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Abstract: This paper is primarily focused on the robust control of an inverted pendulum system
based on policy iteration in reinforcement learning. First, a mathematical model of the single inverted
pendulum system is established through a force analysis of the pendulum and trolley. Second,
based on the theory of robust optimal control, the robust control of the uncertain linear inverted
pendulum system is transformed into an optimal control problem with an appropriate performance
index. Moreover, for the uncertain linear and nonlinear systems, two reinforcement-learning control
algorithms are proposed using the policy iteration method. Finally, two numerical examples are
provided to validate the reinforcement learning algorithms for the robust control of the inverted
pendulum systems.
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1. Introduction

In the last decade, there has been increased interest in the robust control of the inverted
pendulum system (IPS) owing to its high potential in testing a variety of advanced control
algorithms. Robust control is widely used in power electronics, flight control, motion
control, network control, and IPSs, in addition to other fields [1,2]. Research on the robust
control of an IPS has provided advantageous results in recent years. An inverted pendulum
is an experimental device that has insufficient drive, absolute instability, and uncertainty.
It has become an excellent benchmark in the field of automatic control over the last few
decades as it provides better explanations for model-based nonlinear control techniques
and is a typical experimental platform for verifying classical and modern control theories.

Although the earliest research on IPSs can be traced back to 1908 [3], there is almost
no literature on this subject between 1908 and 1960. In 1960, a number of tall, slender
structures survived the Chilean earthquake, while structures that appeared more stable
were severely damaged. Therefore, some scholars conducted more in-depth research to
obtain a suitable explanation [4]. A pendulum structure under the effect of an earthquake
was modeled as a base and rigid block system, and block overturning was studied by
applying a horizontal acceleration, sinusoidal pulses, and seismic-type excitations to the
system. It was observed that there is an unexpected scaling effect that makes the large block
more stable than the small block among two geometrically similar blocks. Furthermore,
tall blocks exhibit greater stability during earthquakes when exposed to horizontal forces.
Since then, with the development of modern control theory, various control methods have
been applied to different types of IPSs, such as proportional–integral–derivative control,
cloud model control, fuzzy control, sliding mode control, and neural network control
methods [5–7]. These methods provide different ideas for the control of IPSs.

As is known, the IPS is an uncertain system, and the uncertainty of its model is
naturally within the scope of consideration. The aim of the robust control of an IPS is to
find a controller capable of addressing system uncertainties. When the system is disturbed
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by uncertainty, robust control laws can stabilize the system. Because it is difficult to directly
solve the robust control problem, some scholars transformed the robust control problem into
an optimal control problem. In [8], the authors proposed a robust optimal control method
for linear systems with matching uncertainty. However, the situation where the uncertainty
does not meet matching conditions has not been considered. Lin et al. [9,10] conducted
research on the robust optimal control of uncertain systems by adjusting the value of the
weighting matrix and solving an algebraic Riccati equation (ARE) to obtain robust control
laws. Zhang et al. [11] presented a unified framework for studying robust optimal control
problems with adjustable uncertainty sets. Wang et al. [12] developed a novel adaptive
critical learning approach for robust optimal control of a class of uncertain affine nonlinear
systems with matching uncertainties. And the data-based adaptive critical designs were
developed to solve the Hamilton–Jacobi–Bellman (HJB) equation corresponding to the
transformed optimal control problem.

In fact, the pioneering methods for solving optimal control problems mainly include
dynamic programming [13] and maximum principles [14]. With the dynamic programming
method, solving the HJB equation yields optimal control of the system. As for the optimal
control problem of a linear system with a quadratic performance index, irrespective of
whether it is a continuous system or a discrete system, it finally comes down to solving
an ARE. However, when the dimension of the state vector or control input vector in the
dynamic system is large, the so-called “curse of dimensionality” appears when the dynamic
programming method is used to solve the optimal control problem [15]. To overcome this
weakness, some scholars have used the reinforcement learning (RL) policy to solve the
optimal control problem [16,17].

When RL was initially used for system control, it was primarily focused on discrete-
time systems or discretized continuous-time systems in research on problems such as the
billiard game problem [18], scheduling problem [19], and robot navigation problem [20].
Furthermore, the application of RL algorithms to continuous-time and continuous-state
systems was initially extended by Doya et al. [21]. They used the known system model
to learn the optimal control policy. In the context of control engineering, RL and adap-
tive dynamic programming link traditional optimal control methods to adaptive control
methods [22–24]. Vrabie et al. [25] used the RL algorithm to solve the optimal control
problem of the continuous time system. In the case of the linear system, system data are
collected, and the solution of the HJB equation is obtained via online policy iteration (PI)
using the least squares method. Xu et al. [26,27] proposed an RL algorithm based on linear
continuous-time systems to solve the robust control and robust tracking problems through
online PI. The algorithm takes into consideration the uncertainty in the system’s state and
input matrices and improves the method for solving robust control.

