruptions and terrigenous, fine-grained tuff debris, is visible in some dolomites [39].
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4.1.3. Terrigenous Clastic Rocks

The terrigenous clastic rocks are conglomerate, sandstone, and mudstone. Conglom-
erate and sandstone are developed in the Fengcheng 3 Member. Dolomite particles and
volcanic tuff are common in the rocks. The closer the lake basin edge is, the larger the
particle size is, and the debris may mainly come from the Zaire Mountain in the west of the
Mahu sag [40,41]. Mudstone is very common in the Feng 1, Feng 2, and Feng 3 sections. The
thickness of Feng 2 is large, and it is rich in bacteria and organic algae matter [26,28]. It is the
main source rock position of the Fengcheng Formation. There are seasonal laminae [40–42].
Microcrystalline calcite, in some areas of mudstone, experienced dolomitization and trans-
formed to dolomite, with lake water as the Mg source.

4.2. Mineralogical Characteristics

Fe-bearing dolomite, calcite, and other minerals are significant diagenetic components
of the shale series in the Fengcheng Formation within the Mahu sag. Studying the rela-
tionship between them is of great significance for the classification of alkaline diagenesis.
The Fengcheng Formation in this area is preliminarily divided into three mineral assem-
blages: carbonate mineral assemblage, borosilicate-carbonate mineral assemblage, and
borosilicate-alkaline mineral assemblage.

The dolomite of the Fengcheng Formation generally contains iron (Table 1), with the
highest iron content of 13% and an average of 8.5% [43]. Fe2+ does not replace half of
Mg2+; thus, it is iron dolomite. There are three forms of iron dolomite: mud microcrystal
layered (Figure 3a), powder crystal block (Figure 3b,c), and snowflake (Figure 3d,e). Under
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cathode luminescence, the band structure of mud-microcrystalline layered iron dolomite is
only occasionally seen. The fine-grained block and snowflake-like iron dolomites have a
clear ring structure, which can be divided into irregular undulate type I ring combination
(Figure 3e) and rhombic type II ring combination (Figure 3f). The edge morphology of
the outermost ring of the type II ring combination is different, mostly in a straight shape
(Figure 3f), and occasionally in a serrated or clamshell shape, which may be caused by late
corrosion events [35,36]. It is difficult to see pure calcite in the Fengcheng Formation. Calcite
has been replaced by dolomite or iron dolomite, and a small part has been replaced by
sodium borosilicate (Figure 3g). Reedmergnerite [Na(BSi3O8)] is a rare diagenetic mineral,
mainly distributed in the Feng 1 and Feng 2 Members, and it often coexists with carbonate
minerals. After calcite dolomitization, iron dolomite was replaced by borosilicate; some
reedmergnerite developed metasomatic relict texture, and carbonate minerals remained in
the minerals (Figure 3h). It is inferred that the formation age of borosilicate is later than
that of carbonate minerals. The reedmergnerite can be divided into two types according to
the degree of self-shape: wedge-shaped reedmergnerite with a high degree of self-shape
and diamond-plate-shaped reedmergnerite with a low degree of self-shape (Figure 4b)
and wreck-shaped reedmergnerite (Figure 3h). The former is mostly aggregated growth
(Figure 4a), while the latter is mostly scattered in the matrix. The mineral is not pure inside,
and the mineral edge is jagged or irregularly radial.

Under the microscope, the butterfly-shaped twinned crystals and a group of complete
cleavages can be seen in the high degree of self-shaped reedmergnerite. Under the cathodo-
luminescence, reedmergnerite emits blue light with different intensities (Figure 3c). Since
boron element is located at the lowest detection ability of electron probe microanalyzer
(EPMA) [44], the total content of each component in reedmergnerite measured in this paper
was about 79–85%, less than 100% (Table 2). The difference may be that the content of
B2O5 and the content of B2O5 after treatment are close to the standard content of B2O5 in
reedmergnerite [45]. In order to enhance credibility and accuracy, the laser Raman (LR)
method was used to test the reedmergnerite. The test spectra showed that the transverse
coordinates of the four characteristic peaks were 230 cm−1, 600 cm−1, 1000 cm−1, and
1600 cm−1, respectively. The transverse coordinate of the main peak was 600 cm−1, which
was similar to the characteristics of the Reedmergnerite Raman spectra [46] (Figure 5).

