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Abstract: Central data systems require mass storage systems for big data from many fields and
devices. Several technologies have been proposed to meet this demand. Holographic data storage
(HDS) is at the forefront of data storage innovation and exploits the extraordinary characteristics of
light to encode and retrieve two-dimensional (2D) data from holographic volume media. Nevertheless,
a formidable challenge exists in the form of 2D interference that is a by-product of hologram dispersion
during data retrieval and is a substantial barrier to the reliability and efficiency of HDS systems. To
solve these problems, an equalizer and target are applied to HDS systems. However, in previous
studies, the equalizer acted only as a linear convolution filter for the received signal. In this study, we
propose a nonlinear equalizer using a convolutional neural network (CNN) for HDS systems. Using
a CNN-based equalizer, the received signal can be nonlinearly converted into the desired signal with
higher accuracy. In the experiments, our proposed model achieved a gain of approximately 2.5 dB in
contrast to conventional models.

Keywords: convolutional neural network (CNN); deep learning; detection; equalizer; holographic
data storage; machine learning; remove interference

1. Introduction

In the current era of extensive data collection across various domains and devices, the
need for substantial storage solutions has become apparent. According to the prediction
of the International Data Corporation (IDC), the global datasphere will achieve 163 ZB
(1 ZB = 109 TB) by 2025 and 2142 ZB by 2035 [1]. To address this increasing demand,
several technologies have been proposed such as floating-gate memory, bit-patterned
media recording (BPMR), heat-assisted magnetic recording (HAMR), deoxyribonucleic
acid (DNA)-based storage systems, and holographic data storage (HDS) systems. Unlike
semiconductor memories and magnetic hard disk drives, HDS systems can read out 2D
data page bits at the same time, HDS can achieve a high data transfer rate. For BPMR,
the data is stored on magnetic islands. When writing or reading the signal from BPMR,
we need a physical mechanical system. Therefore, the data transfer rate is slow because
of the limitation of motor movement speed. HAMR is similar to the BPMR but differs
in the writing process. The disk material is heated during writing. This leads to being
more receptive to magnetic effects and allows writing to much smaller regions (and much
higher levels of data on a disk). Finally, a DNA storage system has been proposed to extend
the capacity of storage systems. However, to access data in DNA, we need to implement
chemical reactions to synthesize or analyze DNA. Therefore, the data transfer rate in DNA
is very slow and inconvenient in commercialization. From the above disadvantages, we
can see that HDS became a promising contender owing to its potential to achieve both
higher data density and rapid access rates [2]. In HDS systems, to store digital data, two
coherent laser beams are intersected to create optical interference patterns that present the
information of digital data stored in the cubic media [3]. Figure 1 shows the structure of
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an HDS system. User data are modulated into a spatial light modulator (SLM), similar
to two-dimensional (2D) data pages. The object beam is projected through the SLM. This
creates images of the ON and OFF pixels in the storage media. The reference beam is then
interfered with the images of the object beam in the cubic media. The materials used in
storage media are photorefractive polymers and crystals. Therefore, these interferences are
retained in the cubic media as physical phenomena. This is the writing process of HDS
systems. To retrieve the data, the reference beam is used to project onto the storage material.
The interference patterns in the cubic media are illuminated to create a reconstructed beam
as the object beam that provides user data information. A charge-coupled device (CCD)
sensor is used to capture the images of the reconstructed beam.
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Figure 1. Structure of an HDS system.

With the images on the CCD, HDS systems face the major challenge of 2D intersymbol
interference (ISI) that includes horizontal interference (HI) and vertical interference (VI).
Furthermore, with multiplexing modulation methods, many data pages can be simultane-
ously stored in the storage media. This leads to inter-page interference (IPI). To reduce IPI,
in [4], guided scrambling (GS) is proposed to balance the number of “1”s and “0”s in a 2D
array. In addition, the images on the detector array can be deviated from the sensor; this is
called a misalignment. Beam blurring also reduces the bit error rate (BER) performance of
HDS systems [5].

