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Abstract: Accurate estimation of shear wave velocity (Vs) is crucial for modeling hydrocarbon
reservoirs. The Vs values can be directly measured using the Dipole Shear Sonic Imager data;
however, it is very expensive and requires specific technical considerations. To address this issue,
researchers have developed different methods for Vs prediction in underground rocks and soils. In
this study, the well logging data of a wellbore in the Iranian Aboozar limestone oilfield were used
for Vs estimation. The Vs values were estimated using five available empirical correlations, linear
regression technique, and two machine learning algorithms including multivariate linear regression
and gene expression programming. Those values were compared with the real Vs data. Furthermore,
three statistical indices including correlation coefficient (R2), root mean square error (RMSE), and
mean absolute error (MAE) were used to evaluate the effectiveness of the applied techniques. The
mathematical correlation obtained by the GEP algorithm delivered the most accurate Vs values with
R2 = 0.972, RMSE = 0.000290, and MAE = 0.000208. Compared to the available empirical correlations,
the obtained correlation from the GEP approach uses multiple parameters to estimate the Vs, thereby
leading to more precise predictions. The new correlation can be used to estimate the Vs values in the
Aboozar oilfield and other geologically similar reservoirs.

Keywords: artificial intelligence; gene expression programming (GEP); linear regression (LR); multi-
variate linear regression (MLR); shear wave velocity; well logging data; Kharg Island offshore oilfield;
Pickett equation

1. Introduction

Shear wave velocity is an indispensable parameter in geoscience with numerous
conventional and emerging applications. The conventional applications include earthquake
engineering [1], geotechnical site characterization [2,3], reservoir characterization [4,5], and
groundwater resource assessment [6,7]. Moreover, the emerging applications of shear wave
velocity are geothermal energy exploration [8], landslide hazard assessment [9], carbon
capture and storage (CCS) [10], geohazard assessment in offshore environments [11], and
deep earth exploration [12].

Accurate estimation of Vs is highly crucial in reservoir modeling. In fact, the Vs values
are chiefly used to create the geomechanical models of reservoirs. Those models are highly
applicable in all stages of hydrocarbon production. For instance, some applications are pore
pressure prediction, wellbore stability analysis, casing failure analysis, land subsidence
prediction, reservoir depletion analysis, etc.

Generally, Vs determination methods can be categorized into six general categories
based on their underlying principles and approaches. Table 1 presents the general categories
of Vs prediction methods along with their merits and demerits. The choice of method
depends on the specific project goals, data availability, and the trade-offs between accuracy,
cost, and complexity.

Traditional methods of Vs prediction, such as laboratory testing and borehole measure-
ments, are time-consuming, expensive, and often impractical for large-scale studies [13].
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Moreover, the only wireline log tool to record the shear wave velocity is the Dipole Shear
Sonic Imager (DSI) log, which is very expensive. For this purpose, various empirical
correlations have been introduced for Vs estimation in different rocks [14–33]. For in-
stance, some well-known correlations for Vs prediction in carbonate rocks can be found
in Castagna et al. [18], Carroll [15], Wadhwa et al. [27], Pickett [14], and Anselmetti and
Eberli [23]. Regardless of the rock type, those empirical correlations usually used one
parameter to estimate the Vs. It is clear that each extracted empirical correlation has its
advantages and drawbacks. For example, Wantland used Poisson’s ratio to predict the
Vs values in reservoir rocks [32]. Nevertheless, the Poisson’s ratio of rocks usually varies
remarkably, and thus, the accuracy of the estimated values of Vs might be affected [15,29].

Table 1. Different types of Vs measurement methods with their respective pros and cons.

Vs Measurement Method Advantages Disadvantages

Laboratory Core Analysis
Provides accurate measurements.
Allows detailed core sample analysis.
Offers insights into rock properties.

Expensive and time-consuming.
Limited to a small number of samples.
May not replicate in situ conditions.

Geophysical Well Logging and
In Situ Measurements

Provides direct measurements.
Suitable for real-time well logging.

Limited to borehole locations.
Tools and data acquisition can be costly.

Empirical and
Correlation-Based Methods

Simplicity and ease of application.
Uses readily available well log data.

Limited accuracy, relying on correlations.
Applicability may be region-specific.

Theoretical and
Physics-Based Models

Consider physical properties.
Provides insights into rock behavior.

Complex and data-intensive.
Requires a wide range of input parameters.

Data-Driven and Machine
Learning Techniques

Handles complex data.
Learning from diverse datasets.

Needs extensive, high-quality training data.
Models may not always be interpretable.

Seismic and
Geostatistical Approaches

Provides large-scale Vs estimations.
Characterization beyond wellbore.

Limited to seismic data availability.
Inversion and modeling can be
computationally intensive.