Reedmergnerite often appears with alkaline minerals. Due to the limitation of the
number of drilling wells, in the samples of the Fengcheng Formation, it was found that
wollastonite was mainly symbiotic with trona and shortite (Figure 4d,e). From the meta-
somatism relationship between them, for example, reedmergnerite starts to replace the
shortite from the edge (Figure 4d), and it can be seen that the formation of reedmergnerite
was later than alkaline minerals.

4.3. Homogenization Temperature of Reedmergnerite Primary Fluid Inclusions

According to the phase combination and microscopic fluorescence characteristics of
fluid inclusions at room temperature, the fluid inclusions of reedmergnerite can be di-
vided into five categories: (1) liquid-only inclusions (L-O) in a single liquid phase without
visible bubbles; (2) liquid-dominated two-phase inclusions (L-D) with a gas–liquid ratio
less than 50%; (3) single-liquid phase oil inclusions emitting blue light under fluorescence;
(4) gas–liquid two-phase oil inclusions with a gas–liquid ratio of less than 50% emitting
blue light under fluorescence; (5) oil inclusions emitting yellow light under fluorescence.
The occurrence of fluid inclusions mainly includes the following four types: (1) The inclu-
sions in the growth zone (GZ) often exhibit mineral growth characteristics (Figure 6a,b),
and these inclusions are considered reliable primary inclusions. Fluid inclusions within the
same growth zone belong to the same associations of fluid inclusions (FIA). (2) Clustered
inclusions (Figure 6c) are usually clustered in a relatively small area, and clustered inclu-
sions may be primary or secondary. When they are primary inclusions, they belong to the
same FIA. (3) Random population (RP) inclusions, which are randomly and directionally
distributed in a relatively large area (Figure 6d), are of unknown origin and may be either
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primary or secondary. In any case, such inclusions do not belong to the same FIA. (4) The
inclusion in Long Trail (LT) refers to a healing crack that cuts through the mineral boundary
(Figure 6e,f), the inclusion produced as a healing crack is considered a typical secondary
inclusion, and the inclusion produced in the same healing crack belongs to one FIA [47].
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by reedmergnerite (Rd); (h) FN14-F2, skeletal crystalline reedmergnerite with irregular radial edges.

Through systematic analysis of fluid inclusion petrography, the inclusions in the study
area mainly exhibit the following five types of associations: (1) Rich liquid two-phase saline
inclusions with relatively consistent gas–liquid ratios were detected in the growth zone
of reedmergnerite minerals (Figure 6b). (2) A rich liquid phase two-phase brine inclusion
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was detected in the long healing crack of cut borosilicate (Figure 6f). (3) The long healing
crack of cut borosilicate was detected as a rich liquid-phase two-phase oil inclusion with
green fluorescence (Figure 6g,h). (4) Rich liquid phase two-phase oil inclusions with yellow
and blue fluorescence were detected in multiple long healing cracks of cut borosilicate
(Figure 6i). (5) Long healing cracks in cut borosilicate were detected, with yellow fluorescent
two-phase oil inclusions in the rich liquid phase and two-phase saline inclusions in the rich
liquid phase.
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Figure 4. Alkaline diagenesis characteristics in the Mahu Depression, Junggar Basin: (a) FN14-F2,
wedge-shaped reedmergnerite is clustered together, and some of it contains residual calcite (Cal);
(b) FN14-F2, rhomboid reedmergnerite with serrated edges; (c) FN14-F2, under cathodoluminescence,
the reedmergnerite shows dark blue; (d) FN14-F2, reedmergnerite (Rd) metasomatism of shortite (St)
from the edge; (e) AK1-F2, reedmergnerite (Rd) is symbiotic with trona (Tro); (f) FN14-F1, the edge
of quartz grain is corroded into a serrated or bay shape; (g) MY1-F1, the internal surface of quartz
was dissolved to form a “honeycomb” pit, 200 times; (h) MY1-F1, laumontite cemented between
particles (Lmt).
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Table 2. EPMA data table of reedmergnerite (wt.%).

