
Citation: Gong, J.; Zhang, B.; Liu, Y.;

Lu, J.; Ma, Y.; Cao, Y. An Intelligent

Chinese Driver Road Performance

Assessment Model (RPAM) for

Future Licensing Examinations. Appl.

Sci. 2023, 13, 13066. https://doi.org/

10.3390/app132413066

Academic Editor: Dimitris Mourtzis

Received: 29 October 2023

Revised: 21 November 2023

Accepted: 4 December 2023

Published: 7 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

An Intelligent Chinese Driver Road Performance Assessment
Model (RPAM) for Future Licensing Examinations
Jianguo Gong 1,2,†, Boao Zhang 3,†, Yibing Liu 2, Jiayi Lu 3, Yuan Ma 3 and Yaoguang Cao 3,*

1 School of Transportation, Southeast University, No. 2 Southeast University Road, Nanjing 211189, China;
gongjianguo2012@sina.com

2 Research Institute for Road Safety of MPS, Beijing 100062, China; 18811072046@163.com
3 School of Transportation Science and Engineering, Beihang University, Beijing 100191, China;

oliverzboy@buaa.edu.cn (B.Z.); lujiayi@buaa.edu.cn (J.L.); mayuan@buaa.edu.cn (Y.M.)
* Correspondence: caoyaoguang@buaa.edu.cn
† These authors contributed equally to this work.

Abstract: As the demand for private vehicles rises, there has been a gradual increase in the number of
motor vehicles on the roads, leading to a growing concern about addressing traffic safety. Currently,
China’s approach to assessing driver capabilities remains rooted in traditional, non-intelligent, and
standardized evaluation methods based on examination subjects. The traditional model often falls
short in providing constructive feedback on a driver’s real-world vehicle handling abilities, as
many of the examination subjects can be practiced in advance to achieve a mere passing result,
which, undoubtedly, increases the likelihood of underqualified drivers on the road. To address the
issues of the current examination-oriented driver evaluation system in China, we propose a road
performance assessment model (RPAM) that assesses drivers comprehensively by evaluating their
road environment perception and vehicle operation abilities based on an in-vehicle and out-vehicle
perception system. The model leverages patterns of the driver’s head posture, along with real-time
information on the vehicle’s behavior and the road conditions, to quantify various performance
metrics related to reasonable operation processes. These metrics are then integrated to generate a
holistic assessment of the driving capabilities. This paper ultimately conducted tests of the RPAM on
one actual examination route in Beijing. Two drivers were randomly selected for the examination. The
model successfully computed the overall ability scores for each driver, validating the effectiveness.

Keywords: driver ability; intelligent system; assessment model; system architecture

1. Introduction

With the rapid progress of electrification and automation in the automotive industry,
vehicles have experienced significant advancements in their automation levels and ease
of operation [1]. This has made their operation and control more accessible for human
drivers. However, the number of traffic accidents caused by driver violations or improper
vehicle handling on the roads has not shown a significant decline [2]. While advanced
driver assistance systems (ADASs) and other autonomous technologies can mitigate the
risk of collisions to some extent, they cannot entirely compensate for the deficiencies in
environmental perception and behavioral execution exhibited by some drivers [3,4].

To enhance overall road safety in urban environments, it is essential to address the
issue of driver capabilities [5]. This involves improving the standards for driver com-
petency testing and capability assessment, selecting individuals who are genuinely pre-
pared for safe road operation, and eliminating those who pass tests primarily due to
exam-oriented preparation.

China, as a nation with a substantial number of driver examinations each year, cur-
rently relies on a standardized and formulaic evaluation system to expedite driver compe-
tency testing. The existing Subject 3 examination employs a machine that uses a simple
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base station GPS for vehicle positioning, roadside RSUs (roadside units) for real-time trans-
mission of traffic signals and road signs status, and pre-established points on a fixed course
to evaluate candidates. While this system can identify some driver errors resulting from
improper operations, such as driving over lane boundaries or running red lights, it still
requires the presence of a safety judge in the front passenger seat of the vehicle to assess
potential conflicts with the environment. The safety judge checks adherence to qualified
driver norms and driver distractions. Sometimes, their evaluation is subjective and may
be subject to external influences, like personal interactions and dealings, rendering the
Subject 3 examination less intelligent and standardized.