In the past few years, the AI techniques have been widely used in geoscience applica-
tions such as reservoir characterization [34], geotechnics [35–37], mining exploration [38],
earthquake engineering [39,40], etc. Two of the frequent AI techniques are the MLR and
GEP. MLR is a statistical method used in the field of machine learning and statistics to model
the relationship between a dependent variable and two or more independent variables [41].
In fact, it is an extension of simple linear regression, which models the relationship be-
tween a dependent variable and a single independent variable. On the other side, the
GEP approach has been broadly used in engineering projects, from hydraulics [42] to
reservoir characterization [43]. GEP is a specific variant of genetic programming (GP) that
emphasizes the representation and evolution of linear or tree structures using a process
called gene expression. Generally, in GP, a population of candidate solutions (programs) is
evolved over generations through the application of genetic operators such as mutation,
crossover, and selection [44].

The MLR and GEP techniques were also applied to predict the Vs in rocks [45–51].
Upom et al. used the MLR and an ensemble (EN-PSO) model to predict the Vs values in
soils [45]. In their work, the independent variables were the soil type, depth, and standard
penetration resistance. They reported that both MLR and EN-PSO models predicted the
Vs values with high accuracy. In another study, Ataee et al. estimated the Vs of soils
by applying MLR and artificial neural network (ANN) [46]. It was declared that the
ANN technique delivered more precise results. The MLR technique was also applied
for Vs prediction in hydrocarbon reservoirs by some researchers [47,48]. Shi and Zhang
evaluated the capability of MLR, multivariable polynomial regression, deep neural network
(DNN), and random forest in Vs prediction for hydrocarbon reservoirs [48]. According to
the obtained results, the random forest technique exhibited a better predictive capability
than others.
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Behnia et al. used the GEP and ANFIS techniques to extract mathematical relations
for Vs prediction in limestone rocks in Iran [49]. In their study, the input parameters
were density, porosity, and compressional wave velocity (Vp). Both techniques showed
remarkable performance in predicting accurate Vs values. In another study, Gullu predicted
the Vs values in soils using GEP and ANN techniques to characterize the potential of
earthquakes in different sites in California, USA [50]. It was concluded that both techniques
were promising for Vs prediction. In a similar investigation, Khazaee et al. used the
GEP technique to determine the soil types based on the Vs values [51]. A mathematical
relationship was extracted and proposed for Vs estimation. Such a relationship exhibited
an excellent performance for Vs estimation in soils.

In this study, the well logging data obtained from a vertical wellbore in Aboozar
limestone oilfield were used to estimate the Vs values. The Aboozar oilfield is situated
74 km away from Kharg Island in the Persian Gulf. The Vs estimation was carried out
using five available empirical correlations, LR, and two AI algorithms including MLR
and GEP. The main objective of the research was to compare the performance of those
different techniques in Vs estimation. For this purpose, the Vs values estimated by each
technique were validated and compared with the real Vs data. The additional target
was to find a mathematical relationship capable of accurately predicting Vs values in the
oilfield. Based on the conducted research, the GEP algorithm delivered more accurate
results than others. Hence, the corresponding mathematical relationship will be used for
Vs prediction in the oilfield. Compared to the available empirical methods which use
only one parameter to estimate the shear wave velocity, the novel correlation extracted
via the GEP technique considers four parameters to predict the Vs values. This advantage
results in more accurate predictions of Vs values in the oilfield. It is noteworthy that
the obtained mathematical relationship can be also used in other reservoirs containing
identical geological conditions.

The structure of this article has been arranged as follows: Firstly, in Section 2.1, a brief
description of the oilfield project is elaborated. Then, in Section 2.2, the raw well logging
data are presented. Next, in Section 2.3.1, the linear correlations between the different well
logging parameters and Vs are extracted using the LR technique. Afterwards, in Section 2.3.2,
the basic formulations related to the five applied empirical correlations are explained.
Then, the basics of the MLR and GEP methods are described in Sections 2.3.3 and 2.3.4,
respectively. Thereafter, in Section 3, the findings derived from the conducted research
are presented. Following that, Section 4 is dedicated to discussing the obtained results.
Finally, in the Conclusions section, the article ends with a concise description about the key
findings, results, future works, and implications.

2. Data and Methods
2.1. Project Description

In this research, the study area is the Aboozar oilfield located 74 km west of Kharg
Island. Figure 1 shows the location of the Aboozar oilfield along with Kharg Island and
other adjacent oilfields. For a better illustration, the Aboozar oilfield and Kharg Island have
been shown in a yellow and green color, respectively. As shown in this figure, Aboozar
oilfield is situated between the Nowrouz and Soroosh oilfields.

In 1959, the first exploration wellbore was drilled in the Aboozar oilfield. Further
exploratory works were pursued until 1975. Subsequently, the oil production phase
commenced in November 1976. The oilfield was initially operated by the Iran Pan
American Company (IPAC), and it was then transferred to the Iranian Offshore Oil
Company (IOOC) in 1979. Up to now, ten platforms with more than 140 vertical, deviated,
and horizontal wellbores have been drilled in the oilfield. Those wellbores are connected
to three main production platforms: AA, AB, and AC. Presently, a total of 90 wellbores
are operating while the rest are inactive due to different technical issues. Based on
the exploratory activities, it is estimated that the Aboozar oilfield contains 4 billion
barrels of crude oil. The current production rate of the oilfield is around 200,000 barrels
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per day. The oil extracted from the platforms is transferred to Kharg Island through a
24-inch-diameter pipeline. It is noteworthy that in the Aboozar oilfield, more than one
hundred people are currently working. Moreover, the depth of seawater in the area is
nearly 40 m.
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Figure 1. The location of Kharg island and adjacent oilfields.