Na2O TiO2 SO3 SiO2 FeO P2O5 Al2O3 MnO K2O MgO BaO CaO B2O5 Total

10.000 - - 70.517 - - - - 0.001 0.010 0.025 - 19.447 100
10.000 - 0.010 69.767 0.028 - 0.043 0.012 - - 20.118 99.98
13.794 - - 71.165 0.009 0.025 0.047 - - 0.007 - 0.005 14.948 100
11.936 0.065 - 69.377 0.017 0.017 0.068 - 0.062 0.014 0.016 0.013 18.415 100
10.012 - 0.162 69.697 0.020 0.017 0.086 - 0.088 0.027 - - 19.891 100
10.000 0.258 - 70.632 - - 0.094 0.009 0.008 0.028 0.007 - 18.964 100
10.063 0.080 0.031 70.288 - - 0.010 - 0.015 - - - 19.513 100
10.042 - 0.005 70.015 0.004 - 0.003 0.025 0.024 - - 0.004 19.878 100
10.072 0.032 - 64.868 0.009 0.017 0.004 0.024 0.021 0.018 - - 20.935 96
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Figure 6. Fluid characteristics of the fluid inclusion in reedmergnerite. (a) FN2, reedmergnerite text.
(b) FN2, Growth Zone (GZ) surrounded by fluid inclusions in reedmergnerite. (c) FN1, Cluster like
distribution of fluid inclusions in reedmergnerite. (d) FN1, random distribution (RP) fluid inclusions
in reedmergnerite. (e) FN3, long trail (LT) in cutting shortite crystals. (f) FN1, long trail (LT) in
cutting reedmergnerite crystals. (g) FN1, long trail (LT) in cutting reedmergnerite crystals, gas liquid
two-phase inclusions. (h) FN1, gas liquid two-phase inclusions. (i) FN1, long trail (LT) in cutting
reedmergnerite crystals, liquid-dominated biphase-inclusisions(L-D).

A total of 15 L-D fluid inclusions with relatively consistent gas–liquid ratios were
detected in the growth band, forming three FIAs. The three FIAs showed consistent
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temperature measurement data (Table 3), and the homogenization temperature (Th) range
of 15 L-D fluid inclusions was 100–116 ◦C (Figure 7).

Table 3. Results of homogenization temperature of the fluid inclusion in reedmergnerite.

Borehole Deep/m Fluid Inclusions
Occurrence

Associations of
Fluid Inclusions Type Size/µm Homogenization

Temperature/◦C

Fengnan2 4100.58 growth zone FIA-1
gas and liquid 20 112

liquid 10 100
liquid 15 111

Fengnan2 4100.58 growth zone FIA-2

gas and liquid 5 112
gas and liquid 4 100

liquid 4 111
liquid 5 112
liquid 4 100

Fengnan2 4100.58 growth zone FIA-3

gas and liquid 4 111
gas and liquid 6 104
gas and liquid 5 103

liquid 7 109
liquid 5 110
liquid 7 116
liquid 6 112
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5. Discussion
5.1. Types of Alkaline Lake Diagenesis and Their Causes

Diagenetic minerals, such as iron dolomite and laumontite, can form under nor-
mal burial temperature conditions. However, the formation of reedmergnerite occurs at
relatively high temperatures [42,43]. According to the homogenization temperature of
reedmergnerite primary fluid inclusions, alkaline diagenesis of the Fengcheng Formation
was divided into two stages, which are early stage (≤100 ◦C) and middle stage (>100), with
the early stage corresponding to low-temperature alkaline diagenesis and middle stage
corresponding to medium-high-temperature alkaline diagenesis. The manifestations of
low-temperature alkaline diagenesis include the formation of iron dolomite rings, quartz
dissolution, and cementation of laumontite, and the appearance of reedmergnerite marked
the medium-high-temperature alkaline diagenesis.
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5.1.1. Indicative Significance of Iron Dolomite Ring