Furthermore, the current Subject 3 examination consists of individual sub-tests with
specific objectives, and candidates often perform predefined actions on familiar road
segments. Some relatively straightforward skills, such as high-speed vehicle control,
are assessed in overtaking exercises, while adjustments to vehicle angles during move-
ment are evaluated in turning exercises. This compartmentalized approach not only
oversimplifies the comprehensive evaluation of a driver’s abilities but also lacks rationality
and transparency.

In response to the existing exam-oriented and non-theoretically validated Subject 3
examination, this paper proposes a de-subproject, scenario-based, and de-processed driver
road performance assessment approach with an in-vehicle and external vehicle integrated
perception system. We conducted an examination of road testing methods and charac-
teristics in other international regions. The prevailing driver competency assessment
systems [6,7] predominantly employ statistical approaches for testing, posing significant
challenges in practical exam application. This limitation renders them ineffective in the
context of the extensive scale of driving examination demands, such as those encountered
in China. Our approach is characterized by its intelligent assessment ability and consid-
ers a driver’s environmental perception and behavioral capabilities in both routine and
high-risk emergency scenarios, aided by high-precision maps and information from inside
vehicles. Its aim is to replace the current China Subject 3 evaluation process to enhance the
assessment of drivers’ real capabilities for road operation.

This article is organized as follows: We comprehensively outline the derivation process
and application methods of the proposed intelligent driver RPAM in the second section.
In the third section, we detail the hardware requirements and accompanying software
solutions necessary for deploying the RPAM in real-world vehicle setups. In Section 4, we
present the vehicles utilized in our testing experiments and highlight the performance of the
assessment model. Finally, in the last section, we summarize the achievements of this study
and provide a glimpse into the future prospects of intelligent driver assessment models.

2. Driver Road Performance Assessment Model

The road performance assessment model incorporates a holistic evaluation of multiple
scenarios along with real-time confidence value estimations. The overall framework is
illustrated in Figure 1.

The RPAM conducts separate assessments of the driver’s perception and control
capacities for each scenario. It computes the overall performance score by tallying the total
number of scenarios successfully navigated in each testing round. Concurrently, it utilizes a
confidence value model to dynamically gauge the driver’s operational status. In instances
where the confidence value falls below a predefined threshold, the test is immediately
deemed unsuccessful. The subsequent sections in this chapter will expound in detail upon
the evaluation methodology employed by the RPAM.
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Figure 1. The RPAM overall structure.

2.1. Driver Perception Capability Assessment

The first stage of driver assessment quantitatively assesses the driver’s environmental
perception capability. This assessment is based on the area covered by the driver’s field
of view, which includes both the directly scanned area and the indirectly reflected area
in the rear-view mirrors. The evaluation of a driver’s environmental perception capa-
bility involves calculating the area within the driver’s line of sight where their attention
is focused.

In accordance with pertinent research, we defined specific parameters for this assess-
ment. We assumed that the driver’s field of vision encompasses an angle of 60 degrees,
with their attention span extending over a distance of 50 m (through consultations with
internal experts from the Research Institute for Road Safety of MPS China). To streamline
the computation of the field of vision in our practical vehicle application, we simplified the
observed circular arc by dividing it into three triangular regions, as illustrated in Figure 2.
This simplification was employed to reduce computational complexity, especially at the
boundaries of the arc in radians.

10
20(a) (b)

1

2

3

Figure 2. The simplified observed area.

Figure 2a represents the driver’s observation area, which takes the form of a circular
arc. Figure 2b shows a simplified representation of the observation area. The gap between
the first point and second point is 20 degrees, and between the central and second points
it is 10 degrees. When a vehicle traverses an intersection, the driver’s head undergoes
rotational movements due to the act of observation, causing changes in the position and
orientation of the simplified observation area.

To calculate the area observed by the driver when entering the intersection scene,
encompassing the stages prior to entering and being within the intersection, we devised a
method to compute the intersection and union of polygons. Given that the aforementioned
polygons are non-concave, we applied the Sutherland–Hodgman clipping algorithm to
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compute the intersection [8]. The union of the polygons was then determined by merging
the results obtained from two iterations of the Sutherland–Hodgman algorithm, where the
source and clipping polygons are exchanged [9].