The main reservoir in this oilfield is the Asmari formation situated under the Gach-
saran anhydrite caprocks. Figure 2 shows the simplified stratigraphy petroleum systems
and tectonics offshore of the Persian Gulf. As shown in this figure, the Asmari formation is
considered as the first oil-bearing formation in both the South Gulf and East Gulf sections.
The East Gulf refers to the Iranian waters offshore of the Persian Gulf. Based on this figure,
the Asmari formation contains Oligocene- and Miocene-aged carbonate and limestone
rocks [52,53].

2.2. Well Logging Data

In this research, the well logging data pertinent to a vertical wellbore, called Well
A, in the Aboozar oilfield were used as the raw data. The recorded data belonged to
the limestone formations at a depth from 4350 m to 4500 m. The corresponding well
logs are gamma ray log (GR), caliper log (CAL), Poisson’s ratio (PR), total porosity
(PIGT), density log (RHOB), true formation resistivity log (RT), temperature (TEMP),
compressional wave velocity (Vp), and shear wave velocity (Vs). Figure 3 illustrates the
plot of the different well logging data used in the current research. It is noteworthy that
the Poisson’s ratio values in the PR log have been measured independently of the Vs and
Vp. Moreover, the rock density fluctuated between 2.39 g/cm3 and 2.40 g/cm3 for the
entire profile. Therefore, it can be expressed that the rock density was relatively constant
in our research.
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2.3. Methodology
2.3.1. Linear Regression (LR)

To extract the correlations between Vs and other parameters, the corresponding cross-
plots for all well logs have been drawn in Figure 4.

Based on Figure 4, it can be seen that the Vp and PIGT(porosity) logs show good
correlations with the Vs data. The linear correlation between the Vs and Vp was obtained as

Vs = 0.45 Vp + 0.001, (1)

where Vs (ft/µs) and Vp (ft/µs) are shear and compressional wave velocities, respectively.
Moreover, for the above equation, the R2 was 0.95, the RMSE was equal to 0.00032, and the
MAE was equal to 0.00029. Such a high correlation coefficient shows that Equation (1) is
appropriate for predicting the Vs in the Aboozar limestone oilfield. It is noteworthy that
the Vs, Vp, and rock density can be utilized for estimation of the elastic moduli of different
rocks [54,55].
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Figure 4. The correlations between the Vs and other well logging parameters obtained from the
different logs.

The inclusion of linear regression in this study serves a dual purpose. Firstly, it allows
for a baseline comparison with traditional linear methods, providing a clear contrast to
highlight the superior predictive performance of our chosen nonlinear algorithms (gene
expression programming and multivariate regression). Additionally, linear regression
models offer inherent interpretability, contributing to a nuanced understanding of the
predictive capabilities of both linear and nonlinear approaches. This choice facilitates a
comprehensive analysis and comparison, demonstrating the advantages of employing
nonlinear methods for predicting shear wave velocity while acknowledging the historical
significance of linear regression in empirical correlations such as the Pickett equation.

2.3.2. Empirical Correlations

The previous studies conducted by the geomechanics and geophysics researchers
have led to extraction of different empirical correlations to estimate the Vs using other
geological parameters. Each empirical correlation was proposed for a particular reservoir
rock. In this research, the type of the reservoir rock is limestone; hence, only the well-known
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empirical correlations for limestone rocks have been used to estimate the Vs in the Asmari
formation (Table 2). Those empirical correlations included those of Castagna et al., Carroll,
Wadhwa et al., Pickett, and Anselmetti and Eberli. It is noteworthy to mention that only
the Anselmetti and Eberli correlation estimates the Vs values using the rock density while
the rest apply the compressional wave velocity (Vp) for Vs estimation [14,15,18,23,27].

Table 2. Empirical correlations related to estimation of Vs in limestone reservoirs.

Correlation Formula Units

Castagna et al., 1998 [18] Vs = −0.05509 Vp
2 + 1.0168 Vp − 1.0305 (2) Vp (km/s) and Vs (km/s)

Carroll, 1969 [15] Vs = 0.937562 Vp
0.82 (3) Vp (kft/s) and Vs (kft/s)

Wadhwa et al., 2010 [27] Vs = 1.09913326 Vp
0.92 (4) Vp (m/s) and Vs (m/s)

Pickett, 1963 [14] Vs = Vp/1.9 (5) Vp (ft/µs) and Vs (ft/µs)
Anselmetti and Eberli, 1993 [23] Vs = 199 (γ)2.84 (6) Vs (m/s); γ is density (g/cm3)

2.3.3. MLR Analysis

The MLR analysis is a statistical approach with only one dependent and many indepen-
dent variables. MLR provides insights into the strength and direction of the relationships
between the independent variables and the dependent variable [56–58]. In this approach, a
relationship between the main function (Y) and the independent variable of xi is defined as

Y = f (xi) (7)

When Y is defined as a linear function, the relationship is called the linear regression. Simi-
larly, if Y is defined as a nonlinear function of xi, it is called the nonlinear regression [58].