To mitigate these factors and improve the BER performance of HDS systems, we
can use optimized structures of HDS systems, as in [5–7]. Modulation methods are also
introduced in [8–11] to reduce the crosstalk in HDS systems. In addition, error-correcting
modulation codes in [12] are created to avoid isolated patterns in HDS systems, correct
the error bits, and improve the BER performance with a high code rate. Then, using the
theory of partial response maximum likelihood (PRML) detection, as specified in [13], a 2D
equalizer and soft output Viterbi algorithm (SOVA) is proposed in [14] to reduce the 2D ISI
in HDS systems. Because PRML and SOVA are designed to handle one-dimensional (1D)
ISI, the modified model in [14] is necessary to adapt to the 2D ISI of HDS systems. With an
outstanding ability to reduce 2D ISI, PRML and 2D SOVA are also applied in BPMR systems.
A nonlinear equalizer in [15] is proposed to improve the BER performance of BPMR systems.
The equalizer is an important part of the development of PRML. In addition, in [16], the
authors proposed a 2D SOVA for a 2D PR target using dual equalizers: one evaluates the
corrected signal, and the other estimates the binary signal. In [17], to develop the 2D SOVA,
the authors designed the iterative algorithm for 2D SOVA. Subsequently, based on the
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generalized PR (GPR) target, as specified in [18], Nguyen and Lee proposed serial detection
and a maximum a posteriori (MAP) detection algorithm to improve BER performance [19].
For HDS systems, in [20], the authors proposed a modified 2D SOVA with 2D PR target
to reduce 2D ISI. In [5], a variable reliability factor is supplied to 2D SOVA algorithm to
improve the BER performance of HDS systems. Based on 2D SOVA, Koo et al. introduced
data page reconstruction method as the image processing method for HDS systems to
mitigate 2D ISI and improve the performance of 2D SOVA detection [21]. In addition to
using the Viterbi algorithm, many researchers proposed methods in image processing for
the detection of HDS systems. In [22], Lee et al. presented an image upscaling method to
reduce bit errors caused by Nyquist apertures. To improve the BER in HDS systems, Kim
et al. applied an iterative method for an image filter to HDS systems [23]. In [24], Kim
et al. introduced an image filter based on primary frequency analysis to improve the BER
in an HDS system. Finally, in [25], Chen et al. presented low-complexity pixel detection for
images to reduce misalignment and ISI in HDS systems.

Recently, deep learning (DL) and machine learning (ML) have been applied in vari-
ous fields, such as object detection [26,27], image processing [28,29], and speech process-
ing [30,31]. In the field of data storage systems, multilayer perceptrons (MLPs) are used
to predict noise and decode modulation codes in BPMR systems [32]. In [33], 1D Viterbi
detection is supplied with extrinsic information by the MLP to create an iteration algorithm
and improve the BER performance of BPMR systems. In addition, in [34], to improve the
Bahl–Cocke–Jelinek–Raviv (BCJR) detector, a convolutional neural network (CNN) is used
to exploit noise as extrinsic information. To remove the noise in HDS systems, a CNN
is proposed and applied to classify data pages for HDS systems [35]. In addition, with
similarity to image data, an autoencoder-based tool is applied to HDS systems in [36].
In addition, DL and ML models were used to demodulate the received data in HDS sys-
tems. Firstly, in [37], the authors proposed a data demodulation method based on a CNN
structure. Because modulation is like codeword classification, this work is suitable for
the CNN structure, which achieves high accuracy in classification. Then, Katano et al.
developed CNN demodulation by using a complex amplitude as established in [38]. In [39],
the authors used a CNN to recognize the pattern of multi-level data in HDS systems.