Because the content of Fe2+ is closely related to the CL luminescence intensity of
the band [30,43,44], it is important to analyze the source of Fe2+. There are two sources
of Fe in Fengcheng Formation iron dolomite: (1) The upwelling of marine brine due to
the action of capillary force brought a large amount of Fe. The residual marine brine of
the Jiamuhe Formation under the Fengcheng Formation invaded [48], bringing abundant
elements such as Fe, Mn, and Mg [49]. (2) Meanwhile, the various microorganisms in
the Fengcheng Formation are beneficial for the enrichment of iron elements [17,24]. (3) Fe
elements contributed with medium basic volcanic ash. Volcanic ashes are widely distributed
in Fengcheng Formation [48], and medium basic volcanic ashes contain a large amount of
Mg, Fe, and other elements [50], which release a large amount of Fe2+ in the process of the
devitrification of volcanic glasses.

5.1.2. Quartz Dissolution

Quartz dissolution is a typical alkaline diagenetic phenomenon [51,52]. Three different
quartz dissolution phenomena were found in the core thin sections of the Fengcheng For-
mation: (1) the edge of quartz particles is dissolved, and it becomes serrated or bay-shaped
(Figure 4f); (2) the quartz particles are corroded inside, and microscopic dense “honeycomb”
corrosion pits can be seen on the mineral surface in SEM tests (Figure 4g); (3) quartz grains
develop an irregular linear distribution of fractures, and some of the fractures are locally
widened by further corrosion.

The dissolution of quartz in the Fengcheng Formation was affected by Na+, tempera-
ture, and alkalinity, and it occurred during the burial diagenetic period. Quartz dissolution
is closely related to the alkaline diagenetic environment [1,17,51,53], especially with the
alkaline cation Na+, which can form sodium silicate on the surface of quartz particles
through hydration reactions, and then, they crack to cause quartz erosion [54–56]. The
Fengcheng Formation rocks were formed in an alkaline lake environment [39–44,56,57].
The Fengcheng Formation volcanic rocks are sodium-rich volcanic rocks, and the content
of Na2O in the volcanic rocks is much higher than that of K2O [58]. The Na element mainly
exists in albite. The albite content in the volcanic rocks of the Fengcheng Formation is
high [33], and the hydrolysis of albite increases the content of Na+, which causes the cations
in the alkaline lake water to be dominated by Na+ [40]. The alkaline diagenetic environment
rich in Na+ is favorable for quartz dissolution because the high Na+ content increases the
probability of Na+ forming complexes on the quartz surface.

Under the same conditions, the dissolution rate of quartz at a high temperature (430 ◦C)
is 11 orders of magnitude faster than that at a relatively low temperature (25 ◦C) [59], that
is. High temperature is beneficial for the dissolution of quartz. In addition, the pH value
also affects the dissolution of quartz. When the predecessors conducted hydrothermal
experiments on the dissolution of quartz in an alkaline environment at a temperature
of 130 ◦C and a pH value of 9.5, the quartz was significantly dissolved [52]. Therefore,
the ground temperature was calculated according to the burial depth of the Fengcheng
Formation, and it was concluded that such temperature conditions can be satisfied [59,60].
The pH value of the alkaline lake during the deposition of the Fengcheng Formation
was in the range of 9–11 [25]. During the diagenetic stage, the alkalinity decreased, but
the temperature increased. The temperature change had a greater impact on the quartz
dissolution than the pH change [52]. Therefore, the Fengcheng Formation has the condition
of quartz dissolution in a burial alkaline environment. In addition, due to the fact that
quartz dissolution is positively correlated with Na+, the catalytic activity of the alkaline
cation Na+ increases with the increase of alkalinity [50,58], and the increase of alkalinity can
promote the dissolution of quartz. Regarding temperature and alkalinity, the dissolution
of quartz is intensified with the rise of temperature in the middle- and high-temperature
alkaline diagenetic stage. For example, the serrate dissolution of quartz edge is intensified
and then becomes harbored, and the local dissolution of internal cracks in quartz minerals
is intensified and widened.
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5.1.3. Cementation of Laumontite

