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Abstract: The Fabry–Pérot (FP) cavity is the essential component of an ultra-stable laser (USL) for
gravitational wave detection, which couples multiple physics fields (optical/thermal/mechanical)
and requires ultra-high precision. Aiming at the deficiency of the current single physical field
optimization, a multi-physics and multi-objective optimization method for fixing the cubic FP cavity
based on data learning is proposed in this paper. A multi-physics coupling model for the cubic FP
cavity is established and the performance is obtained via finite element analysis. The key performance
indices (V, wF, wF) and key design variables (d, l, F) are determined considering the features of the
FP cavity. Different data learning models (NN, RSF, KRG) are established and compared based on 49
sets of data acquired by orthogonal experiments, with the results showing that the neural network
has the best performance. NSGA-II is adopted as the optimization algorithm, the Pareto optimal front
is obtained, and the optimal combination of design variables is finally determined as {5, 32, 250}.
The performance after optimization proves to be greatly improved, with the displacement under the
fixing force and vibration test both decreased by more than 60%. The proposed optimization strategy
can help in the design of the FP cavity, and could enlighten other optimization fields as well.

Keywords: FP cavity; multi-physics coupling; finite element method; data learning; surrogate model;
evolutionary algorithm

1. Introduction

The high-finesse Fabry–Pérot (FP) cavity is one of the most vital components of ultra-
stable lasers (USLs), which have been widely used in several space missions such as LISA
(Laser Interferometer Space Antenna) [1], Taiji Program in Space [2], DECIGO (DECI-Hertz
Interferometer Gravitational wave Observatory) [3], Post-GRACE (Gravity Recovery and
Climate Experiment) [4], etc., as well as in other high-precision fields [5–10].

The Pound–Drever–Hall (PDH) method, by which the continuous-wave lasers are
locked to the resonance frequency of the FP cavity via high-speed and wide-band electronic
control system, is extensively employed in USLs [11,12]. The instability of a laser’s fractional
frequency is entirely defined by the length instability of the FP cavity, and perturbations of
this length must be minimized to ensure spectral purity [13]. Therefore, the designation of
the FP cavity must meet the demand of ultra-high precision coupling in multiple physics
fields (optical/thermal/mechanical), including its shape (cylindrical, cubic, spherical,
multiple-bore, midplane, etc.), fixing strategy (as small a deformation as possible), and
vacuum temperature control (getter and ion pumps, three or more layers of heat shielding,
etc.) [14–18].
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There have been numerous studies conducted on laser systems, including nonlinear
optical materials [19,20] and the design of optical cavities with different shapes [21–24].
A cubic FP cavity has the advantage of being force-insensitive, making it appropriate
for space missions [25]. Based on this idea, follow-up studies have developed several
ground-transportable USLs [26]. A typical USL system based on a cubic FP cavity is shown
in Figure 1 [27]. An FP cavity made of ultra-low-expansion (ULE) glass is attached to a tita-
nium bracket by four titanium screws, which support the truncated vertices symmetrically.
Gaskets made of PEEK are placed between the screws and the spacer for heat and vibration
insulation. In the center of the top and bottom surfaces, two mirrors (one planar and one
concave) are optically attached. Subsequently, the bracket is affixed to the inner heat shield.
Three heat shields employed in all, as depicted in Figure 1b, between which PEEK gaskets
are inserted to prevent heat transfer. Finally, the heat shields are secured to the vacuum
chamber using titanium screws. The ion and getter pumps maintain a high vacuum level
below 2× 10−6 Pa.

(a) FP cavity with bracket. (b) Cross-section view of assembly system.

Figure 1. USL system based on FP cavity.

As evident from the system composition above, The FP cavity’s performance is sig-
nificantly affected by the shape parameters of the cavity and the temperature fluctuation.
Mechanical simulations have been conducted on cubic FP cavities in many studies, pri-
marily focusing on the static deformation under fixing forces [25] and the variation in
performance of different materials [28]. However, as far as we know, there is currently no
research that specifically focuses on optimizing the design parameters of the FP cavity in
consideration of multi-physics field coupling, which this paper precisely addresses.