Additionally, we determined the environmental perception capability score based on
the observed area in relation to the total scene area. The area of an observed and overall
polygon were then calculated using Equation (1), where (x, y) are the coordinates of the
points on the outline of the region.

Sizepolygon =
1
2
|

i=n

∑
i=1

(xiyi+1 − xi+1yi)| (1)

The driver score for the ability to observe can be calculated using Algorithm 1. n in
the equation represents the number n vertex of the polygon.

Algorithm 1 Calculation of the observed assessment score

if vehicle enters ’test start mark’ then
while not vehicle enters ’intersection mark’ do

HeadOrientation← (HeadRotationAngle, VehicleHeading)
PolygonP1 ← HeadOrientation
Polygonview ← intersect(PolygonP1 , Polygonroad)
if first frame then

continue
else

Polygonview ← union(Polygonview, Polygonlast)
end if
Polygonview = Polygonlast

end while
Sizeview ← Polygonview
Sizeroad ← Polygonroad
ratio = (Sizeview/Sizeroad)
if ratio <= 0.5 then

Score = 0
else

Score = 100 ∗ (ratio− 0.5)/0.5
end if

end if

We posit that drivers should complete their environmental observation before their
vehicle formally enters an intersection; hence, the assessment of environmental perception
capabilities will commence at the moment of entry into the testing scenario and conclude
upon entry into the intersection. In the case of lane-changing scenarios, an observation
is considered to be completed when the driver’s field of vision scans the area where the
rear-view mirror is located. A left lane change involves scanning the left rear-view mirror
area, while a right lane change pertains to scanning the right rear-view mirror area. Within
lane-changing scenarios, a score of 100 is assigned if the driver observes the rear-view
mirror area, and a score of 0 is given if no observation is recorded.

The system will maintain a record of the entire observation area polygon acquired
during the observation process. Simultaneously, it will record the traffic participants ob-
served by the driver during this process, encompassing pedestrians and vehicles, based on
the outcomes of laser radar target identification. The observation analysis capability score,
denoted as Score2, can be determined based on the number of observed and unobserved
traffic participants according to Equation (2).

Score2 = 100×
(numspotted)

0.5

(numspotted + numunspotted)
0.5 (2)
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The inclusion of Score2 is motivated by the fact that when assessing the overall size of
the area observed by a driver, consideration is limited to the scanning area over a particular
timeframe without taking into account the presence of newly introduced traffic participants.
This oversight can lead to situations in which drivers have scanned the entire area, yet
have failed to notice new developments within areas they had previously observed. The
purpose of Score2 is to assess a driver’s dynamic environmental perception capabilities.
The relationship between Score, Score2, and the driver’s ability is described in Figure 3.

!"#$% for 
observe

Frame one Frame two

!"#$%! for 
dynamic 

perception

: Unspotted Vehicle : spotted Vehicle

: Ego Vehicle

Test start
mark

Intersection
mark

Figure 3. The different capabilities of perception.

Finally, the overall score for a driver’s environmental perception capability can be
expressed as EnvS in Equation (3).

EnvS = k ∗ Score + (1− k) ∗ Score2 (3)

In recognition of the influence of the number of traffic participants on a driver’s
willingness to observe, k is assigned a value lower than 0.5. In our experimental setup, k
was set to 0.4 and 1− k was 0.6.

2.2. Driver Control Capability Assessment

We quantify a driver’s ability to control a vehicle into two distinct components:
(1) execution capability and (2) execution efficiency. Execution capability assesses whether
a driver possesses the aptitude to sensibly control the vehicle within a given scenario. It
primarily focuses on the precision of trajectory control, ensuring the optimal alignment
of the vehicle’s path with the most favorable trajectory. Execution efficiency, on the other
hand, evaluates a driver’s capacity to effectively maneuver the vehicle through scenarios,
determining whether the driver expends excessive, unnecessary time on straightforward
operations. It primarily concentrates on the efficiency of vehicle control, ensuring the swift
passage of the vehicle through a scenario without disrupting other traffic participants.