The MLR approach delivers suitable predictive models for various surface and subsur-
face geoscience applications [58]. Consequently, in this research, the MLR approach was
utilized to estimate the Vs. The general form of the approach is

Y = a0 + a1x1 + · · ·+ anxn + C, (8)

where x1, x2, x3, . . . ., xn are the independent variables, Y represents the dependent variable,
and a0, a1, a2, a3, . . . ., an are regression coefficients. The coefficients can be interpreted to
understand the effect of each independent variable while holding others constant. Such
coefficients are calculated by the least square method. Furthermore, the parameter of C is a
real number.

In the MLR analysis, the correlation coefficient, R2, serves as a fitness indicator of
the extracted relationship between the Y and independent variables. The corresponding
mathematical formula is

R2 =
∑n

i=1 (Ŷi − Y)2

∑n
i=1 (Yi − Y)2 = 1 − ∑n

i=1 (Yi − Ŷi)
2

∑n
i=1 (Yi − Y)2 , (9)

where Ŷi and Yi represent the calculated value and real value of the ith sample of the
dependent parameter, respectively. In addition, Y indicates the mean of the dependent
parameter. When R2 is close to 1, it means that there is a good correlation between the
independent and dependent variables. Nevertheless, when R2 approaches 0, it means
that the fitness of the function is low. More technical details are available in the research
published by Granian et al. [56].

An advantage of MLR is its simplicity, as it allows for the incorporation of multiple
independent variables to capture complex relationships. Nevertheless, this flexibility can
become a disadvantage when dealing with a large number of predictors, as MLR may be
prone to overfitting. Overfitting occurs when the model fits the training data too closely,
capturing noise and idiosyncrasies rather than the underlying patterns. Including too many
predictors relative to the sample size can lead to a highly flexible model that performs well
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on the training data but fails to generalize effectively to new, unseen data. Regularization
techniques, such as ridge regression or lasso regression, can be employed in MLR to address
overfitting by imposing constraints on the coefficients, preventing them from reaching
extreme values and promoting a more parsimonious model that generalizes better to
new observations.

2.3.4. GEP Method

The GEP method was first introduced by Candida Ferreira in 2001. It is still considered
as an applicable technique to set up complex computer programs and computational
models [59,60]. Generally, those computer programs and models are sophisticated tree
networks, exactly similar to the living organisms. The basis of the GEP method is identical
to the genetic programming (GP) and genetic algorithms (GAs) approaches. In other words,
the GEP method modifies the population of the initial individuals through the fitness
evaluation process performed via one or more genetic operators [61].

The basic discrepancy between the GP, GAs, and the GEP approaches lies in the
essence of the individuals; in the GP algorithm, the individuals represent the nonlinear
beings which have miscellaneous dimensions and forms. On the other hand, the GAs
incorporate the individuals as the linear strings with constant lengths. The GEP approach
also applies the individuals as the linear strings with consistent length but it expresses
them as the nonlinear beings with different dimensions and shapes.

To use the GEP method, generally, five elements are required: the terminal set, the
function set, the fitness function, the control factors, and the stop criterion [60,62]. In GEP,
solutions are represented as strings of symbols known as chromosomes. These chromosomes
consist of genes, which are typically represented as mathematical or logical functions or
operators. The solving process commences with the generation of a set of chromosomes in the
initial population. Afterward, each chromosome is represented as the expression trees. These
expression trees represent mathematical expressions or computer programs. GEP’s unique
feature is its use of expression trees to represent solutions. Then, all individuals undergo the
fitness evaluation operation.

GEP employs a genetic algorithm to evolve and improve the population of expression
trees over generations. This process involves selection, recombination (crossover), mutation,
and reproduction. Crossover involves the exchange of genetic material between two parent
expression trees, resulting in two offspring. Mutation introduces random changes to the
genes in an expression tree. Fitness functions are used to evaluate the performance of the
expression trees. Through this, the best fitted individuals are selected and transferred to the
next irritation. The surviving individuals are modified in each irritation, and the process
continues until the stop criterion is met [61]. In Figure 5, the GEP algorithm flowchart has
been depicted.

Therefore, in general, it can be said that the GEP algorithm uses the linear genomes
as the genetic basis, as well as the operators such as mutation, crossover, recombination,
inversion, and transposition. While it is typically advised to keep the mutation and inver-
sion rates at low values within the range of 0.01 to 0.1, the transposition and recombination
rates are commonly recommended to be in the moderate range of 0.1 to 0.4 [63].