Using the benefits of the GPR target, equalizer, and DL, in this study, we proposed a
CNN-based equalizer to nonlinearly convert the received signal into the desired signal in
HDS systems. The structure of the CNN was optimized to be suitable as an equalizer to
make the received signal close to the desired target signal. For the structure of the CNN, we
surveyed straight and branch structures with skip lines. These structures were applied to
the current models (ResNet and GoogLeNet) to obtain a good performance. With skip lines,
the CNN structure avoids a vanishing gradient. Therefore, in the training process, the CNN
model can be close to the global optimized point and improve the BER performance of
the equalizer. In our simulations, the results showed that the CNN-based equalizer could
achieve a higher performance than conventional equalizers in previous studies. In the ideal
case, when 0% misalignment, our proposed model can obtain a gain of 3.5 dB at a BER of
10−3. When the level of misalignment increases to 10%, the gain achieves 2.5 dB at a BER of
10−3. Finally, when we change the level of blur in the HDS channel, we recognize that our
proposed model can resist the blur effect up to 2.8.

Our contributions are as follows:

- We proposed a CNN-based equalizer for the HDS systems.
- We optimized the best structure of the CNN (between straight and branch structures)

for the 2D equalizer.
- We analyzed and explained the properties of CNN structures.
- We presented simulation results to verify the performance of the CNN-based equalizer.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce
the background of the equalizer and the GPR target. The channel modeling of HDS systems
and the proposed scheme are presented in Section 3. Simultaneously, we also analyze and
explain the properties of CNN structures in Section 3. Simulation results are presented and
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discussed in Section 4. The complexity and latency/delay of the proposed model are also
measured in Section 4. Finally, the conclusions are presented in Section 5.

2. Background

In HDS systems, an equalizer is set up at the channel output, as shown in Figure 2.
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We define the equalizer as matrix F as follows:

F =


f−2,−2 f−2,−1 f−2,0 f−2,1 f−2,2
f−1,−2 f−1,−1 f−1,0 f−1,1 f−1,2
f0,−2 f0,−1 f0,0 f0,1 f0,2
f1,−2 f1,−1 f1,0 f1,1 f1,2
f2,−2 f2,−1 f2,0 f2,1 f2,2

 (1)

Signal z[j,k] is calculated as follows:

z[j, k] =
2

∑
n=−2

2

∑
m=−2

fn,mr[j− n, k−m] (2)

where j and k are the indices in the horizontal and vertical directions, respectively.
To estimate the parameters fn,m of the equalizer, we minimize the mean square error

(MSE) between output signal of the equalizer z[j,k] and input signal of the channel s[j,k].
That is, this is a zero-forcing equalizer. However, because the zero-forcing equalizer is
designed for 1D interference, its performance in an HDS channel is very low. In other
words, signal z[j,k] cannot be approximated to signal s[j,k] in 2D ISI. Therefore, instead of
approaching signal s[j,k], signal z[j,k] approaches desired signal d[j,k] in (3) by optimizing
the MSE in (5) to improve the accuracy of the equalizer.

d[j, k] =
1

∑
n=−1

1

∑
m=−1

tn,ms[j− n, k−m] (3)

T =

t−1,−1 t−1,0 t−1,1
t0,−1 t0,0 t0,1
t1,−1 t1,0 t1,1

 (4)

MSE = E
{
(d[j, k]− z[j, k])2

}
(5)

If we optimize (5), the parameters for equalizer F and target T are equal to 0. Therefore,
a condition is suggested to avoid F and T from being equal to 0. The condition is as follows:

cTt = α (6)
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where t represents a vector form of target T,

cT =
[
0 0 0 0 1 0 0 0 0

]
, and (7)

α = 0.85 (8)

In the HDS channel, based on [19], α = 0.85 can be shown to achieve the best perfor-
mance for the HDS channel. Applying the minimum mean square error (MMSE) algorithm,
as specified in [18], the parameters for F and T can be estimated as follows:

t=
(

S−DTR−1D
)−1

c
(

cT
(

S−DTR−1D
)−1

c
)−1

α, and (9)

f = R−1Dt (10)

Here, S = E{ssT}, R = E{rrT}, D = E{rsT}, and f represents the vector form of equalizer F. s
and r represent the vector forms of signals s[j,k] and r[j,k], respectively.