The laumontite in the Fengcheng Formation rocks mostly exists in the state of sheet-like
cement (Figure 3h), which is an authigenic aluminosilicate mineral with a high content of
Ca2+ formed in a neutral-alkaline environment, and the corresponding pH value is mostly
7–10 [61]. This type of zeolite cementation is closely related to the properties of volcanic
materials and their hydrolysis [62,63]. As the stratum was buried and the temperature of
the stratum rose, a large number of low-temperature unstable minerals contained in the
intermediate–basic volcanic rocks (substances) were hydrolyzed to form laumontite cement
in an alkaline environment [64]. With the evolution of organic matter in the Fengcheng
Formation, a large amount of CO2 and short-chain organic fatty acids were released [64].
The atmospheric water infiltrated along the Kebai-Wuxia fault belt, and pore water was
formed by the dehydration of clay minerals [65]. Under the combined action, the early
cemented laumontite was dissolutive.

5.1.4. Formation of Reedmergnerite

The appearance of reedmergnerite marks the middle-high temperature alkaline diage-
nesis of the Fengcheng Formation, and its formation is closely related to the hydrothermal
fluid. The main evidence is as follows: (1) During the period of the Fengcheng Formation,
different rare earth element distribution models showed that the fluids mainly came from
endogenous fluids in different parts, including subduction zones, crustal, and mantle
sources, and the boron required for reedmergnerite mainly came from deep alkaline hy-
drothermal fluids [56,66]. (2) The measurement of boron isotope δ11B showed that the
fluids of different forms of reedmergnerite in the Fengcheng Formation were from the same
source, and the fluid may come from deep hydrothermal sources [56]. (3) Reedmergnerite
is widely developed near the fault, and during the Fengcheng Formation, regarding the
volcanic activity [67], boron-rich hydrothermal fluids affected by volcanic activity could
migrate along developed fault networks. (4) Reedmergnerite was formed in a closed al-
kaline lake environment [41], and it was not easy for enthetic materials to enter the lake
basin through relatively normal and gentle migration. The hydrothermal fluid in the deep
is more capable of entering this closed environment under the external force of the huge
energy [56], bringing the required substances. (5) The hydrothermal fluid can provide a
sufficient reaction temperature, which can reach the experimental temperature required
for the synthesis of reedmergnerite [46,47], while the reedmergnerite in the Fengcheng
Formation was developed in the Feng 2, with a burial depth greater than 3000 m [56], and in
2018, Rao Song studied the thermal history recovery characteristics of the Junggar Basin by
using paleo-temperature scale methods, such as vitrinite reflectance and fission track [60],
and found that the geothermal gradient of the Fengcheng Formation was 5–3 ◦C/100 m.
The formation temperature of the reedmergnerite development layer was about 140 ◦C (the
average geothermal gradient is 4 ◦C, and the annual average temperature is about 20 ◦C),
which cannot reach the temperature threshold required for the formation of reedmergnerite,
while the hydrothermal fluid becomes capable of providing the greatest possible chance of
such a high temperature.

According to the phenomenon actually observed in the thin slices, it was found that
reedmergnerite had a metasomatism relationship with alkaline minerals, such as sodium-
calcium carbonate (Figure 4f), trona (Figure 4g), and carbonate minerals (Figures 3h and 4a,b).
Alkaline minerals and carbonate minerals have certain commonalities. Regarding chemical
composition, alkaline minerals are carbonate minerals with different Na+ contents. Because
the composition of carbonate minerals and alkaline minerals is different from that of
reedmergnerite, two processes of dissolution and recrystallization were involved in the
metasomatism [57]. Different dissolution degrees, different crystal habits, and different
order degrees during recrystallization may be important reasons for the formation of
different forms of reedmergnerite [49].