The genomes are expressed by the chromosomes, and each chromosome is composed
of genes which are translated to solve a complex problem. One of the advantages of GEP is
its ability to discover mathematical relationships within data without prior knowledge of
the functional form of the equations. It is particularly useful when dealing with complex,
non-linear, or multidimensional data. GEP’s adaptability and capability to evolve both
the structure and content of expressions make it a powerful tool for symbolic regression
and automatic program generation. However, it may require careful parameter tuning
and significant computational resources, especially for complex problems. For detailed
information about the GEP algorithm see Ferreira’s book [63].
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Although the GEP algorithm is a potent tool to predict the unknown variables, the
overfitting issue may be a concern. In this research, to avoid overfitting, different strategies
such as population diversity, selection of larger datasets, and formulation of precise fitness
function were considered. It is worth mentioning that to avoid overfitting, the ensemble
methods and regularization techniques such as penalizing complex programs or using
techniques like Occam’s razor [64] can also be implemented [65]. The ensemble methods
can improve generalization performance and reduce the impact of overfitting [66].

3. Results
3.1. Empirical Correlations

Shear wave velocity can be calculated using some existing empirical equations pro-
posed by a number of researchers. In general, those empirical equations were developed
for particular rock types. In the current study, the rock type of the reservoir is limestone. In
Section 2.3.1, a number of available empirical correlations for limestone formations were
recounted. In this research, at first, the values of Vs were calculated using those equations,
and then, those calculated values were compared with the real Vs data obtained from the
DSI log. Figure 6 shows the plot of the real Vs log versus the graphs of Vs predicted by
those five existing empirical correlations.

Comparing the real Vs data with the Vs predicted by those five empirical correlations
shows that the Pickett equation delivers the most accurate predictions of the Vs values.
Therefore, after the potential calibration, this empirical correlation can be deployed in the
current oilfield.

Moreover, the values of the statistical indicators (R2, RMSE, and MAE) were used to
compare the accuracy of those empirical correlations. the simultaneous use of R2, RMSE,
and MAE provides a more comprehensive and balanced evaluation of a predictive model,
considering different aspects of its performance and helping to make more informed
decisions in various contexts [67,68]. Table 3 depicts the corresponding results. In this
table, the values of R2, RMSE, and MAE related to all five empirical correlations have
been tabulated.
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Table 3. The calculated values of R2, RMSE, and MAE for different empirical correlations.

Method R2 RMSE MAE

Castagna et al., 1998 [18] 0.49 1.02261 1.02161
Carroll, 1969 [15] 0.68 0.02358 0.02343

Wadhwa et al., 2010 [27] 0.67 0.01642 0.01627
Pickett, 1963 [14] 0.95 0.00042 0.00032

Anselmetti and Eberli, 1993 [23] 0.35 0.00825 0.00816

According to Table 3, the Pickett equation has a better correlation coefficient, RMSE,
and MAE value. This matter can be clearly seen in Figure 6. Concerning the Anselmetti
and Eberli equation, it can be observed that the predicted Vs graph is a straight line, thereby
calculating the Vs as a constant value (also see Figure 6). In fact, the Vs is a function of many
other geomechanical parameters such as in situ stress, poroelastic properties, fluid content,
etc., which cannot be represented only by rock density.

3.2. MLR Method

In well logging, each well log shows a series of the reservoir characteristics. If several
well logs are used to determine the properties of a reservoir rock, it leads to more reliable
results. Considering those characteristics, in this research, several well logs were deployed
to estimate the values of Vs. At the beginning of the analysis, two logs including the Vp and
PIGT, which showed strong correlations with the Vs data, were selected. Then, other logs
were added one after another. In Table 4, the R2, RMSE, and MAE values corresponding
to seven datasets imported to the MLR models have been tabulated.
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Table 4. The calculated statistical indicators (R2, RMSE, and MAE) values corresponding to the
different MLR models.

Dataset Input Parameters R2 RMSE MAE

Dataset 1 Vp and PIGT 0.95 0.000986 0.000893
Dataset 2 Vp, PIGT, and CAL 0.96 0.000976 0.000899
Dataset 3 Vp, PIGT, CAL, and PR 0.96 0.000993 0.000954
Dataset 4 Vp, PIGT, CAL, PR, and RT 0.96 0.000969 0.000891
Dataset 5 Vp, PIGT, CAL, PR, RT, and GR 0.96 0.000969 0.000910
Dataset 6 Vp, PIGT, CAL, PR, RT, GR, and RHOB 0.96 0.000310 0.000252
Dataset 7 Vp, PIGT, CAL, PR, RT, GR, RHOB, and TEMP 0.96 0.000881 0.000764

Comparing the results obtained from the different MLR models, it can be expressed
that the correlation coefficients for all datasets were nearly equal to 0.96; however, Dataset
6 gave the lowest RMSE and MAE value. Therefore, this dataset is more appropriate than
other datasets to derive an accurate estimation of the shear wave velocity from the MLR
method. Ultimately, using Dataset 6, the following equation was extracted:

Vs = −0.1180 + 0.456290 Vp − 0.000726 PIGT + 0.000141 CAL−
0.003617 PR + 0.000001 RT − 0.000005 GR + 0.119900 RHOB,

(10)

where Vp (ft/µs) and Vs (ft/µs) are compressional and shear wave velocities, respectively.
Furthermore, PIGT is porosity, CAL (in) is the caliper log, PR is the Poisson’s ratio, RHOB
(g/cm3) is density, GR (GAPI) is gamma ray, and RT (Ω·m) is the resistivity.