In the HDS channel, a point spread function (PSF) is used as the channel impulse
response. Because the channel parameters far from the center are close to zero when the
size is greater than a 5 × 5 array of pixels, we selected a pixel array size of 5 × 5 for the
equalizer. To design a simple detection method, we selected a target size of a 3 × 3 array of
pixels. This helps the trellis in horizontal and vertical detections reduce the states to only
36 and 4, respectively.

3. Proposed Model
3.1. Channel Modeling

In this study, we model the HDS channel as in [14], where user signal u[k] is modulated
and stored in the HDS channel as a 2D data page s[j,k]. Readback signal r[j,k] is then
collected and distorted by the 2D ISI and electric noise using the following equation:

r[j, k] = s[j, k]⊗H + w[j, k] (11)

where ⊗ is the 2D convolution operator. H is a 3 × 3 matrix representing the channel
impulse response of the HDS system. w[j,k] represents the white noise with the Gaussian
distribution (mean zero and variance σ2

w). In addition, we define the SNR as follows:

SNR = 10 log10

(
1

σ2
w

)
(12)

To obtain the parameters of H in the simulation, they are calculated from the continu-
ous PSF as follows:

hn,m =

n+1/2∫
n−1/2

m+1/2∫
m−1/2

h(x, y)dxdy (13)

Here,

h(x, y) =
1
σ2

b
sin c2

(
x−mx

σb
,

y−my

σb

)
(14)

Here, sinc(x,y) = (sin(πx)/πx)(sin(πy)/πy); mx denotes the misalignment in the horizontal
direction; my denotes the misalignment in the vertical direction; and σb denotes the blur
grade. Channel matrix H has the following form:

H =

h−1,−1 h−1,0 h−1,1
h0,−1 h0,0 h0,1
h1,−1 h1,0 h1,1

 (15)
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3.2. Proposed Nonlinear Equalizer

In the conventional linear equalizer (Section 2), the 2D received signal is convoluted
with only one layer (5× 5 matrix F) from the CNN perspective. To improve the conventional
equalizer, we propose a CNN structure that extends many 2D convolution layers and
creates a nonlinear equalizer. CNNs are frequently proposed in the image processing field
to handle 2D signals. Therefore, in the HDS channel, the CNN is suitable for the 2D received
signal on the project screen. Figure 3 shows the structure of the nonlinear equalizers.
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The proposed system model, based on a nonlinear CNN equalizer, is shown in Figure 4.
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In our proposed model, user signal u[k] is modulated into a 2D signal s[j,k] to make
it suitable for the medium of the HDS system. Signal s[j,k] is distorted by the 2D ISI
and electric noise w[j,k]. Therefore, received signal r[j,k] is passed through the nonlinear
equalizer (CNN) to reduce the 2D ISI and electric noise. Because of using the serial target
form, signal z[j,k] can be detected using serial detection, as in [19]. Signal z[j,k] is passed
through the horizontal detector to create signal b[j,k]. Signal b[j,k] is then passed through
the vertical detector to restore modulated signal ŝ[j,k]. Finally, user data u[k] are recovered
by demodulating signal ŝ[j,k]. To estimate the BER, we compare and count the difference in
bits between u[k] and û[k].

In this study, we tested eight CNN structures for a nonlinear equalizer, as illustrated
in Figure 5. They were grouped into two types: straight and branch structures. Straight
structures are typically used in conventional CNNs. Subsequently, the branch structure of
the CNN was developed to reduce the vanishing gradient phenomenon (as explained in
Section 3.3). To train the CNN model, we implemented the following steps:
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• Use MMSE algorithm, as specified in Section 2, to estimate conventional equalizer F
and target T.

• Collect signals d[j,k] and r[j,k] when estimating F and T.
• Use signal r[j,k] as the input and signal d[j,k] as the label for the CNN model in the

training process.
• Replace equalizer F with the trained CNN model.