At present, there are different opinions on the division of the formation period
of reedmergnerite, including the buried diagenetic period and quasi-contemporaneous
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period [24,39,46,56,63]. Temperature and pressure are the key factors in the formation of
reedmergnerite [63]. The burial was shallow in the quasi-contemporaneous period. The
temperature and pressure were not up to the formation conditions of reedmergnerite,
and the carbonate minerals and alkaline minerals metasomatized by reedmergnerite were
mainly developed in the Feng 2 Member, with a burial depth greater than 3000 m [56].
Therefore, it was speculated that the reedmergnerite was mainly formed by the metaso-
matism of carbonate minerals and alkaline minerals formed earlier under the action of an
abnormal hydrothermal factor during burial diagenesis.

5.2. Diagenetic Evolutionary Sequence of Fengcheng Formation Shale Series in Mahu Sag

Characterized by the vitrinite reflectance (Ro) of mudstone in the Fengcheng Formation
and supported by inclusion temperature, most reservoirs in the Fengcheng Formation are in
middle diagenetic stage A, and a small part of them enter middle diagenetic stage B [68,69].

5.2.1. Devitrification and Hydrolysis

Volcanic glass material is unstable and often altered or devitrified to form stable
clay minerals and zeolite under the action of volcanic activities and tectonic movements.
The Fengcheng Formation contains a large amount of volcanic vitreous originally, which
is widely distributed in clastic rock debris and volcanic rock matrix. Influenced by the
environment, it can release a large amount of K+, Na+, Ca2+, Mg2+, and saline and alkaline
interlayer pore water.

5.2.2. Diagenetic Mineral Precipitation Sequence

The first mineral to emerge from the solution was montmorillonite [70]. In the
Fengcheng Formation, this part of montmorillonite was gradually transformed to form the
Aemon mixed layer. With the further reaction, the salinity and alkalinity of the interlayer
solution rose to the range of feldspar precipitation, and the feldspar precipitated was asso-
ciated with clay minerals, followed by zeolite and quartz precipitation. The early zeolite
was unstable, and with a further increase in temperature, it further generated zeolite and
feldspar and released calcium ions, and the surplus calcium ions promoted the formation
of calcite [61,71]. Under the conditions of temperature and pressure, and the abundant
magnesium and iron ions in the solution, part of the montmorillonite was transformed
into chlorite. Along with the hydrolytic alteration of volcanic glass materials, magnesite
minerals, such as pyroxene, hornblende, biotite, and feldspar phenocrysts, crystal chips,
and potassium feldspar in pyroclastic materials also have some chlorite (Figure 8). At the
same time, the authigenic minerals precipitated under such environmental conditions are
as follows: (1) bicarbonate minerals (carbonaceous calcium stone, trona, carbonaceous
sodium magnesite, etc.); (2) salt minerals (sodium silicate, salt, etc.); (3) aluminum silicate
minerals (potassium feldspar, albite, zeolite, etc.); (4) calcium and magnesium carbonate
minerals (dolomite, calcite, etc.); (5) siliceous minerals (quartz, opal, etc.) [72].

The alteration process of the Fengcheng Formation can be classified as follows: (1) hy-
drolysis of volcanic glass, generation of montmorillonite, generation of zeolite minerals and
related transformation, albitization; (2) chlorite influenced by magnesium and iron ions;
(3) feldspar alteration, formation of chlorite and calcite, rest albite. In particular, hydrolysis
occurred in the early diagenetic A stage. Dolomite formation can be divided into three
stages, most of which were in early diagenetic stage B. Salt minerals were formed in the
same generation. There are three phases of dissolution, which are scattered from the late
early diagenetic stage to the middle diagenetic stage B (Figure 8).