We denote the execution capability score as Es, which is established by creating atomic
behavior and behavior outcome variables and designing a library of standard execution
procedures and execution outcomes. Specifically, for the process of driving a vehicle from
point A to point B, this paper derives a Bezier curve as the standard path [10,11]. This
was accomplished by calculating the trajectory curve using a triple Bezier method based
on the vehicle’s initial heading angle at point A and the expected heading angle at target
point B. The Es is obtained through the calculation of the difference in distance between
the actions taken by the driver and the standard actions. In essence, it quantifies a driver’s
actual trajectory from point A to point B in comparison to the Bezier curve, providing an
assessment of their control capability.

DH(A, B) = max(supa∈Ain f b∈Bd(a, b), supb∈Bin f a∈Ad(b, a)) (4)
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We employ two different trajectory assessment algorithms for a comprehensive eval-
uation, namely, computing the Hausdorff distance and calculating the root mean square
error (RMSE) between the driver’s route and standard trajectory. Specifically, the Hausdorff
distance is computed as the maximum of the minimum distances between each point in
one trajectory to every point in the other trajectory [12], as detailed in Equation (4). A
and B here represent each set of points in different trajectories, sup signifies the operation
of selecting the maximum value from distances between all points, in f represents the
operation of calculating distances from all possible points, and d(a, b) denotes the distance
metric from point “a” to point “b”, which can be the Euclidean distance. A larger Hausdorff
distance implies a greater deviation area between the two trajectories, indicating a poorer
fit between them.

RMSE(A, B) =

√
1
n ∑((x1i − x2i)2 + (y1i − y2i)2) (5)

The RMSE, on the other hand, assesses the average difference in distance between each
point in one trajectory and the nearest point in the other, as computed using Equation (5).
(x1, y1) belong to trajectory one and (x2, y2) are trajectory two. A larger RMSE signifies
a greater average deviation between the two curves, suggesting a weaker fit and worse
driving behavior [13,14].

In addressing the issue of a driver’s efficiency in executing vehicle maneuvers within
a given scenario, we aim to ensure that the total time taken by the driver, from entering a
scenario until completely exiting it, closely aligns with the time standards provided by a
reference times library. The standard time library is derived through an analysis of historical
road traffic flow. It involves collecting and averaging the time taken for all vehicles to
execute right, straight, or left turns through a fixed intersection during predefined time
intervals. This library is periodically updated to ensure its accuracy.

The driver’s execution efficiency is evaluated by referring to this library for the specific
scenario and time frame. The closer the driver’s performance time is to the standard value,
the higher their efficiency rating (while a time below the standard value indicates sufficient
proficiency). The specific evaluation method is presented in Equation (6).

E f =

100, if t < St(scenario)

100e−
(t−St(scenario))
1.2∗St(scenario) , otherwise.

(6)

To comprehensively assess a driver’s vehicle control capabilities by quantifying both
execution capability and execution efficiency, we further calculate a composite score based
on the obtained trajectory deviation metrics and efficiency scores according to Equation (7).

OpeS =
E f

e
DH (A,B)+RMSE(A,B)

2α

(7)

In the equation, the value of α is determined by different scenarios. In scenarios where
the driver needs to travel longer distances, the α value should be larger. This is used to set
the standard for trajectory deviation.

2.3. Driver Overall Performance Assessment

In RPAM, the maximum scores for a driver’s assessment of environmental perception
and vehicle operational abilities within each scenario are both set as 100. During a single
round of tests, a driver may navigate through multiple scenarios, and RPAM will evaluate
the performance in each scenario. Once the tests are completed, the model assesses the
driver’s overall cumulative abilities based on the total number of scenarios that the driver
has traversed. With an increase in the number of test scenarios, the evaluation of a driver’s
abilities approaches their true level of competence. The score for a test round of a driver’s
capabilities can be calculated using Equation (8).
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TotalS = ∑
EnvS + OpeS

2n
(8)

n in the equation represents the number of scenarios that the test driver passed within
this round of tests.

The evaluation of a driver’s driving capabilities within the test scenarios is primarily
focused on the driver’s observation and the reasonableness of the vehicle’s passage through
the scenarios. It does not encompass judgments regarding the safety of the external
environment. During these assessments, the test subjects may engage in interactions with
other vehicles that pose significant risks, or they may perform hazardous maneuvers in
complex environments. Additionally, they might violate traffic regulations. Some of these
risky actions may take place outside the test scenarios. Evaluating these risky behaviors
and actions is crucial for determining whether a driver can independently operate a vehicle
on the road.