The IPS demonstrates a positive impact in the validation of RL algorithms. There
are some literatures on RL to solve the control problem of inverted pendulum systems.
Bates [28] harnessed GPUs to quickly train a simulation of an inverted pendulum to
balance itself. Israilov et al. [29] used two model-free RL algorithms to control targets
and proposed a general framework to reproduce successful experiments and simulations
based on the inverted pendulum. In addition, there are still many studies of this kind,
for example [30–32]. However, the results of these studies focused more on reducing the
time to reach equilibrium, without fully considering uncertainty in the system. We attempt
to solve the robust control problem of an uncertain IPS using RL algorithms. Only the
input and output data need to be collected when using the RL control algorithm and the
state matrix of the nominal system need not be known. This study lays out a theoretical
foundation for the wide application of the RL control algorithm in engineering systems.
The main contributions of this study are as follows.

(1) The state-space model of the IPS with uncertainty is established and a robust
optimal control method is applied to the IPS model. By constructing an appropriate
performance index, the optimal control method is used to design a robust control law for
an uncertain IPS.
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(2) A PI algorithm in the RL has been designed to realize the robust optimal control
of an IPS. The use of the RL algorithm to solve the robust control problem of IPS does not
require knowing the state matrix, only collecting input and output data. The application of
the RL for solving the control problem of an IPS has significance for its potential application
in practical engineering.

The organization of this paper is as follows. In Section 2, the state-space equation of
the IPS and a linearization model are established. The robust control and RL algorithm
for linearizing the IPS are presented in Sections 3 and 4. In Section 5, we establish the
nonlinear state-space model of the IPS and propose the corresponding RL algorithm. The
RL algorithm is then verified via a simulation in Section 6. Finally, we summarize the work
of this paper and potential future research directions.

2. Model Formulation

In this section, we established a physical model of a first-order linear IPS according to
Newton’s second law. By selecting appropriate state variables, the state-space model with
uncertainty is derived.

2.1. Modeling of Inverted Pendulum System

The inverted pendulum experimental device comprises a pendulum and a trolley [33].
Its structure is presented in Figure 1. The encoder is a photoelectric rotary one, and the
motor is a direct-current servo motor. For a detailed information on the experimental
platform, see [34]. Moreover, its simplified physical model is presented in Figure 2, which
mainly includes the pendulum and trolley. In Figure 2, owing to the interaction between
the trolley and pendulum, the trolley is subjected to a force F3 from the pendulum, which
acts in the lower left direction. Furthermore, the pendulum is subjected to a force F4 from
the trolley, which acts in the upper right direction. In addition, the pendulum and trolley
are also subjected to other forces, as shown in Figures 3 and 4, respectively. The trolley is
driven by a motor to perform horizontal movements on the guide rail. In Figure 3, the
trolley is subjected to the force F1 from the motor and gravity. F2 represents the resistance
between the trolley and guide rail. Furthermore, N1 and P1 are the two components of
force F3. In Figure 4, the pendulum is subjected to gravity G = m1g, and N2 and P2 are the
two components of force F4.

Trolley

Pendulum

Figure 1. Inverted pendulum system diagram.
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Figure 2. First-order inverted pendulum physical model.
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Figure 3. Force analysis of the trolley.
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Figure 4. Force analysis of the pendulum.

To facilitate subsequent calculations, we define the parameter of the first-order IPS,
as shown in Table 1. The time parameter symbol (t) is omitted, which indicates that x
represents x(t). In Figure 3, according to Newton’s second Law, the trolley satisfies the
following equation in the horizontal direction:

F1 − N1 − F2 = m2 ẍ (1)

Table 1. IPS parameter symbols.

Parameter Unit Significance

m1 kg Mass of the trolley
m2 kg Mass of the pendulum
L m Half the length of the pendulum
z N/m/s Friction coefficient between the trolley and guide rail
x m Displacement of the trolley
θ rad Angle from the upright position
I kg·m2 Moment of inertia of pendulum
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We assume that the resistance is proportional to the speed of the trolley. Therefore,
F2 = zẋ, z is the proportional coefficient. Moreover, in Figure 4, the pendulum satisfies the
following equation in the horizontal direction:

N2 = m1
d2

dt2 (x− Lsinθ) = m1 ẍ + m1Lθ̇2sinθ −m1Lθ̈cosθ (2)

Considering that N1 = N2 in Figure 2, and on substituting (2) into (1), we obtain

F1 = (m1 + m2)ẍ + zẋ + m1Lθ̇2sinθ −m1Lθ̈cosθ (3)

Next, in Figure 4, we analyze the resultant force in the vertical direction of the pendu-
lum, and the following equation can be obtained.