The rest of this paper is organized as follows. In Section 2, the multi-physics cou-
pling theory and the finite element method are introduced for problem modelling. The
performance results of the cubic FP cavity are thoroughly discussed in Section 3. Section 4
consists of the mechanical optimization process, through which the optimal combination of
key design parameters is obtained. Finally, Section 5 presents concluding remarks.

2. Multi-Physics Coupling Theory and Finite Element Method for FP Cavity
2.1. Multi-Physics Coupling Theory

Multi-physical field coupling plays an essential role in understanding and optimizing
complex systems involving multiple interactive physical phenomena, helps informed
decisions to be reached and making for improved performance and reliability. According to
the conservation of energy, the total energy consists of the conductive heat and the radiation
heat. The heat conduction equation for the temperature distribution of optical components
over time is [29]

ρc
∂T
∂t

= κ

[
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

]
+ qa. (1)
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where ρ, c, and κ are the material density, specific heat capacity, and thermal diffusivity,
respectively, t is the time, and qa is the laser energy absorbed per unit volume. The latter
can be represented as

qa(x, y, z, t) = β(x, y, z)I(x, y, t), (2)

where β(x, y, z) is the volume absorption rate and I(x, y, t) is the distribution of laser
intensity

I(x, y, t) = P0 f (o, e). (3)

In the above equation, P0 is the beam power and f (o, e) is the distribution of the
disposed beam, which is often considered Gaussian:

f (o, e) =
1

2πσ2 exp
(
− d2

2σ2

)
, d =

‖e× (x− o)‖
‖e‖ (4)

where o is the beam origin point, e is beam orientation, x is point position, d is the squared
distance from the beam axis, and σ is the standard deviation.

The laser energy absorbed by the surface is used as the thermal boundary condition,
considering the thermal radiation of the surface, yielding

κ
∂u(x, y, z, t)

∂z

∣∣∣∣
∂Ω

= η I(x, y, t) + εσA(T4
amb − T4). (5)

We assume that the initial temperature distribution is uniform:

u(x, y, z, t)|t=0 = T0, (6)

where η is the surface absorptivity, T0 is the initial distribution, ∂Ω is the boundary of the
part, ε is the surface emissivity, σ is the Stefan–Boltzmann constant, A is the surface area,
Tamb is the ambient temperature, and T is the temperature of heat radiation sources.

Combining the thermal conduction Equation (1) with the following Equation (7), the
deformation of the component can finally be obtained:

∇2u +
1

1− 2ν
∇(∇ · u) = 2(1 + ν)

1− 2ν
αT∇T (7)

where u is the displacement field, ν is the Poisson’s ratio, αT is the linear thermal expansion
coefficient, T is the internal temperature distribution, and ∇ is the Hamilton operator.

For the purpose of modelling the interaction between different physical fields, we
adopted COMSOL multiphysics as the simulation platform [30].

2.2. Finite Element Method and Model Establishment

The finite element method (FEM), which originated in the early 1960s, is by far the
most commonly used approach in the numerical analysis and engineering fields [31]. We
take a multidimensional steady-state heat conduction process as a model problem, which
can be described by the Poisson equation with homogeneous boundary conditions:

−∇2u = f in Ω,

u = 0 on ∂Ω,
(8)

with domain Ω ⊂ Rd, where u is the unknown function to be solved and f is the known
function (source term). The weak form of Equation (8) can be achieved by choosing a
function v from a space U of smooth functions, then forming the inner product of both
sides with v, i.e.,

−
〈
∇2u, v

〉
= 〈 f , v〉. (9)

Assume that in addition to having the necessary smoothness, the functions which
are to be the solutions satisfy the boundary conditions; the space U of the test functions is
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of the form U =
{

v : v ∈ C2(Ω), v = 0 on ∂Ω}. More concretely, let d = 2; then, the weak
form of Equation (8) is provided by∫∫

Ω
∇u · ∇vdxdy =

∫∫
Ω

f vdxdy. (10)

To obtain a numerical method, it is required that U be finite-dimensional with basis
{u1, . . . , un}. Then, the approximate solution uh of Equation (8) can be represented as

uh =
n

∑
j=1

cjuj. (11)