Therefore, RPAM also incorporates the ability to assess driving risk. To achieve this,
we introduce the real-time confidence value proposed by our previous work [15], which
allows for real-time assessment of the vehicle’s operating state. The final equation for this
aspect is presented as Equation (9).

Con f t+1 =


Con f t −O f t − S f t + Ret

M f , if Con f t+1 > M f
0, if Con f t+1 < 0

(9)

The confidence value model is a comprehensive assessment model that provides
real-time numerical values from 0 to 100, indicating the stability and safety status of a
vehicle. It derives the real-time safety rating for the test vehicle based on factors such as the
vehicle’s interactions with surrounding traffic participants, the rationality of the vehicle’s
own behaviors, the influence of other vehicles on the test vehicle, and whether the test
vehicle exhibits any degree of rule violations or irrational operations. When this value
remains at a low numerical level for a certain period, it suggests that the driver may be
operating the vehicle in a less cautious manner, indicating a higher level of risk.

We set the threshold for the confidence value system at 60. When the real-time
confidence value output by the test subject falls below 60 and remains in that state for
10 s, RPAM directly assigns a total score of 0 to the driver’s on-road testing capabilities.
Therefore, the overall calculation framework for RPAM is as presented in the following
Equation (10):

Ability =

{
0, if (Con f < 60)&(acu > 10)
TotalS, otherwise.

(10)

acu in the equation represents the time real-time confident score, which is below 60. It
is reset to 0 once the confident score is higher than the threshold.

3. System Hardware and Software Structure

The road performance assessment model integrates perception technology to conduct
assessments and evaluations of the driver’s environmental perception capabilities and
operational skills. The model actively employs the visual sensor system installed within
the examination vehicle to collect information about the driver’s posture, particularly the
turning angles of the head. Additionally, external sensors mounted on the vehicle are
used to dynamically monitor the environmental conditions, the status of surrounding
traffic participants, and the ego vehicle’s operational status. Finally, by synthesizing real-
time data on the driver’s actions, the vehicle’s status, dynamic traffic participant states,
and information about the static environment, the model comprehensively evaluates the
driver’s ability to perceive and respond to conventional and hazardous scenarios over the
entire driving examination, resulting in a quantified score.
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There are two primary systems to make RPAM work: (1) the in-vehicle driver behavior
recognition system and (2) the vehicle perception system.

3.1. Hardware and Software for In-Vehicle Driver Behavior Recognition

In order to implement an evaluation methodology based on the driver’s perceptual
capabilities and a comprehensive assessment method based on confidence levels, we
devised a driver behavior recognition system focused on the driver’s head posture and
driving operations within the vehicle.

The in-vehicle driver behavior recognition consists of two main components: (1) the
driver’s head posture recognition and (2) the vehicle operation recognition. The driver’s
head posture recognition extracts information about the driver’s head position and orienta-
tion by deploying a camera at specific angles between the main driver and co-driver seats
for image capture and analysis. The vehicle operation recognition primarily collects data
from the vehicle’s internal communication network. It performs tasks such as recognizing
the position of the throttle and brake pedals, determining the angle of the steering wheel,
and identifying controls for the vehicle’s lighting system. The subsequent sections will
elaborate on the primary functions and implementation processes of each system.

3.1.1. Driver’s Head Posture Recognition

By deploying a camera situated between the primary and co-driver seats, specific
angles of the driver’s head turn are captured and analyzed. The implementation process
unfolds as follows: Initially, in the context of the interior images captured by the camera,
the YOLOv5 object detection algorithm is employed to perform facial recognition [16].
At this stage, the detected faces may encompass both the driver and potentially other
unrelated passengers in the rear view of the driver. To ensure that the detected face only
corresponds to the driver, a maximum face filtering method and a minimum face size
threshold are incorporated.

In order to enhance the real-time capability of the entire system, our model simplifies
the analytical approach to the driver’s head observation angles. Specific attention to the
precise gaze direction of the driver’s eyes is omitted and, instead, we assume that the
extension line through the centers of the driver’s eyes serves as the central axis for the
driver’s head observation angles. Facial feature points are extracted from the identified
regions of interest associated with the driver’s face. The Dlib method is utilized for this
purpose, extracting 68 feature point locations of the eyes, mouth, nose, and contours of
the face [17]. Key points such as the eye, nose, and mouth position are selected. Then, the
Perspective-n-Point (PnP) algorithm is applied to compute the pose transformation from
the face coordinate to the world coordinate [18]. Hence, we can calculate the orientation
angles of the driver’s head, including yaw, pitch, and roll.