P2 −m1g = m1
d2

dt2 (cosθ) = −m1Lθ̇2cosθ −m1Lθ̈sinθ (4)

The component force of N2 in the direction perpendicular to the pendulum is

N2cosθ = m1
d2

dt2 (x− Lsinθ)cosθ = m1 ẍcosθ + m1Lθ̇2sinθ cos θ −m1Lθ̈cos2θ (5)

Based on the torque balance, we can obtain the following equation

Iθ̈ = P2Lsinθ + N2Lcosθ (6)

where I is the moment of inertia of the pendulum. On substituting Equations (4) and (5)
into Equation (6),

(I + m1L2)θ̈ −m1gLsinθ = m1Lẍcosθ (7)

Thus far, Equations (3) and (7) constitute the dynamic model of the IPS. More-
over, it can be assumed that the rotation angle of the pendulum is very small, that is,
θ << 1(radian). Therefore, it can be approximated that

sin θ ≈ θ, cos θ ≈ 1

Therefore, it follows from Equations (3) and (7),{
F1 = (m1 + m2)ẍ + zẋ + m1Lθ̇2θ −m1Lθ̈
(I + m1L2)θ̈ −m1gLθ = m1Lẍ

(8)

2.2. State-Space Model with Uncertainty

In Section 2.1, we established the dynamic model of the IPS as shown in Equation (8).
Next, we will derive the state-space model of the IPS.

As the rotation angle of the pendulum θ is very small, it can be approximated that
θ̇ ≈ 0, θ̇2 ≈ 0. It follows from (8) that{

F1 = (m1 + m2)ẍ + zẋ−m1Lθ̈
(I + m1L2)θ̈ −m1gLθ = m1Lẍ

(9)

Equation (9) is the linearized dynamic model of the system. The first equation comes from
(1)–(3), which is the equilibrium force equation of the system in the horizontal direction.
The second equation comes from (4)–(7), which is the equilibrium force equation of the
system in the vertical direction. The state variables of the system can be defined as

x1 = x, x2 = ẋ, x3 = θ, x4 = θ̇.
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Therefore, the following state-space equation can be derived.
ẋ1 = x2

ẋ2 = −(I+m1L2)z
I(m1+m2)+m1m2L2 x2 +

m2
1gL2

I(m1+m2)+m1m2L2 x3 +
I+m1L2

I(m1+m2)+m1m2L2 u
ẋ3 = x4

ẋ4 = −m1Lz
I(m1+m2)+m1m2L2 x2 +

m1gL(m1+m2)
I(m1+m2)+m1m2L2 x3 +

m1L
I(m1+m2)+m1m2L2 u

(10)

where u represents the force F3 from the motor. Using W = I(m1 + m2) + m1m2L2,
Equation (10) can be written as

ẋ = Ax(t) + Bu(t)

where

A =


0 1 0 0

0 −(I+m1L2)z
W

m2
1gL2

W 0
0 0 0 1
0 −m1Lz

W
m1gL(m1+m2)

W 0

, B =


0

I+m1L2

W
0

m1L
W


However, the accurate model of the IPS is difficult to obtain, and all its parameters

have uncertainties. In this paper, the friction coefficient z between the trolley and guide
rail is selected as an uncertain parameter. The numerical values of the other parameters in
Table 1 are known, where m1 = 0.109, m2 = 1.096, L = 0.25, and I = 0.0034. Therefore, the
state-space model of the uncertain IPS can be abbreviated as

ẋ = A(z)x + Bu (11)

where

A(z) =


0 1 0 0
0 −0.8832z 0.6293 0
0 0 0 1
0 −2.3566z 27.8285 0

, B =


0

0.8832
0

2.3566


Here we choose z0 = 0.1 as the nominal value and denote the nominal matrix of the system
as A(z0). Therefore, the nominal system corresponding to the uncertain system (11) is

ẋ = A(z0)x + Bu (12)

where

A(z0) =


0 1 0 0
0 −0.0883 0.6293 0
0 0 0 1
0 −0.2357 27.8285 0


3. Robust Control of Uncertain Linear System

This section mainly presents the robust optimal control methods for the uncertain IPS
modeled in the previous section by selecting the appropriate performance index function
and solving an ARE to construct the robust control law. When the uncertain parameters of
the system change within a certain range, this robust control law can cause the system to
become asymptotically stable.

The following lemmas are proposed to prove the main results of this paper.

Lemma 1. The nominal system (12) corresponding to system (11) is stabilizeable.
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Proof. For the four-dimensional continuous time-invariant system presented in system
(12), the controllability matrix is constructed as

G = [B A(z0)B A(z0)
2B A(z0)

3B]

Therefore, we have

rank(G) = rank


0 0.8832 −0.0780 1.4899

0.8832 −0.0780 1.4899 −0.2626
0 2.3566 −0.2082 65.5990

2.3566 −0.2082 65.5990 −6.1442

 = 4

Therefore, system (12) is completely controllable, which means that the system can be
stabilized. This completes the proof.

Lemma 2. There is an m× n matrix δ(z), such that the system matrices A(z) and A(z0) satisfy
the following matched condition.

A(z)− A(z0) = Bδ(z) (13)

Proof.

A(z)− A(z0) =


0 0 0 0
0 0.8832(0.1− z) 0 0
0 0 0 0
0 2.3566(0.1− z) 0 0

 =


0

0.8832
0

2.3566

δ(z) = Bδ(z) (14)

where

δ(z) =
[

0 0.1− z 0 0
]

(15)

This completes the proof.

Lemma 3. For any z ∈ [0, 1], there exists a positive semidefinite matrix F, such that δ(z) satisfies

δ(z)Tδ(z) ≤ F (16)

where F ≥ 0.