5.3. Alkaline Sedimentary Evolution and Diagenetic Model of Fengcheng Formation Shale Series in
Mahu Sag

Based on core slices from wells FN1, FN14, AK-1, and MH7 in the Mahu sag, com-
bined with the literature data, the sedimentary evolution and the diagenetic model of the
Fengcheng Formation in the alkaline lake environment were established from the aspects
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of climate, provenance, diagenetic environment, and underground fluids (Figure 9), which
can be roughly divided into four stages: before the deposition of the Fengcheng Forma-
tion, during the deposition of the Fengcheng Formation, the low-temperature alkaline
burial diagenetic stage, and the hydrothermal-related medium-high-temperature alkaline
diagenetic stage.
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Figure 9. Alkaline sedimentary evolution–diagenesis model of the Fengcheng Formation (the faults
shown are schematic faults [24,39]. (a) before the deposition of the Fengcheng Formation (b) during
the sedimentation of the Fengcheng Formation. (c) low-temperature alkaline burial diagenesis.
(d) medium-high-temperature alkaline diagenesis.
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Before the deposition of the Fengcheng Formation, in the arid/semi-arid climate,
the lake water was evaporated and concentrated [41], resulting in a gradual increase in
the alkalinity of the water body [57,62,63]. In addition, due to active volcanic activity, a
large number of volcanic rocks developed at the bottom of the lake basin, and the low-
temperature unstable minerals contained in the volcanic rocks were hydrolyzed, which
provided Na+, Ca2+, Mg2+, and Fe2+ for the water body, which laid the material foundation
for diagenesis and alkaline lake formation (Figure 9a).

During the deposition of the Fengcheng Formation, there were Cl−, CO3
2−, SO4

2−,
and other anions in the lake basin. During the process of lake basin shrinkage and alka-
lization, the concentration of ions gradually increased, collided, and combined with each
other, and a large number of Mg-Ca carbonate minerals and alkaline minerals with anions
of CO3

2− appeared. In the presence of Mg2+, Na+, and Ca2+ plasmas, the order of binding
with HCO3

− and CO3
2− is Ca2+, Mg2+, and Na+ [73], with CaCO3 precipitation before

MgCO3. After calcite precipitation, the lake water was stratified under the action of evapo-
ration and concentration, which promoted the development of argillaceous sediments rich
in organic matter [28]. The different types of organic matter were mainly from that organic
matter [74,75], and their decay products were conducive to the large-scale development of
carbonate minerals, forming lamellar carbonate mineral layers (mainly calcite) and argilla-
ceous sediment layers. At this time, due to the large consumption of Ca2+, the Mg2+/Ca2+

ratio in the water body increased, and the Fe2+ was contributed by the volcanic tuff material.
The microcrystal dolomite was also deposited [76]. The extensive development of carbonate
minerals consumed a large amount of Ca2+ and Mg2+, while the content of Na+ increased
relatively, and the consumed CO3

2− was continuously supplemented by volcanic activity.
With the further shrinkage of the lake basin water body, alkalinity reached the maxi-

mum amount, Na+ and CO3
2− tended to be saturated, and Na+ containing alkaline minerals

such as trona and sodium-calcium carbonate was formed successively. Finally, the climate
became hot and humid, and the water level rose. Under the supply of terrigenous detrital
materials, materials such as mud and sand were deposited, and the sedimentary strata of
the Fengcheng Formation were deposited (Figure 9b).