When a basis has been chosen for the approximation space U, the next step is to
determine the coefficients cj in Equation (11). By inserting uh into the weak form of
Equation (10) and selecting the basis functions of U as the trial functions v, a system of
equations ∫∫

Ω
∇
[

n

∑
j=1

cjuj

]
· ∇uidxdy =

∫∫
Ω

f uidxdy, i = 1, . . . , n (12)

is obtained, which is known as the Ritz–Galerkin method and can be written in matrix form
as Ac = b, where A is the stiffness matrix

Ai,j =
∫∫

Ω
∇uj · ∇uidxdy. (13)

3. Results and Analysis of Multi-Physics Coupling
3.1. Displacement Distribution of FP Cavity under the Fixing Force

Taking into account the thermal effect of the laser beam in optical and thermal coupling,
the magnitude of the beam power P0 in Equation (3) was set to 10−4 Watt. In thermal and
mechanical coupling, the heat radiation to the environment (default 20 ◦C) and heat
conductivity were taken into consideration. In addition, the temperature fluctuation of
the vacuum chamber was assumed as 10−3 Kelvin. Then, the finite element model was
assigned materials, meshed, and imposed constraints in a solid mechanical analysis. A
fixed force of 200 N was applied to each of the four truncated symmetrical vertices. Finally,
a virtual prototyping multi-physics coupling model was established and the results were
calculated by FEM.

The displacement and Von Mises stress distribution of the FP cavity under the fixing
force is shown in Figure 2, with the color map scaled logarithmically for better visualization.
It is evident that the displacement and stress amplitude are higher at the four supporting
vertices, which have symmetrical distributions as a result of the given fixing strategy. The
performance index that should receive the most emphasis is the cavity length change, that
is, the displacement of the cavity along the Z axis. Therefore, the Z component displacement
of the plane mirror, the concave mirror, and the cavity length change, i.e., the sum of the
above two, are shown in Figure 3. It can be seen that the displacement of the two mirrors
is symmetrical about the line of 45◦ and −45◦, respectively. In order to further study
the variation characteristics of the cavity length change ∆L, two stripe regions of data in
Figure 3c with a width of 2 mm along the 45◦ and −45◦ were extracted separately. Each
consisted of a total of 40,000 data points and was converted to a one-dimensional signal.
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(a) Distribution of displacement. (b) Distribution of Von Mises stess.

Figure 2. Displacement and Von Mises stress distributions.

(a) Displacement of plane mirror. (b) Displacement of concave mirror. (c) Displacement of cavity length.

Figure 3. Z component displacement of mirrors.

Next, a noise-assisted data analysis method called Ensemble Empirical Mode Decom-
position (EEMD) is introduced, which consists of an ensemble of workers, each performing
Empirical Mode Decomposition (EMD) on a copy of the input signal with added noise.
The mean of these EMD results is considered the final result [32]. EMD recursively decom-
poses a non-stationary signal into data-dependent basis functions termed Intrinsic Mode
Functions (IMFs) [33]. In the EEMD process, white noise with a standard deviation of 0.1 is
added for the calculation and the number of realizations is set to 100. The EEMD results for
the cavity length change along 45◦ and −45◦ are shown in Figure 4. It can be concluded
that the data comprise a fundamental half-sinusoidal component with a low frequency
(IMF6) along with other higher-frequency components. The spectral kurtosis (SK) is a com-
mon dimensionless time series statistic for detecting and characterizing non-stationarities
in a signal that can reflect the random distribution of time series data. A high SK level
corresponds to a high level of nonstationary or non-Gaussian behavior [34,35]. The spectral
kurtosis of the cavity length change ∆L along 45◦ and −45◦ are computed and visualized
by kurtograms as shown in Figure 5, for respectively detecting and characterizing the non-
stationarities in a signal. The kurtogram uses the normalized frequency, i.e., the sample rate
is set to 40,000 Hz for time normalization to 1 s. The kurtograms reveal that the maximum
K value is higher in the −45◦ direction compared to the 45◦ direction, with both directions
exhibiting low levels at Kmax, which indicates that the impact of random signal fluctuations
with high frequencies is negligible.
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(a) EEMD of ∆L along 45◦ direction.