Proof. According to Lemma 2, we can obtain

δ(z)Tδ(z) =


0 0 0 0
0 (0.1− z)2 0 0
0 0 0 0
0 0 0 0

 ≤


0 0 0 0
0 0.81 0 0
0 0 0 0
0 0 0 0

 = F (17)

This completes the proof.

For nominal system (12), we construct the following ARE.

SA(z0) + A(z0)
TS + M− SBBTS = 0 (18)

where M = F + I. According to the above three lemmas and ARE (18), we propose the
following theorem.

Theorem 1. Let us suppose that S is a symmetric positive definite solution to ARE (18). Then,
for all uncertainties z ∈ [0, 1], the feedback control u = Kx, K = −BTS can make system (11)
asymptotically stable.
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Proof. We define the following Lyapunov function.

V(x) = xTSx (19)

We set u = Kx and take the time derivative of Lyapunov Function (19) along system
(11). We can then obtain

V̇(x) = xT
[
(A(z))T + KT BT

]
Sx + xTS[(A(z)) + BK]x

According to Lemma 2, we can obtain

V̇(x) =xT
[
(A(z0) + Bδ(z))T + KT BT

]
Sx + xTS[(A(z0) + Bδ(z)) + BK]x

=xT [A(z0)
TS + SA(z0) + δ(z)T BTS]x + xTSBδ(z)x + 2xTSBKx

On substituting ARE (18) into the above equation, we obtain

V̇(x) =− xT Mx + xTSBBTSx + xTδ(z)T BTSx + xTSBδ(z)x + 2xTSBKx

because K = −BTS,

V̇(x) =− xT Mx + xTKTKx− xTδ(z)TKx + xTSBδ(z)x + 2xTSBKx

As

− xTKTKx− 2xTKTδ(z)x = −xT(K + δ(z)
)T(K + δ(z)

)
x + xTδ(z)Tδ(z)x ≤ xTδ(z)Tδ(z)x

we can obtain

V̇(x) =− xT Mx + xTKTKx− xTδ(z)TKx + xTSBδ(z)x + 2xTSBKx

=− xT Mx− xTKTKx− 2xTδ(z)TKx

=− xT Mx− xT(K + δ(z)
)T(K + δ(z)

)
x + xTδ(z)Tδ(z)x

≤− xT Mx + xTδ(z)Tδ(z)x

≤− xT(M− F)x

≤− xTx

Therefore,
V̇(x) = 0 x = 0

V̇(x) ≤ 0 x 6= 0

According to the Lyapunov stability theorem [35], the uncertain system (11) is asymptoti-
cally stable. Theorem 1 has thus been proved.

4. RL Algorithm for Robust Optimal Control

In this section, we propose an RL algorithm for solving the robust control problem of
an IPS through online PI. According to ARE (18), the following optimal control problem is
constructed. For the nominal system,

ẋ = A(z0)x + Bu

we find a control u, such that the following performance index reaches a minimum.

J =
∫ ∞

t
[xT Mx + uTu]dt (20)
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where M = F + I > 0. For any initial time t, the optimal cost can be written as

V[x(t)] =
∫ ∞

t

(
xT Mx + uTu

)
dt

=
∫ t+δt

t

(
xT Mx + uTu

)
dt +

∫ ∞

t+δt

(
xT Mx + uTu

)
dt

=
∫ t+δt

t

(
xT Mx + uTu

)
dt + V[x(t + δt)]

From Lyapunov Function (19), we obtain

x(t)TSx(t) =
∫ t+δt

t

(
xT Mx + uTu

)
dt + x(t + δt)TSx(t + δt) (21)

where S is the solution to ARE (18). We propose the following RL algorithm for solving a
robust controller.

In Algorithm 1, by providing an initial stabilizing control law, repeated iterations are
performed between steps 3 and 4 until convergence. We can then obtain the robust control
gain K of system (11).

Algorithm 1 RL Algorithm for Uncertain Linear IPS

(1) M = F + I is computed.
(2) An initial stabilization control gain K0 is selected.

(3) Policy evaluation: Si is solved using the equation xT(t)Six(t) =
∫ t+δt

t xT(M +

KT
i Ki)xdt + xT(t + δt)Six(t + δt).

(4) Policy improvement: Ki+1 = −BTSi.
(5) We set i = i + 1, and steps 3 and 4 are repeated until ‖Si+1 − Si‖ ≤ ε, where ε > 0 is a

small constant.

Remark 1. Step 3 in Algorithm 1 is the policy evaluation, and step 4 is the policy improvement.
Equivalently, the solving of the equation in step 3 is actually solving a least squares problem. In the
integral interval, if sufficient data are obtained in the system, the least square method can be used to
solve Si.

Next, we prove the convergence of Algorithm 1. However, it is necessary to prove the
following Lemma first.

Lemma 4. On assuming that the matrix A(z0) + BKi is stable, solving the matrix Si from step 3
of Algorithm 1 becomes equivalent to solving the following equation.