As depicted in Figure 4, this process enables a detailed assessment of the driver’s
real-time head movements and posture, facilitating a comprehensive understanding of
their attentiveness and focus during vehicle operation.

Figure 4. The performance of the driver’s head pose recognition.
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3.1.2. Driver’s Action Recognition

Due to the constrained space and numerous obstructions within the vehicle cabin, the
vision-based recognition of driver operations is considerably intricate; therefore, the system
analyzes the vehicle’s internal network signals to indirectly denote the actions of drivers
and find out the status of the ego.

The specific approach involves developing a chassis signal parsing program based on
the provided on-board diagnostics (OBD) signal matrix and encoding methods from the
vehicle’s chassis controller area network (CAN) bus. This program is designed to extract
information such as throttle position, steering wheel angle, brake pedal status, handbrake
status, and lighting status, as well as the status of various internal vehicle switches. Based
on the binary encoding of the original CAN signals, we identify corresponding signal names
and states. The encoding is then transformed into boolean status signals and floating-point
numerical signals, making it more amenable for subsequent tasks. To ensure signal stability
across multiple consecutive frames, a data redundancy approach is applied for signal
filtering. Ultimately, the ROS (Robot Operating System) topic subscription and publication
mechanism is utilized within the ROS domain of the computing unit for broadcasting.
These parsed signals serve as reference values for the driver’s vehicle operations, aiding in
the recognition of the driver’s in-vehicle control actions such as accelerating or braking,
and providing the information for the real-time confidence calculation.

3.2. Hardware and Software for Vehicle Perception System

To comprehensively evaluate the driver’s perceptual and control capabilities, it is
essential to conduct a thorough and precise observation and understanding of the external
environment. RPAM utilizes a vehicle perception system based on external sensors and
GPS positioning to recognize and cognitively comprehend the surroundings.

The vehicle perception system consists of two main components: (1) a high-precision
map system and (2) a comprehensive environmental perception system. The high-precision
map provides static road construction information for the RPAM, and the comprehensive
environmental perception system is specialized in analyzing extravehicular point cloud
data generated by an LiDAR system to identify dynamic information related to traffic
participants. The detailed implementations of each unit are described below.

3.2.1. High-Precision Map Creation

The high-precision map is capable of storing and retrieving comprehensive data
pertaining to the overall road structure, road regulations, static signage, and real-time
traffic signal information for the designated examination route. The specific implementation
process is outlined as follows:

We employ a combination of LiDAR and GNSS (Global Navigation Satellite Sys-
tem)/INS (Inertial Navigation System) as data sources to collect point cloud information
for the testing area. Subsequently, utilizing the SC-LeGO-LOAM [19], we construct a point
cloud map, which serves as the foundational representation of the road environment. Then,
the point cloud map is imported into a Vector Map Builder, where it is further refined
through the addition of vectorized elements. This vector map encapsulates intrinsic road
features, such as lanes, parking lines, traffic lights, and intersections. This vector map
is fine-tuned through on-site calibration and testing to enhance its accuracy and fidelity.
Finally, we integrate real-time traffic signal information into the map through roadside
RSUs components, ensuring that the map reflects the real-time state of traffic lights accu-
rately. All the road environmental data and detection results mentioned above are utilized
within the RPAM model to ascertain whether the vehicle’s behavior conforms to road
traffic regulations. This process, in conjunction with the traffic responsibility determination
by traffic management authorities, ensures traffic safety and stability during the driving
examination process.
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3.2.2. Comprehensive Environmental Perception

The comprehensive environmental perception system is designed to leverage the capa-
bilities of LiDAR for the analysis of collected point clouds. This facilitates the identification
of dynamic information pertaining to external traffic participants. The LiDAR device is
conventionally positioned on the top of the testing vehicle. After conducting scans, point
cloud data are processed using a pretrained model based on the PointPillars algorithm,
enabling object recognition from a BEV perspective, as shown in Figure 5. This procedure
yields detection boxes and provides crucial information including target center coordinates,
dimensions of the target bounding box, and target motion characteristics based on the
identified categories.