0

5

10

S
ig

n
a
l

10
-7

-2

0

2

IM
F

1

10
-8

-2

0

2

IM
F

2

10
-8

-2

0

2

IM
F

3

10
-8

-2

0

2

IM
F

4

10
-8

-1

0

1

IM
F

5

10
-8

0

2

4

IM
F

6

10
-7

0 0.5 1 1.5 2 2.5 3 3.5 4

10
4

0
2
4
6

R
e
s
id

u
a
l 10

-7

Ensemble Empirical Mode Decomposition

Point

A
m

p
lit

u
d

e

(b) EEMD of ∆L along −45◦ direction.

Figure 4. EEMD results of cavity length change along the 45◦ and −45◦ directions.
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(b) Kurtogram of ∆L along −45◦ direction.

Figure 5. Kurtogram of cavity length change along the 45◦ and −45◦ directions.

3.2. Analysis of Cavity Length Change under the Random Vibration Experiment

During aerospace missions, it is imperative to perform vibration tests on the FP cavity,
which is one of the weakest components of a USL. Table 1 displays the parameters for
random vibration testing using the Long March 5 rocket platform [36]. The test consists of
three successive stages: rising, holding, and falling. Moreover, the parameters are more
stringent than actual launch conditions to guarantee payload reliability.

Table 1. Parameters of the random vibration tests.

Frequency Range/Hz Power Spectral Density

10~50 3 db/oct (rising slope)
50~300 0.25 g2/Hz (holding value)

300~2000 −12 db/oct (falling slope)

The displacement power spectrum densities of the cavity length change responses
at different points along the circle of radius 5 mm and 2.5 mm are shown in Figure 6.
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Various PSD responses along the logarithmic frequency curves at eight points every 45◦

around the circumference are presented, which first increase, then remain constant, and
finally decrease as the test progresses. The PSD value at 180◦ is the highest, with radius
5 mm, while the lowest value occurs at 315◦. By contrast, the PSD values along radius
2.5 mm at 45◦, 135◦, 225◦, and 315◦ are far more than others (almost zero), which indicates
a more complicated ∆L distribution under the vibration test. Therefore, the parameter of
100 Hz which corresponds to the maximum PSD value of the FP cavity is chosen for the
next analysis.

(a) PSD of ∆L along the circle of radius 5 mm. (b) PSD of ∆L along the circle of radius 2.5 mm.

Figure 6. Displacement power spectrum density of the cavity length change.

Figure 7 shows the displacement and Von Mises stress distribution under the frequency
of 100 Hz, where the color map is logarithmically scaled. Interestingly, the variation of the
distribution is non-uniform, i.e., there are local maxima in addition to the four supporting
areas, especially on the mirror surface. The Z component displacement of the plane
mirror, the concave mirror, and the cavity length change are shown in Figure 8. It can be
observed that the cavity length displacement has local maxima and minima around the
circumference at 2.5 mm and 5 mm radii. Similarly, two stripe regions of data in Figure 8c
with a width of 2 mm along the 45◦ and −45◦ were extracted separately and converted to a
one-dimensional signal.

(a) Distribution of displacement. (b) Distribution of Von Mises stess.

Figure 7. Displacement and Von Mises stress distributions at frequency 100 Hz.
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(a) Displacement of plane mirror. (b) Displacement of concave mirror. (c) Displacement of cavity length.

Figure 8. Z component displacement of mirrors.

The EEMD results of the cavity length change along the 45◦ and−45◦ directions under
the vibration test are shown in Figure 9. In the EEMD process, white noise with a standard
deviation of 0.6 is added for the calculation and the number of realizations is set to 200. The
IMFs are more complex compared to the fixed force condition’s cavity length change, and
additionally suffer from frequency aliasing (IMF3-6). The pattern of the EEMD results is
almost identical along both directions, as the two sets of data appear to be highly similar.
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(a) EEMD of ∆L along 45◦ direction.
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(b) EEMD of ∆L along −45◦ direction.

Figure 9. EEMD results for the cavity length change along the 45◦ and−45◦ directions in the vibration
test.