S(A(z0) + BKi) + (A(z0) + BKi)
TS + M + KT

i Ki = 0 (22)

Proof. We rewrite the equation of step 3 in Algorithm 1 as follows

lim
δt→0

xT(t + δt)Six(t + δt)− xT(t)Six(t)
δt

+ lim
δt→0

∫ t+δt
t xT(M + KT

i Ki)xdt
δt

= 0 (23)

According to the definition of the derivative, it can be observed that the first term of
Equation (23) is the derivative of xT(t)Six(t) with respect to time t. We thus obtain

d(xT(t)Six(t))
dt

+ lim
δt→0

d
dδt

∫ t+δt

t
xT(M + KT

i Ki)xdt = 0 (24)
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Further re-arranging Equation (24) yields

xT [S(A(z0) + BKi) + (A(z0) + BKi)
TS + M + KT

i Ki]x = 0 (25)

which means that (22) is established. Next, we reverse the process.
Along the stable system ẋ = (A + BKi)x, the time derivative of the Lyapunov function

Vi(x) = xTSix is calculated. We can then obtain

V̇i(x) =
dxT(t)Six(t)

dt
= xT(A(z0) + BKi)

TSix + xTSi(A(z0) + BKi)x (26)

On integrating both sides of the equation (26) in the interval (t, δt), we obtain

xT(t + δt)Six(t + δt)− xT(t)Six(t) =
∫ t+δt

t
xT(M + KT

t Ki)xdt

This completes the proof.
According to the existing conclusions [36], iterative relations (22) and step 3 of

Algorithm 1 converge to form the solution of ARE (18).

Remark 2. The behavior of the control is evaluated using a cost function, which is similar to the
reward in RL. The agent corresponds to the controller in optimal control, and the control process
corresponds to the environmental model in RL. In control engineering, maximizing rewards is
equivalent to minimizing the cost function, so the ultimate goal of the controller is to develop an
optimal control policy by learning.

5. Robust Control of Nonlinear IPS

In this section, a nonlinear state-space model of the IPS is established. Moreover, we
construct a suitable auxiliary system and corresponding performance index. The problem
of the robust control of the IPS is then transformed into the optimal control problem of the
auxiliary system. We finally propose the corresponding RL algorithm.

5.1. Nonlinear State-Space Representation of IPS

Based on the uncertain linear inverted pendulum model (11) established in Section 2.1,
we consider the following uncertain nonlinear system.

ẋ = A(z)x(t) + Bu(t) + F(z, x) (27)

where F(z, x) represents the nonlinear perturbation of the system and can be used to
represent various nonlinearity factors in the system. Based on the modeling process in
Section 2 and [8], it is assumed that

F(z, x) =


0

−(I+m1L2)z
W (cos(x1x2 + x3x4) +

0.5x1+2x3−4x4
x2

− 1)x2

0
−m1Lz

W (cos(x1x2 + x3x4) +
0.5x1+2x3−4x4

x2
− 1)x2


where the parameters I, m1, L, and W are the same as those in (10). On rewriting system
(27), we obtain

ẋ = Āx + Bu + F̄(z, x) (28)

where
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Ā =


0 1 0 0

0 0 m2
1gL2

W 0
0 0 0 1
0 0 m1gL(m1+m2)

W 0

, F̄(z, x) =


0

−(I+m1L2)z
W (cos(x1x2 + x3x4) +

0.5x1+2x3−4x4
x2

)x2

0
−m1Lz

W (cos(x1x2 + x3x4) +
0.5x1+2x3−4x4

x2
)x2


On substituting the parameter values into system (28), we can obtain

Ā =


0 1 0 0
0 0 0.6293 0
0 0 0 1
0 0 27.8285 0

, B =


0

0.8832
0

2.3566

, F̄(z, x) =


0

−0.8832zx2
0

−2.3566zx2

[cos(x1x2 + x3x4) +
0.5x1 + 2x3 − 4x4

x2
]

5.2. Robust Control of Nonlinear IPS

To obtain the robust control law for an uncertain nonlinear IPS, we propose the
following two lemmas.

Lemma 5. There exists an uncertain function G(z, x) such that F̄(z, x) can be decomposed into
the following form.

F̄(z, x) = BG(z, x)

Proof.

F̄(z, x) =


0

−(I+m1L2)z
N x2

0
−m1Lz

N x2

[cos(x1x2 + x3x4) +
0.5x1 + 2x3 − 4x4

x2
]

=


0

I+m1L2

N
0

m1L
N

(−zx2[cos(x1x2 + x3x4) +
0.5x1 + 2x3 − 4x4

x2
]) = BG(z, x)

where G(z, x) = −zx2[cos(x1x2 + x3x4) +
0.5x1+2x3−4x4

x2
]. This completes the proof.

Lemma 6. There exists an upper bound function fmax(x) such that G(z, x) satisfies

| G(z, x |≤ fmax(x) (29)

Proof.
| G(z, x) | =| −zx2[cos(x1x2 + x3x4) +

0.5x1 + 2x3 − 4x4

x2
] |

=| zx2cos(x1x2 + x3x4) + z(0.5x1 + 2x3 − 4x4) |
≤| x2cos(x1x2 + x3x4) + z(0.5x1 + 2x3 − 4x4) |
≤| x2 + 0.5x1 + 2x3 − 4x4 |
= fmax(x)

This completes the proof.