In Equation (10), it is evident that the coefficients for RT and GR parameters are
notably smaller compared to the other parameters. This suggests a potential limited impact
of these two parameters on the predicted Vs. To offer a more detailed understanding,
Table 5 provides the coefficients and the respective ranges for each independent parameter
incorporated in Equation (10). These coefficients reflect the sensitivity of the model to
changes in each parameter. As observed, RT and GR, having smaller coefficients, indicate
a relatively lower influence on the predicted Vs. Moreover, the wide ranges of these
two parameters demonstrate the variability of them across the dataset, contributing to
their limited impact on the overall model. This nuanced understanding enhances the
interpretability of Equation (10) and emphasizes the dominant role of other parameters in
predicting Vs within the studied geological context.

Table 5. Coefficients and ranges of parameters in Equation (10).

Parameter Unit Coefficient Range

Vp (ft/µs) 0.456290 0.0127–0.0205
PIGT - −0.000726 0.0036–0.2340
CAL in 0.000141 5.6562–10.5145
PR - −0.003617 0.2121–0.3745
RT Ω·m 0.000001 0.5456–7200
GR GAPI −0.000005 9.0195–65.0151

RHOB g/cm3 0.119900 2.3955–2.3400

Equation (10) was utilized to estimate the values of Vs in the geological profiles of the
wellbore studied in this research. Such results have been shown in Figure 7. In accordance
with the information shown in this figure, the accuracy of Vs predicted by the MLR method
(Equation (10)) is quite noticeable.
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3.3. GEP Method

In this study, GenXproTools 5.0 software was utilized for the purpose of estimating
the shear wave velocity through the GEP method. Furthermore, several tests with different
ratios of the training data to the testing data were performed to assess the efficiency of
the created GEP models. The relevant results have been shown in Table 6. As shown
in this table, the best applied ratio is 60% training data to 40% testing data; in this case,
the maximum values of R2 together with the minimum values of RMSE and MAE were
acquired. Thus, the optimal GEP model was built using 60% training data and 40%
testing data.

Table 6. Comparing the efficiency of different GEP models in estimating the Vs with different ratios
of training data to the testing data.

Training/Testing
Ratio (%) R2 (Train) R2 (Test)

RMSE
(Train)

RMSE
(Test)

MAE
(Train) MAE (Test)

90/10 0.961 0.886 0.000323 0.000317 0.000212 0.000235
80/20 0.960 0.917 0.000342 0.000283 0.000231 0.000207
70/30 0.956 0.947 0.000366 0.000218 0.000235 0.000198
60/40 0.956 0.958 0.000371 0.000231 0.000205 0.000175
50/50 0.944 0.960 0.000418 0.000277 0.000328 0.000201

Afterwards, the analysis was started using the Vp and PIGT logs. In fact, such a
dataset was selected since the Vp and PIGT logs exhibited a high correlation coefficient with
the Vs data (see Figure 4). Other parameters were added one by one to this input dataset.
The obtained results are shown in Table 7. Based on this table, Dataset 3 delivered the
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lowest values of RMSE and MAE values along with the highest values of R2 in comparison
to other datasets; hence, the best statistical indicators (R2, RMSE, and MAE) values were
satisfied by this dataset.

Table 7. The performance of different GEP models in Vs estimation using the different datasets.

Dataset Input Parameters R2

(Train) R2 (Test)
RMSE
(Train)

RMSE
(Test)

MAE
(Train)

MAE
(Test)

Dataset 1 Vp and PIGT 0.954 0.958 0.000378 0.000243 0.000234 0.000198
Dataset 2 Vp, PIGT, and CAL 0.954 0.958 0.000379 0.000239 0.000261 0.000186
Dataset 3 Vp, PIGT, CAL, and PR 0.960 0.961 0.000355 0.000199 0.000221 0.000132
Dataset 4 Vp, PIGT, CAL, PR, and RT 0.958 0.965 0.000364 0.000207 0.000242 0.000165
Dataset 5 Vp, PIGT, CAL, PR, RT, and GR 0.954 0.960 0.000382 0.000195 0.000268 0.000141
Dataset 6 Vp, PIGT, CAL, PR, RT, GR, and RHOB 0.958 0.961 0.000362 0.000224 0.000259 0.000163
Dataset 7 Vp, PIGT, CAL, PR, RT, GR, RHOB, and TEMP 0.956 0.958 0.000371 0.000231 0.000263 0.000184

The performance and precision of the GEP model for Dataset 3 are shown in Figures 8 and 9.
According to Figure 8, the correlation coefficients of the GEP model during the training
and testing processes were calculated as 0.960 and 0.961, respectively. Those values imply
that the accuracy of the Vs estimation using the GEP model is suitably appropriate for
the current study. Moreover, as shown in Figure 9, the relationship between the real and
estimated Vs values for training and testing steps are quite acceptable.