The kurtogram of the cavity length change ∆l data along the 45◦ and −45◦ directions
during the vibration test are respectively computed and visualized in Figure 10. It can
be seen that there is a higher maximum K value in the −45◦ direction compared to the
45◦ direction, with both directions exhibiting low levels at Kmax, indicating that transient
fluctuations of the signal have little influence, even if it appears highly nonstationary.
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(a) Kurtogram of ∆L along 45◦ direction.
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(b) Kurtogram of ∆L along −45◦ direction.

Figure 10. Kurtogram of the cavity length change along the 45◦ and −45◦ directions under the
vibration test.

4. Mechanical Optimization for Fixing a Cubic FP Cavity
4.1. Determination of Design Spaces and Performance Indexes

In Section 3, the variation regularity of the cavity length was calculated and visualized
through a multi-physics coupling and signal processing method. The cavity length change
is expected to be minimal in all circumstances; consequently, the maximum displacement
of the cavity length wF under the supporting force and the maximum displacement of the
cavity length wvib under the random vibration test are determined as performance indexes.
In addition, the volume of the cubic cavity V is used as a performance index to ensure a
lighter weight.

Apparently, the cavity length change is determined by the mechanical structure.
However, there are only a few parameters that can be varied to optimize the cubic FP cavity.
As shown in Figure 11, the truncating length of the FP cubic edge l, the diameter of the
center hole d, and the magnitude of the supporting force F applied on four vertices are
determined as the key design variables.

d

F

ll

Figure 11. Cavity design variables.

Considering a reasonable range of the design space in practical engineering, the
optimization problem of the FP cavity can be expressed as

min
x

O(x) = [V(x), wF(x), wvib(x)]T

s.t. x1 = d ∈ [5, 13] mm,

x2 = l ∈ [20, 45] mm,

x3 = F ∈ [100, 400] N.

(14)
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4.2. Orthogonal Experiments: Design and Implementation

The orthogonal experimental design, which has been widely used in the engineering
optimization field [37], is an efficient and economical technique that uses uniform orthog-
onal combinations of the design parameters to represent the characteristics of the entire
design space. For optimization of the FP cavity, an orthogonal experiment containing 49
sets of the design parameters was conducted according to the design space in Equation (14).
The corresponding results are shown in Table 2.

Table 2. Orthogonal experiment design and results.

Number d/mm l/mm F/N V/m3 (×10−4) wF /mm (×10−7) wvib/mm (×10−21)

1 5 20 100 9.854 7.842 4.145
2 5 25 200 9.752 14.827 2.064
3 5 30 300 9.601 17.132 5.376
4 5 35 400 9.389 14.815 4.837
5 5 40 150 9.107 3.606 0.132
6 5 45 250 8.746 14.391 1.073
7 5 20 350 9.854 27.447 6.374
8 5 20 200 9.854 15.684 6.743
9 5 25 300 9.752 22.240 0.914
10 5 30 400 9.601 22.843 0.523
11 7 20 400 9.800 40.118 17.790
12 7 25 150 9.699 13.495 0.635
13 7 30 250 9.547 19.568 11.998
14 7 35 350 9.335 17.763 2.962
15 7 40 100 9.054 3.706 2.251
16 7 45 200 8.692 14.024 5.684
17 7 25 300 9.699 26.989 1.270
18 7 35 150 9.335 7.613 3.432
19 7 40 250 9.054 9.265 1.705
20 7 45 350 8.692 24.541 1.662
21 9 20 350 9.730 46.076 10.823
22 9 25 100 9.629 12.392 3.465
23 9 30 200 9.477 21.960 0.461
24 9 35 300 9.265 25.628 8.813
25 9 40 400 8.984 24.200 9.371
26 9 45 150 8.622 13.379 4.828
27 9 30 250 9.477 27.450 4.631
28 9 45 100 8.622 8.919 0.530
29 9 20 150 9.730 19.747 1.841
30 9 25 250 9.629 30.980 3.798
31 11 20 300 9.645 55.853 4.380
32 11 25 400 9.543 70.869 16.213
33 11 30 150 9.391 24.309 5.896
34 11 35 250 9.180 33.908 15.272
35 11 40 350 8.898 37.615 0.556
36 11 45 100 8.536 11.767 0.636
37 11 35 200 9.180 27.126 0.652
38 11 30 350 9.391 56.720 9.568
39 11 35 100 9.180 13.563 4.416
40 11 40 200 8.898 21.494 5.854
41 13 20 250 9.544 62.855 3.054
42 13 25 350 9.442 85.326 21.218
43 13 30 100 9.291 22.917 3.813
44 13 35 200 9.079 42.097 14.350
45 13 40 300 8.797 54.660 0.338
46 13 45 400 8.436 59.989 17.794
47 13 20 400 9.544 100.568 30.596
48 13 40 150 8.797 27.330 0.169
49 13 45 300 8.436 44.992 7.038
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4.3. Establishment and Comparison of Data Learning Models