We construct the optimal control problems for a nominal system.

ẋ = Āx(t) + Bu(t) (30)
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We determine a controller u, which minimizes the following performance index

J(x0, u) =
∫ ∞

0
[ f 2

max(x) + xTx + uTu]dt (31)

Based on the performance index Function (31), the cost function to the admissible
control policy u(x) is

V(x) =
∫ ∞

t
[ f 2

max(x) + xTx + uTu]dt (32)

We define ∇V as the gradient of V(x) with respect to x. Finding differentiation on both
sides of (32) with respect to t yields the following Bellman equation.

f 2
max(x) + xTx + uTu +∇VT [Āx + Bu] = 0 (33)

Then, we define the following Hamiltonian function.

H(x, u,∇V) = f 2
max(x) + xTx + uTu +∇VT [Āx + Bu] (34)

On assuming that the minimum exists and is unique, the optimal control function for the
given problem is then obtained as

uopt = −
1
2

BT∇Vopt (35)

On substituting Equation (35) into Equation (33), the HJB equation that satisfies the optimal
function Vopt(x) can be obtained as

f 2
max(x) + xTx +∇VT

opt Āx− 1
4
∇VT

optBBT∇Vopt = 0 (36)

with the initial condition Vopt(0) = 0.
On solving the optimal function Vopt(x) from Equation (36), the solution of the optimal

control problem can be obtained. The solution of the robust control problem can then be
obtained. The following theorem shows that the optimal control uopt = − 1

2 BT∇Vopt is a
robust controller for a nonlinear IPS.

Theorem 2. On considering the nominal system (30) with the performance index (31) and assum-
ing that solution Vopt(x) of the HJB Equation (36) exists, the optimal control law (35) can then
globally stabilize the IPS (28).

Proof. We select Vopt(x) as the Lyapunov function. On considering the performance index
function (31), Vopt(x) ≥ 0 is in evidence, and Vopt(0) = 0. Solving the derivative of Vopt(x)
with respect to t along system (28) yields

dVopt

dt
=∇VT

opt[Āx + F(z, x)]− 1
2
∇VT

optBBT∇V

According to Lemma 5, it follows that

dVopt

dt
=∇VT

opt Āx +∇VT
optBG(z, x)− 1

2
∇VT

optBBT∇V (37)

According to HJB Equation (36), we can obtain

∇VT
opt Āx = − f 2

max(x)− xTx +
1
4
∇VT

optBBT∇Vopt (38)
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On substituting Equation (38) into Equation (37), we obtain

dVopt

dt
=− f 2

max(x)− xTx +
1
4
∇VT

optBBT∇Vopt +∇VT
optBG(z, x)− 1

2
∇VT

optBBT∇V

=− f 2
max(x)− xTx− 1

4
∇VT

optBBT∇Vopt +∇VT
optBG(z, x)

(39)

From Equation (39), we can obtain

dVopt

dt
=− f 2

max(x)− xTx− 1
4
[∇VT

optBBT∇Vopt − 4∇VT
optBG(z, x) + 4GT(z, x)G(z, x)] + GT(z, x)G(z, x)

=− xTx + GT(z, x)G(z, x)− f 2
max(x)− 1

4
HT(z, x)H(z, x)

≤− xTx

(40)

where H(z, x) = BT∇Vopt − 2G(z, x). According to the Lyapunov stability criterion, the
optimal controller (35) can asymptotically stabilize the uncertain nonlinear IPS (28) for all
the allowable uncertainties. Therefore, for a constant p > 0, there exists a neighborhood
N = {x : ‖x‖ < p} near the origin, so that, if x(t) ∈ N , then x → 0 when t→ ∞. However,
x(t) cannot remain outside the domain N forever, or else ‖x(t)‖ ≥ p for all t > 0, which
implies that

Vopt[x(t)]−Vopt[x(0)] =
∫ t

0
V̇opt(x(τ))dτ

≤
∫ t

0
−xTxdτ

≤
∫ τ

0
−p2dτ

= −p2t

Let t→ ∞, then
Vopt[x(t)] ≤ Vopt[x(0)]− p2t→ −∞

This completes the proof.

5.3. RL Algorithm for Nonlinear IPS

For a nonlinear IPS, we consider the optimal control problems (30) and (31). For any
admissible control, the cost function corresponding to the optimal control problem can be
expressed as

V[x(t)] =
∫ ∞

t
[ f 2

max(x) + xTx + uTu]dt

=
∫ t+φ

t
[ f 2

max(x) + xTx + uTu]dt +
∫ ∞

t+φ
[ f 2

max(x) + xTx + uTu]dt

where φ > 0 is an arbitrarily selected constant. We can then obtain the integral reinforce-
ment relation satisfied by the cost function

V[x(t)] =
∫ t+φ

t
[ f 2

max(x) + xTx + uTu]dt + V[x(t + φ)] (41)

According to the integral-based reinforcement relations (41) and the optimal controller
(35), the RL algorithm for the robust control of the nonlinear IPS is as follows.