Bike

Vehicle

Pedestrian

Figure 5. The performance of LiDAR detection.

4. Real-Word Examination and Evaluation
4.1. Evaluation Platform

To validate the feasibility and effectiveness of the RPAM system, we utilized a Geely
Geometry E model [20], which is an automatic transmission vehicle, for testing. The Geely
Geometry E is a compact A-class car, which is frequently employed in China’s driver’s
license examinations due to its small and lightweight nature, implying relatively lower driv-
ing skill requirements. Subsequently, we conducted testing in real-world vehicle examina-
tion segments within the Beijing Changping District Northern Driver Examination Center.

We made hardware modifications to the Geely Geometry E vehicle as the base model
lacks an in-cabin driver monitoring camera and external LiDAR perception equipment. To
address this, we custom-fitted a Robosense 80-line LiDAR unit on top of the vehicle via a
specialized mounting bracket. Simultaneously, we installed a driver monitoring camera on
the interior control side. In order to obtain real-time vehicle positioning for high-precision
map matching, we incorporated two GPS signal receivers and an inertial navigation system.
The post-modification appearance and interior of the vehicle are depicted in Figure 6.

For the computational platform of the RPAM system used in this test, we opted for
a compact domain controller based on the NVIDIA Orin chipset. The domain controller
was strategically positioned at the front of the vehicle to facilitate harness management
and program debugging, taking into account cost-effectiveness and spatial constraints.
To facilitate testing and debugging, a portable screen with a microphone speaker was
placed behind the front passenger seat within the vehicle. This setup not only provided
convenience for program debuggers but also alerted the driver to the testing program’s
operational status through voice announcements.

In order to monitor the real-time location and performance status of the test driver
within the scenarios, including the effectiveness of their observation actions, we developed
a front-end user interface for the program. The interface is divided into sections for map
display, examination system status indications, and driver information, as illustrated in the
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following Figure 7. The blue vehicle model on the map represents the position of the test
vehicle, with the model displaying both the location and vehicle orientation.

Tester

Camera

Test 
Screen

GPS rec1
GPS rec2

Tester

Edge
Cloud

Orin 
Domain 

Controller

RTK 
Device

Outside View Inside View

LIDAR

Figure 6. The modified test vehicle.

Figure 7. The user interface for the RPAM system.

4.2. Test on Driver’s Perception Ability

The RPAM system begins recording the driver’s head rotation angle as their observa-
tion within the vehicle when they execute scenarios such as crossing intersections, changing
lanes, or overtaking. In order to demonstrate its effect, this paper selected a four-lane inter-
section as the test scenario. With the point cloud data and high-precision map available, we
calculated the road area observed by the driver in the moments leading up to traversing the
intersection, using the method mentioned earlier, and we also simplified the information
of the actual road by smoothing the intersection and setting sharp angles at the corners,
disregarding curved transition areas.

We present the observation results of two different drivers passing through the same
four-lane intersection, as shown in Figure 8. In the figure, the blue rectangle represents
the driver’s vehicle, the green area denotes the intersection of the driver’s current frame
of observation with the road structure, the red area indicates all the areas observed by the
driver up to the current frame, and the white area represents the total area of the road scene
that needs to be observed.

It can be observed that Test Driver 1 performed comprehensive observations covering
the entire road condition before entering the intersection, perceiving the overall road status.
In contrast, Test Driver 2 made only a slight head rotation for observation, resulting in
a lower coverage of the road scene and poor observation habits during the intersection-
crossing scenario.
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Figure 8. The result of the real-world perception ability test.

Specifically, Test Driver 1 observed a total area of 1780.02 square meters before entering
the intersection, while Test Driver 2 observed a total area of 1405.01 square meters. Test
Driver 1 had an observation area ratio of 0.95906 at this intersection, resulting in an
evaluation score of 91.81. In comparison, Test Driver 2 had an observation area ratio of
0.75701 at the same intersection, with an evaluation score of 51.40.

Simultaneously, during the process of passing through the intersection, Test Driver 1
encountered three traffic participants and observed two of them, while Test Driver 2
encountered only one traffic participant, which he successfully observed. According to
RPAM, the final perceptual ability scores were calculated for both test drivers. Test Driver 1
scored 85.71 and Test Driver 2 scored 80.56. In this single scenario assessment, both drivers
passed in terms of perceptual ability.