In order to establish the nonlinear relationship between the design variables and the
performance indexes, the neural network (NN) was initially selected as the fitting model.
The working mechanism of a single neuron can be described by

hθ(x) = g(
n

∑
i=1

ωixi + b), (15)

where xi is the input of the neural network, b is the bias, ω represents the corresponding
weights, which are the parameters to be learned, and g(·) is the activation function, with
sigmoid and ReLU among the most commonly used [38]. A network of neurons organized
hierarchically is called a neural network. To minimize the loss function, the gradient
descent method was applied through forward propagation and backpropagation as well as
through repeated iterations according to the chain rule.

The samples in Table 2 were divided into 90% for training and 10% for testing. The
layer size was determined as 40 and Bayesian regulation was adopted as the training
algorithm. Figure 12 illustrates the training performance of the neural network model after
1000 epochs. Clearly, the neural network with a very small fitting error (10−11) exhibits
excellent performance.
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Figure 12. Training results of the neural network.

To further compare the performance level of different fitting models, two surrogate
models, i.e., the quadratic response surface model and the Kriging model, were selected
and established for comparison [37]. The complete quadratic response surface model (RSF)
with ten unknown parameters is defined by

yRSF(x) = a0 +
3

∑
i=1

aixi +
3

∑
j=1

ajxj
2 +

3

∑
i=1

3

∑
j=1,j 6=i

aijxixj =
[
1, x, x2, x1x2, x1x3, x2x3

]
· C, (16)

where yRSF(x) is the quadratic response surface function, the regression coefficients a0, ai,
aj, and aij are the constant term, the primary term, the quadratic term, the cross terms of
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the complete quadratic response surface model, respectively, C is the coefficient matrix of
the quadratic response surface function, and the response surface coefficients can be fitted
using the least squares method.

The Kriging response function yKRG(x) is comprised of two parts, namely, a regression
model and a Gaussian correlation model:

yKRG(x) = β f (x) + z(x) (17)

where f (x) is the global basis function, β is the regression coefficient, and z(x) is the
Gaussian correlation function, for which the mathematical expectation and covariance are
provided by

E(z(x)) = 0

Cov(z(xi), z(xj)) = σ2R(θ, xi, xj)

R(θ, xi, xj) =
q

∏
d=1

exp(−θd
∣∣∣xd

i − xd
j

∣∣∣pd

),

(18)

where σ2 is the variance, θ is the unknown parameter of association, and R(θ, xi, xj) is the
correlation function of points xi and xj. For some point x, the predictive value calculated
by the Kriging model is

∧
y(x) =

∧
β f (x) + rT(x)R−1(Y−

∧
β F), (19)

where rT(x) is the covariance matrix between the unknown and known point, Y is the
target value matrix of the sample point, and F represents the basis function matrix of the
known points.

A test set of five points was used for model validation; the comparison results between
the NN and surrogate models are shown in Figure 13. While the three models performed
quite well overall, the prediction accuracy of all three models decreases for the volume,
displacement under fixing force, and displacement under vibration test. This is likely
because the volume variation along the design parameters is the most linear among the
three indexes, followed by wF and lastly wvib. As the variation of the index becomes more
nonlinear, prediction using the models becomes increasingly challenging.
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Figure 13. Comparison of neural network and surrogate model predictions.