Finally, using the generated GEP model for Dataset 3, the following nonlinear equation
was acquired:

Vs =
4.29489300174138[(

7.70076553710087
Vp

)
+ (PR × CAL)

]
−
[
( 0.558213914646635

CAL )
PIGT

] , (11)

where Vp (ft/µs) and Vs (ft/µs) are compressional and shear wave velocities, respec-
tively. Furthermore, PIGT is porosity, CAL (in) is caliper log, and PR is Poisson’s ratio.
Equation (11) was used to determine the Vs in the wellbore A. The corresponding results
have been shown in Figure 10 and Table 8.
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Table 8. The calculated values of R2, RMSE, and MAE corresponding to the GEP model.

Method R2 RMSE MAE

GEP 0.972 0.000290 0.000208

Figure 10 displays the Vs values estimated by the nonlinear equation extracted from
the GEP method. The trend of this figure shows that such an equation is properly reliable
for the Asmari reservoir. This matter is corroborated by the acceptable values of R2, RMSE,
and MAE mentioned in Table 8.

Ultimately, the Vs values estimated by different methods were compared. Those
comparative results are depicted in Figures 11 and 12. As shown in Figure 11, Equation (1),
Pickett, MLR, and GEP models estimated Vs values close to the real Vs values. However, as
illustrated in Figure 12, the values of the statistical indicators (R2, RMSE, and MAE) for
those models are different. Based on those values, the accuracy of the different methods was
deduced as follows: GEP (the highest accuracy), MLR, Equation (1), and Pickett equation.
To sum up, it can be expressed that the nonlinear equations extracted by the GEP and
MLR methods deliver the best results. Thus, it is deduced that the GEP approach can be
successfully applied in Vs estimation for the study area as it delivers the most accurate
results with the lowest RMSE and MAE values.
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Figure 11. The real Vs data of the DSI logs versus the estimated values obtained by Equation (1),
Pickett, MLR, and GEP model.

The application of artificial intelligence techniques such as MLR and GEP has its own
benefits and drawbacks. A number of researchers have already developed some correlations
for Vs prediction using the different AI techniques such as fuzzy logic, ANN, ANFIS,
genetic algorithm, polynomial neural networks, etc. [5,69–71]. This research confirms the
findings of those researches which reported the significant capability of AI techniques in Vs
estimation. In this research, Equations (10) and (11) were established based on the MLR
and GEP techniques, respectively. In evaluating the performance of the GEP and MLR
models, it is essential to consider the trade-off between accuracy and robustness. The GEP
model, with its ability to capture complex relationships within the data, has demonstrated
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commendable accuracy in predicting outcomes. However, it is imperative to acknowledge
the potential challenges associated with model robustness, especially in the presence of
outliers or noisy data. On the other hand, the MLR model, being a simpler linear approach,
may exhibit greater robustness in the face of such challenges but might sacrifice some
accuracy in capturing intricate patterns. The choice between these models depends on the
specific characteristics of the dataset and the goals of the predictive task. Future research
will delve into refining the GEP model for enhanced robustness without compromising
its predictive accuracy, striking a balance that aligns with the specific requirements of the
application domain.
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Regarding the Aboozar oilfield, by employing the GEP method that ensures precise
Vs estimation, the geomechanical risks can be proactively managed, leading to safer and
more efficient drilling practices. The reduction in drilling costs is a direct outcome of the
improved predictability afforded by accurate Vs estimations, as it enables better planning
and resource allocation.

4. Discussion

This study focused on the comparison between the empirical and data-driven correla-
tions for Vs prediction in the Asmari formation, a limestone reservoir in the Kharg Island
offshore oilfields. Five different empirical correlations were utilized to estimate the Vs
values. Moreover, the LR technique was utilized to extract the linear correlations between
the real Vs and other well logging parameters. In addition, two data-driven models using
MLR and GEP were generated to estimate the Vs in the study area.

Based on the conducted research, it was found that in the absence of the adequate
number of geomechanical parameters, the Vp or PIGT (porosity log) can be utilized to
predict the Vs values through the simple linear regression. This hypothesis can be supported
by the fact that the Vp and porosity are better indicators for the velocity of shear wave
in porous fluid-bearing rocks. Fundamentally, the rock porosity is a determining factor
in the magnitude of rocks’ shear strength, which is of paramount importance in ground
movement, land subsidence, fluid motion, reservoir compaction, etc. [72]. The lack of
presence of the Vp and porosity in the developed mathematical correlations can intensely
reduce the precision of the estimated Vs values. This is why the Anselmetti and Eberli
equation, which links the Vs only to the rock density, delivered inappropriate results in this
research. Hence, it is suggested to give more attention to the Vs results when using this
correlation for Vs prediction in carbonate rocks.