4.3. Test on Driver’s Control Ability

In a left turn intersection scenario, we conducted an assessment test of the vehicle
control abilities among two test drivers using RPAM. Both drivers passed through the
intersection between 3:00 and 4:00 p.m., and the traffic signal was green when they entered
the intersection. Through three days of manual calibration, we created a simple standard
schedule. By consulting the table, we obtained a standard green light passing time of 9 s
for the test period at the intersection. During the verification process, Test Driver 1 took
11 s to pass through the intersection, resulting in a E f score of 83.09, while Test Driver 2,
who completed it faster with 8 seconds, scored 100.

Simultaneously, we collected vehicle trajectories of the two test drivers passing through
the intersection scene using GPS data, recorded at a frequency of 20 Hz. Since it was the
same intersection, there was only one standard trajectory. Figure 9 shows a comparative
illustration of the standard trajectory with the trajectories of the two drivers along with the
actual satellite map of the scenario.

The red line stands for the standard route, the blue is for Tester 1, and the green is for
Tester 2. It can be seen that Tester 1’s trajectory has a better fit. For the RMSE score of the
two testers, Tester 1 achieved 0.25787, and Tester 2 achieved 0.42855. Hausdorff’s score of
Tester 1 was 0.42396 and Tester 2 was 1.18460. Both the RMSE and Haus value of Tester 1
were better than Tester 2.

Combining the E f , RMSE, and Hausdorff value using Equation (7), the final control
ability Opes for Tester 1 was 74.16 and for Tester 2 was 76.43. Tester 2 obtained a better
overall ability of performing a left turn under this left-turn scenario.
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Figure 9. The result of the real-world control ability test.

4.4. Reliability Test

The vehicles equipped with the RPAM system underwent extended and repeated real-
world testing under the supervision of safety officers dispatched by Public Road Security.
An auxiliary brake was installed on the passenger side of the vehicle for added safety.
The test involved four male drivers of varying ages, all of whom possessed valid driver’s
licenses; however, their driving experience differed, with driving periods ranging from
3 months to 3 years.

Each driver took turns operating the vehicle along the same route, with each driving
session lasting for a total of 2 h. From the perspective of the working duration, the test
results revealed the overall stability of the system. The domain controller’s computing
capacity was able to effectively handle continuous operations, encompassing tasks such
as positioning, laser radar detection, and the concurrent functioning of the examination
system’s software and hardware. This setup ensured stable performance while maintaining
sufficient charge in the vehicle’s battery.

5. Conclusions

The paper introduced an intelligent driver capability assessment model, RPAM, de-
signed to provide a more detailed and intelligent evaluation of whether individuals under-
going driver training possess the actual ability to drive independently on the road. This
model categorizes a driver’s vehicle operation ability into two components, environmental
perception ability and behavioral operational capability, while evaluating their control
of the vehicle through various scenarios. Additionally, it utilizes the confidence value
model to supervise the driver’s overall driving safety and stability during the entire testing
process, offering a comprehensive assessment of whether the driver possesses the capacity
to drive a vehicle safely, reasonably, and efficiently on the road.

The paper involved the modification of a Geely Geometry E vehicle and the installation
of the necessary hardware and accompanying software for RPAM. Extensive testing was
carried out on real roads in China to assess the model’s validity and durability over an
extended period. The test results verified the RPAM system’s competence in evaluating
the reasonableness of driver observations during operation, the efficiency of navigating
through various scenarios, and the adequacy of vehicle operation skills. Furthermore, it
confirmed the system’s sustained stability and functionality over an extended period.
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We believe that, after further testing and optimization, RPAM has the potential to
enhance the quality and safety of driver examinations in China. We aim to progressively
conduct field application tests of the RPAM system in more actual examination sites. This
involves collecting extensive data feedback from test drivers to further optimize specific
parameters within each equation. Simultaneously, based on the pass rates of test drivers
within the current examination system, we intend to guide further algorithmic optimizations
of the RPAM model through data-driven feature mining. In future optimization, our focus can
be placed on a more detailed perception of the driver’s state, such as confirming the objects of
their gaze, and refining the observation process to catch any missed crucial traffic participants,
thereby more logically quantifying the driver’s real-time perceptual ability.
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