The root mean square error (RMSE) is adopted as a performance indicator:

RMSE =
1

myExp

√
m

∑
i=1

(yExp
i − yRSM

i )
2

(20)
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where m is the sample number of the sample training set, yExp
i is the experiment result,

yRSM
i is the prediction at i-th point of response surface model, and yExp is the average of

experiment points. The fitting accuracy is higher when the RMSE of the fitting model is
closer to 0.

The RMSE results of the three prediction models are shown in Table 3. It is evident that
the neural network model provides higher accuracy compared to other models, with the
KRG model having the largest error. Model performance directly impacts the algorithm’s
accuracy when searching for the optimal solution; therefore, the neural network model was
used in the next optimization process.

Table 3. RMSE comparison of prediction models.

Model V /% wF /% wvib/%

NN 0.12 0.79 2.49
RSF 0.10 1.43 4.76
KRG 0.27 1.56 4.63

4.4. Evolutionary Algorithm Optimization and Performance Verification

An evolutionary algorithm (EA) is a type of stochastic optimization method inspired
by natural processes, especially natural selection in biological evolution; examples include
genetic algorithms, particle swarm optimization, ant colony algorithms, and more [39]. EA
approaches are used to solve complex optimization and search problems where traditional
optimization techniques may struggle. As a typical and proven effective evolutionary
algorithm, the Non-Dominated Sorting Genetic Algorithm II [40] (NSGA-II), which uses
a fast non-dominated sorting algorithm, sharing, elitism, and crowded comparison, was
adopted to search for the optimal combination of design variables.

Specifically, the NSGA-II configuration starts with an initial population of 1000
and uses the previously well-trained NN model to continuously evaluate the popula-
tion’s performance at each generation. Figure 14 displays the Pareto-optimal front after
100 generations of evolution.
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Figure 14. Pareto optimal surface.

The solution set of the Pareto optimal front surface consists of optimal points that
are mutually non-dominant, which means that each point in the Pareto optimal front may
be the optimal solution. In most engineering cases, practicality and convenience must
be taken into account as well. After subtle selection, the final optimal combination of
design variables is determined as {5, 32, 250}. The multi-physics model with the optimal
parameters was then established and evaluated. A performance comparison showing the
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results before and after optimization is presented in Table 4. It is satisfying to note that the
performance indices are all better than they were before optimization by fine-tune the value
and combination of design variables, especially with regard to the displacement under the
fixing force and vibration test, both of which are decreased by more than 60%. This ultimate
outcome validates the effectiveness of the proposed multi-physics coupling optimization
strategy based on data learning.

Table 4. Performance comparison before and after optimization.

d/mm l/mm F/N V/m3(×10−4) wF /mm (×10−7) wvib/mm (×10−21)

Before 10 25 200 9.588 14.858 7.626
After 5 32 250 9.524 5.658 2.852

∆ −50% +28% +25% −1% −62% −63%

5. Conclusions

In this paper, a multi-physics and multi-objective optimization strategy for fixing a cu-
bic Fabry–Pérot cavity based on data learning is proposed, consisting of the following three
items:

1. Performance indices acquired by multi-physics coupling simulation and key design
variables determination: a multi-physics model for the cubic FP cavity is established
and the performances under fixing force and random vibrations are obtained via
finite element analysis, then the key performance indices (V, wF, wF) and key design
variables (d, l, F) are determined considering the features of the FP cavity.

2. Training data are obtained by orthogonal experiment and a fitting model is established
based on a neural network: 49 sets of data obtained from the orthogonal experiment
are used to establish and compare different data learning models (NN, RSF, KRG),
with the results indicating that the neural network has the best performance.

3. Finally, an optimized combination of key design variables is obtained using an evo-
lutionary algorithm: NSGA-II is adopted as the optimization algorithm, the Pareto-
optimal front is obtained, and the optimal combination of design variables is finally
determined as {5, 32, 250}. The performance after optimization demonstrates a great
improvement, with the displacement under the fixing force and vibration test both
decreasing by more than 60%.

In conclusion, the method we have proposed here significantly improves the mechani-
cal performance of the FP cavity and shows great application potential. In the future, we
anticipate the application of this optimization strategy in various situations and fields.
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