In the low-temperature alkaline diagenetic stage, the residual marine brine in the
Carboniferous and Jiamuhe Formations underlying the Fengcheng Formation from the
mid-Permian to the mid-Jurassic period [67], entering into the pores and fractures of the
Fengcheng Formation along the fault under tectonic compression, it brought abundant
elements such as Fe, Mn, and Mg [73] and cemented around the early calcite or calcite with
a low degree of dolomitization, and the local distribution of fine-grained iron dolomite
with clear ring was formed. With the surging of residual marine brine, Na+ was also
present. In addition, the two necessary conditions of alkaline formation water and the
rising temperature due to the formation’s burial were also present. The dissolution of
quartz occurred, and the “salt effect” of Mg2+, K+, and Ca2+ in formation water further
promoted the dissolution of quartz [52]. In this stage, in addition to the formation of iron
dolomite and quartz dissolution, the cementation of laumontite also occurred under the
background of alkaline diagenesis, low temperature, and the supply of Mg2+ and Fe2+

(Figure 9c).
The hydrocarbon source rocks of the Fengcheng Formation did not enter the oil gener-

ation threshold until the end of the Permian period [77], and kerogen began to transform
into oil and gas. This process was accompanied by the formation of oxalic acid and acetic
acid [13], where local pore fluid pH dropped and became acidic, resulting in the dissolution
of early turbidite, iron dolomite, and alkaline minerals. The acidic fluid generated by
oil and gas was neutralized by alkaline formation water and alkaline minerals, and the
whole presented an alkaline diagenetic environment. During the middle-high-temperature
alkaline diagenesis stage, the hydrothermal activity was intense at the end of the Triassic
period [64], and the B-rich hydrothermal fluid migrated and upwelled along the fault. Reed-
mergnerite was formed by alkaline minerals containing Na+. Correspondingly, the mineral
assemblages of reedmergnerite + calcite + iron dolomite, reedmergnerite + shortite, and
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reedmergnerite + mineral assemblages of trona can be found in the parts with incom-
plete metasomatism. Under the influence of the intercalated horizon of the fault, the
distribution and morphology of the metasomatic minerals, and other factors, banded
and agglomerated reedmergnerite was formed. As the overlying material continued to
deposit, the burial depth increased. When the stone was enriched to a certain extent, it
formed reedmergnerite-rich rocks (Figure 9d). Marked by the appearance of reedmergner-
ite, medium-high-temperature alkaline diagenesis occurred in the center and slope of the
Mahu sag and near the fault zone, connecting the deep fluid and alkaline mineral layer and
the carbonate layer [56].

6. Conclusions

In this paper, the types of shale series developed in the Fengcheng Formation in
the Mahu sag include carbonate rocks, terrigenous detrital rocks, and alkaline mesobasic
volcanic rocks, and there are bands and agglomerates rich in reedmergnerite. Under the
combined influence of the supply of sodium-rich sources, an alkaline lake characterized
by the development of alkaline minerals was formed, and experienced alkaline deposition
and diagenesis was formed in an alkaline environment.

There were three types of diagenetic mineral assemblages and two types of alkaline
diagenesis developed in the shale series of the Fengcheng Formation. The three mineral
combinations include: carbonate mineral combination (calcite + iron dolomite), reed-
mergnerite and carbonate mineral combination (reedmergnerite + calcite + iron dolomite),
and reedmergnerite and alkaline minerals combination (reedmergnerite + shortite + trona).
According to the diagenetic temperature, the alkaline diagenesis of the Fengcheng For-
mation can be divided into two types: low-temperature alkaline burial diagenesis and
medium-high-temperature alkaline diagenesis. The former is characterized by the forma-
tion of iron dolomite rings, quartz dissolution, and laumontite cementation, while the latter
is characterized by the abundant presence of reedmergnerite.

Under the promotion of a long-term arid/semi-arid climate, based on underground
fluids (hydrothermal and brine) and alkaline medium-basic volcanic parent rocks (sub-
stances) as the main material sources, in the special alkaline diagenetic environment of
alkali lake, the alkaline sedimentary evolution–diagenetic model of the Fengcheng Forma-
tion, which was affected by climate, provenance, diagenetic environment, and underground
fluid, was established. The model was divided into four stages: before the deposition of
the Fengcheng Formation, sedimentary, low-temperature alkaline burial diagenesis, and
hydrothermally related medium-high-temperature alkaline diagenesis.
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CL cathode luminescence
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Cal calcite
Fer-DOL ferric dolomite
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Tro Trone
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