In Algorithm 2, by providing an initial stabilizing control law, the algorithm iterates
repeatedly between steps 3 and 4 until convergence. We can then obtain the robust control
gain u of system (28).
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Algorithm 2 RL Algorithm of Uncertain Nonlinear IPS

(1) A non-negative function fmax(x) is selected.
(2) An initial stabilization control law u0(x) is selected.
(3) Policy evaluation: the Vi(x) from Vi[x(t)] =

∫ t+φ
t [ f 2

max(x) + xTx + uT
i (x)ui(x)]dt +

Vi[x(t + φ)] is solved.
(4) Policy improvement: ui+1(x) = − 1

2 BT∇Vi.
(5) i = i + 1 is set and steps 3 and 4 are repeated until ‖Vi+1 −Vi‖ ≤ ε, where ε > 0 is a

small constant.

Next, we prove the convergence of Algorithm 2. The following conclusion provides
an equivalent form of the integral strengthening relation in step 3.

Lemma 7. On assuming that ui(x) is the stabilization control function of the nominal system (30),
solving the cost function Vi(x) from the equation in step 3 in Algorithm 2 can be equivalent to
solving Equation (42).

f 2
max(x) + xTx + uT

i (x)ui(x) +∇Vi[Āx + Bui] = 0 (42)

Proof. On dividing both sides of the equation in step 3 by φ and taking the limit, we obtain

lim
φ→0

Vix(t + φ)−Vix(t)
φ

+ lim
φ→0

∫ t+φ
t [ f 2

max(x) + xTx + uT
i (x)ui(x)]dt

φ
= 0

Based on the definition of the function limit and L’ Hopital’s rule, we obtain

dVix(t)
dt

+ lim
φ→0

d
dφ

∫ t+φ

t
[ f 2

max(x) + xTx + uT
i (x)ui(x)]dt = 0

Therefore,
f 2
max(x) + xTx + uT

i (x)ui(x) +∇Vi[Āx + Bui] = 0

However, along the stable system ẋ = Āx+ Bui, finding the derivative of Vi(x) with respect
to t yields

d
dt
(Vi(x)) = ∇Vi(Āx + Bui)

On integrating both sides of the above equation from t to t + φ, we obtain

Vi[x(t + φ)]−Vi[x(t)] =
∫ t+φ

t
∇Vi(Āx + Bui)dτ

Then, from (42), we obtain

Vi[x(t)] =
∫ t+φ

t
f 2
max(x) + xTx + uT

i (x)ui(x)dτ + Vi[x(t + φ)]

The above equation is consistent with the third step of Algorithm 2. This completes the
proof.

According to the conclusions of [25,37], if the initial control policy u0(x) can stabilize
the system, the control policy taken using the optimal control Function (35) and Equa-
tion (42) also can stabilize the system. Furthermore, the iteratively calculated cost function
sequence converges to the optimal cost function. From Lemma 7, we know that Equation
(42) and the equation of step 3 are equivalent. Therefore, the iterative relationship between
steps 3 and 4 in Algorithm 2 converges on the optimal control and optimal cost functions.
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6. Numerical Simulation Results

This section includes two simulation examples to illustrate the practical applicability
of the theoretical results in the robust control of the uncertain IPS.

6.1. Example 1

Considering system (11), whose state-space model can be referenced in [34], our
objective is to obtain a robust control u such that it is stable. Based on Lemmas 1–3, the
weighting matrix M is selected as

M = F + I =


1 0 0 0
0 1.81 0 0
0 0 1 0
0 0 0 1


We present the initial stability control law

u0 = [1.0900 4.1230 − 24.8908 − 6.7726]x

The initial state of the nominal system is selected as x0 = [0 1 1 1]T . The time-step
size for the collecting system status and input information is set as 0.01 s. Algorithm 1
converges after six iterations, and the Sd matrix and control gain Kd converge to the
following optimal solutions:

Sd =


2.4465 2.0822 −6.2489 −1.2066
2.0822 4.3346 −14.0702 −2.7082
−6.2489 −14.0702 100.8262 18.9646
−1.2066 −2.7082 18.9646 3.6646

 (43)

and

Kd = [1.0044 2.5538 − 32.2652 − 6.2440] (44)

There are 10 independent numerical samples in the matrix Sd. These 10 numerical
samples are collected in each iteration to address the least squares problem. The evolution
of the control signal u is presented in Figure 5. Figure 6 illustrates the iterative convergence
process of the S matrix, where S(i, j) represents the element lying at the intersection of the
i-th row and the j-th column in the symmetric matrix S, where i = 1, 2, 3, 4, j = 1, 2, 3, 4.

0 0.5 1 1.5 2 2.5 3

Time(s)

-25

-20

-15

-10

-5

0

5

10
Control signal

u

Figure 5. Control signal u of the linearized system.
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Figure 6. S-matrix iterative process of the linearized system.