This research highlights the potential of data-driven methods in accurately estimating
Vs, which is a critical parameter for geomechanical modeling in hydrocarbon reservoirs.
However, as it was analyzed, the accuracy of the data-driven models relies on the number
and type of the input well logging parameters. Thus, if an optimal set of appropriate
geomechanical parameters is not selected through a profound analysis, the different AI
algorithms may not necessarily deliver the accurate Vs values. Therefore, for the estimation
tasks performed using the AI algorithms, a preliminary analysis must be carried out to
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determine the number and the type of the rock parameters which will be imported into the
data-driven model.

In reservoir engineering, the shear wave velocity is an essential parameter to calculate
the mechanical properties of underground rocks. In the current research, the length of the
investigated geological profile was 150 m. The ground temperature along this profile was
approximately equal to 130 ◦C. If the investigated profile was much longer, it would be
expected that the Vs showed a better correlation with temperature variation. This is due to
the fact that the temperature variation changes the rheological characteristic of the rocks
containing pore fluids as well as the poroelastic properties of the rocks [73,74]. Hence, for
future works, investigations are suggested to be carried out to unveil the link between the
ground temperature and Vs variation.

Moreover, in this research, the rock density was approximately constant, equal to
2.4 g/cm3 for the whole depth interval (from 4350 m to 4500 m). The relationship between
Vs and density aids in characterizing the subsurface properties of reservoirs, helping in
hydrocarbon exploration and reservoir management by providing insights into the rock’s
rigidity and composition, though local calibration may be necessary for accuracy when
considering factors such as porosity, lithology, and diagenesis. Since the density of a
reservoir rock is closely tied to several critical reservoir characteristics, for future research
in the oilfield, a longer depth interval can be studied to evaluate the effect of change in the
rock density on the Vs variation.

The high prediction precision of both MLR and GEP techniques confirms the results of
previous investigations reporting the robustness of these algorithms in Vs estimation [46–51].
To improve the predictability of these techniques, two innovative works can be carried
out: the ensemble of the regression model [45,66] and the coupling of deep learning with
machine learning models [75]. Ensemble learning denotes a collection of methods employed
to merge the outcomes of numerous foundational models, aiming for superior performance
compared to any individual model within the ensemble [65]. The core principle of this
approach lies in the amalgamation of outputs from multiple models, which effectively
averages out the errors inherent in each base model. Several empirical investigations
have consistently indicated that ensemble models frequently exhibit enhanced accuracy in
comparison to their individual base models [66,76,77].

A judicious selection of Vs estimation methods, informed by empirical correlations or
advanced data-driven models, empowers petroleum engineers to navigate the complexities
of subsurface geology with confidence. This strategic approach not only aligns with cost-
effectiveness but also plays a decisive role in minimizing non-productive time, thereby
enhancing the overall success and sustainability of drilling endeavors [78].

5. Conclusions

The current research was conducted to compare the accuracy of different empirical
and data-driven correlations for Vs prediction in limestone reservoirs. The study area was
the Aboozar limestone reservoir located in the Persian Gulf. Different approaches including
five existing empirical correlations as well as the LR, MLR, and GEP techniques were
utilized for Vs prediction. The Vs values predicted by each method underwent validation
and comparison with the actual Vs data obtained from the well logging data.

Based on the conducted analysis, the Pickett empirical correlation showed more
reliability than other available empirical correlations. Hence, to conduct an ordinary
calculation of the Vs values, the Pickett equation can be utilized. Moreover, through the
LR analysis, a simple empirical correlation (Equation (1)) was derived for Vs estimation in
the oilfield. In that equation, the Vs was a function of only one parameter: the Vp. On a
positive note, the accuracy of Equation (1) was slightly better than the Pickett correlation.

Regarding the AI techniques, the MLR demonstrated that Vs can be estimated with
greater accuracy by incorporating additional parameters such as L, PIGT, PR, RT, GR,
and RHOB logs into the model. Moreover, the GEP model yielded the highest accuracy
while utilizing a reduced set of input parameters, including Vp, PIGT, CAL, and PR. This
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result demonstrated the success of the GEP method for Vs prediction in the study area,
emphasizing its potential as a valuable tool for future geomechanical modeling. The values
of statistical indices for Equation (11), which was extracted using the GEP algorithm, were
R2 = 0.972, RMSE = 0.000290, and MAE = 0.000208.

These findings have significant practical implications for the efficient management
of limestone reservoirs, and the optimization of the hydrocarbon production operations.
They can contribute to the development of more accurate geomechanical models, which
ultimately lead to enhanced operational efficiency within the energy sector.

For future works, it is recommended that the performance of the GEP method is
compared with other nonlinear AI-based techniques such as genetic programing (GP) and
genetic algorithms (GAs), etc. The extracted LR correlation of (Equation (1)) and data-
driven correlations (Equations (10) and (11)) can be utilized for the Aboozar limestone
reservoir and other global reservoirs where the geological characteristics are similar.
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