The ARE (18) is solved directly by Matlab, the S matrix and optimal feedback K are
obtained as follows.

S =


2.4455 2.0802 −6.2326 −1.2039
2.0802 4.3307 −14.0381 −2.7032
−6.2326 −14.0381 100.5677 18.9228
−1.2039 −2.7032 18.9228 3.6579

 (45)

K = [1.000 2.5455 − 32.1952 − 6.2327] (46)

As is apparent, the results from the two methods are very similar. Figure 7 presents
the closed-loop trajectory of system (11). Figure 7a–d represent the closed-loop system
trajectories for uncertain parameters z = 0.1, 0.4, 0.7, 1.0, respectively. It is easy to observe
that the system is stable, which means that the controller is valid

Table 2 displays the respective partial eigenvalues of the system (11) with u = Kx
under varying values of z. From Table 2, we can observe that the eigenvalues of the closed-
loop system all have negative real parts. Thus, the uncertain linear system (11) with robust
control u = Kx is asymptotically stable for all 0 ≤ z ≤ 1.

Table 2. Characteristic root of system (11) when z takes different values.

z λ1 λ2 λ3 λ4

0.1 −6.60 −4.23 −0.85 + 0.32i −0.85 − 0.32i
0.2 −6.73 −4.33 −0.78 + 0.43i −0.78 − 0.43i
0.3 −6.86 −4.41 −0.71 + 0.50i −0.71 − 0.50i
0.4 −7.00 −4.48 −0.65 + 0.55i −0.65 − 0.55i
0.5 −7.14 −4.54 −0.60 + 0.59i −0.60 − 0.59i
0.6 −7.28 −4.59 −0.55 + 0.62i −0.55 − 0.62i
0.7 −7.42 −4.63 −0.50 + 0.65i −0.50 − 0.65i
0.8 −7.56 −4.67 −0.46 + 0.67i −0.46 − 0.67i
0.9 −7.70 −4.70 −0.42 + 0.68i −0.42 − 0.68i
1.0 −7.84 −4.73 −0.38 + 0.69i −0.38 − 0.69i
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Figure 7. Trajectory of closed-loop linearized system.

6.2. Example 2

Let us consider the nonlinear IPS (28). According to Lemma 5, system (28) can be
rewritten as

ẋ = Āx + Bu + BG(z, x) (47)

The optimal control problem for the IPS is as follows: for nominal system (30), we find an
optimal control u such that the performance index (31) achieves a minimum.

According to Lemma 6, we obtain

| G(z, x) |=| −zx2[cos(x1x2 + x3x4) +
0.5x1 + 2x3 − 4x4

x2
] |≤ |x2 + 0.5x1 + 2x3 − 4x4| = fmax(x)

then

f 2
max(x) = (x2 + 0.5x1 + 2x3 − 4x4)

2 = xT


0.25 0.5 1 −2
0.5 1 2 −4
1 2 4 −8
−2 −4 −8 16

x

According to performance index (31), the weight matrix M is selected as

M =


1.25 0.5 1 −2
0.5 2 2 −4
1 2 5 −8
−2 −4 −8 17


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Based on Algorithm 2, we give the initial control policy

u0 = [1.0900 4.1230 − 24.8908 − 6.7726]x

The initial state of the system is selected as x0 = [0 1 1 1]T . Algorithm 2 con-
verges after six iterations, and the Sd matrix and control gain Kd converge to the following
optimal solutions.

Sd =


2.4325 2.4398 −6.2874 −1.3888
2.4398 5.0469 −14.0539 −3.0045
−6.2874 −14.0539 130.4535 18.9735
−1.3888 −3.0045 18.9735 4.2715

 (48)

and

Kd = [1.1180 2.6229 − 32.3006 − 7.4126] (49)

The evolution of the control signal u is presented in Figure 8. Figure 9 presents the
convergence process of the Sd matrix.
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Figure 8. Control signal u of the nonlinear system.
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Figure 9. S-matrix iterative process of the nonlinear system.

We also selected z = 0.1, 0.4, 0.7, 1.0. Figure 10 presents the closed-loop trajectory
of system (28). Figure 10a–d represent the closed-loop system trajectories for uncertain
parameters z = 0.1, 0.4, 0.7, and 1.0, respectively. It is easy to observe that the system is
stable, which means that the controller is valid.
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Figure 10. Trajectory of closed-loop nonlinear system.

7. Conclusions

In this paper, the robust control problem of a first-order IPS is studied. The lineariza-
tion and nonlinear state-space representation are established, and an RL algorithm for the
robust control of the IPS is proposed. The controller of the uncertain system is obtained
using the method of online PI. The results thus obtained show that the error between the
controller obtained using the RL algorithm and by directly solving ARE is very small.
Moreover, the algorithm can provide a controller that meets the requirements without the
nominal matrix A of the system being known, only collecting input and output data. This
improves the current state at which the robust control of the IPS relies excessively on the
nominal matrix. In future research, we intend to take into consideration that the input
matrix of the system also has uncertainty and extend the RL algorithm to more general
systems.
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