In addition, we used the following MSE function as the loss function for the CNN model:

loss =
1

2αβ

α

∑
j=1

β

∑
k=1

(r[j, k]− d[j, k])2 (16)

Here, α and β represent the total number of the rows and columns of signal y[j,k], respectively.
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Figure 5. Structures of the CNN: (a) straight structures and (b) branch structures.

In Figure 5, the “Conv” layers have a 5 × 5 kernel and a stride of 2 × 2. In addition,
the “Avgpool2D” layers are subjected to average pooling with a size of 2 × 2 and a stride
of 2 × 2. The “Batchnorm” layers used the below equation to normalize the data.

x̂ =
x− µx

σx
(17)

where x is the input of “Batchnorm” layer and x̂ is the output of “Batchnorm” layer. µx is
the mean of x, and σx is standard deviation of x. In addition, the ReLU function is presented
in (18).

f (x) =
{

x, x > 0
0, x ≤ 0

(18)

In Figure 5b, to easily present the number of filters in “Conv” layers, we used the
vector type for the number of filters as [Conv_1 Conv_2 Conv_3 . . .].

Structure 3: [16 32 32].
Structure 4: [7 10 12 15 10 7].
Structure 5: [5 10 12 15 10 7 3].
Structure 6: [5 10 12 15 10 7 3].
Structure 7: [5 10 12 15 10 7 3].
Structure 8: [5 10 12 15 10 7 3].
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Based on the theory model, we can see that the CNN structure converts the received
signal nonlinearly into the desired signal with a higher accuracy than the conventional
equalizer structure. However, we find out that the BER performance is a little bit improved
when applying the CNN structure. The reason for this problem is that when applying
straight structures (Figure 5a), the weights in early layers are not updated completely. The
final layers of the CNN model are trained and updated with the parameters. This is called
the vanishing gradient. To solve the above problem, the skipping branch (Figure 5b) is
introduced to update the parameters in early layers. Instead of the update parameters
going through many layers from the final to the beginning layers, they can go directly to
the early layers by skipping branches.

3.3. Improving CNN Equalizer with Skipping Branch

We consider the simple neural network as shown in Figure 6.
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Figure 6. Simple neural network structure.

In Figure 6, the circles represent the neurons in the layers of the neural network. x
denotes the input signal. W denotes the weight matrix. y denotes the output vector of each
layer. b denotes the bias vector of each layer. y is calculated using the following equation:

ym = f
(
Wmym−1 + bm

)
, m = 1, 2, 3, . . . , n (19)

With m = 0, we can use the following equation to calculate y.

y0 = f (W0x + b0) (20)

We differentiate yn by W0 as follows:

∂yn
∂W0

=
∂ f (Wnyn−1+bn)
∂(Wnyn−1+bn)

Wn
∂ f (Wn−1yn−2+bn−1)
∂(Wn−1yn−2+bn−1)

Wn−1 . . . ∂ f (W0x+b0)
∂(W0x+b0)

x

=

[
n
∏

k=1

∂ f (Wkyk−1+bk)
∂(Wkyk−1+bk)

Wk

]
∂ f (W0x+b0)
∂(W0x+b0)

x
(21)

From (21), we can deduce the differentiation of yn by Wm as follows:

∂yn
∂Wm

=

[
n

∏
k=m

∂ f
(
Wkyk−1 + bk

)
∂
(
Wkyk−1 + bk

) Wk

]
ym−1 (22)

According to the gradient descent algorithm, the new parameters are updated as follows:

Wnew
m = Wold

m −
∂yn

∂Wm
ε (23)

Here, ε denotes the step size or learning rate. From (22), we can observe that when
the neural network has many layers to create a long network, the multiplication part

n
∏

k=m

∂ f (Wkyk−1+bk)
∂(Wkyk−1+bk)

Wk is extremely small in the beginning layers. This leads to ∂yn
∂Wm
≈ 0 and

Wnew
m ≈Wold

m in (23). Therefore, when the network is extremely long, we cannot exploit all
the weights of all layers. This leads to a local optimized point for the network model. A
skipped branch is added to the neural network structure, as shown in Figure 7.
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We differentiate yn by W0 as follows:

∂yn
∂W0

=
∂ f (Wnyn−1+W′ny0+bn)
∂(Wnyn−1+W′ny0+bn)

(
Wn

∂yn−1
∂W0

+ W′n
∂y0
∂W0

)
=

∂ f (Wnyn−1+W′ny0+bn)
∂(Wnyn−1+W′ny0+bn)

Wn

[
n−1
∏

k=1

∂ f (Wkyk−1+bk)
∂(Wkyk−1+bk)

Wk

]
∂ f (W0x+b0)
∂(W0x+b0)

x

+
∂ f (Wnyn−1+W′ny0+bn)
∂(Wnyn−1+W′ny0+bn)

W′n
∂ f (W0x+b0)
∂(W0x+b0)

x

=

{[
n−1
∏

k=1

∂ f (Wkyk−1+bk)
∂(Wkyk−1+bk)

Wk

]
+ W′n

}
∂ f (Wnyn−1+W′ny0+bn)
∂(Wnyn−1+W′ny0+bn)

∂ f (W0x+b0)
∂(W0x+b0)

x

(24)

From (21), we can note that multiplication part
n
∏

k=m

∂ f (Wkyk−1+bk)
∂(Wkyk−1+bk)

Wk is added to W′n.

This aids ∂yn
∂W0

>> 0, and the gradient descent can update the parameters for the beginning
layers according to (23). Therefore, with the skipped branch, the neural network model can
exploit all the layers and achieve a global optimized point. This is also observed in the CNN
model. When an excessive number of layers are added to the CNN model, the parameters
of the beginning layers cannot be updated (called the vanishing gradient). Therefore, a
skipped branch is required to update the parameters of the beginning layers.

4. Simulations
4.1. Results and Discussions

In this study, we simulated a conventional equalizer and a CNN equalizer with
eight structures, as described in Section 3.2. We used a filter with a size of 5 × 5 for the
convolution layers in each structure. We created a user data bit u[k] with a size of 1,440,000.
Subsequently, user data u[k] were converted to signal s[j,k] with a size of 1200× 1200 as a 2D
data page via modulation. We used a data page to create signals r[j,k] and s[j,k] to estimate
equalizer F and target T. Then, we created signal d[j,k] by passing signal s[j,k] through
target T. We trained the CNN with signals r[j,k] and d[j,k], as described in Section 3.2. We
used 20 data pages to create a dataset for training the CNN. We divided the dataset into
60% training data and 40% validation data. We set 100 epochs to train the CNN. To test
the proposed model, we used 10 data pages to calculate the BER performance of the HDS
channel. We used a computer with CPU i5-11400 2.6 GHz, 16 GB RAM, and a GTX 1650
graphic card. In addition, MATLAB 2023a was used to create the program. The root MSE
(RMSE) results of the eight CNN structures are presented in Table 1.

In the first experiment, we set up an HDS channel with 0% misalignment and a
blur of 1.85. The misalignment is a parameter of the HDS channel. This shows that the
sensor in HDS systems is skewed towards the position of the desired data. Therefore,
the misalignment effect decreased the detection ability. The blur level was a variable
associated with the HDS channel. This reflected the distribution of light energy on the
projection screen. As the blur level increased, more light energy was scattered in various
directions, resulting in less energy being concentrated at the intended pixels and an increase
in unwanted noise. This simultaneous light scattering also caused a 2D ISI to occur. Figure 8
presents the results of the first experiment.
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Table 1. The RMSE of nonlinear equalizer using CNN structures at 10 dB.

Methods RMSE

Structure 1 0.2746
Structure 2 0.2903
Structure 3 0.2565
Structure 4 0.2477
Structure 5 0.2353
Structure 6 0.2213
Structure 7 0.2135
Structure 8 0.2047

Conventional equalizer in [18] 0.3064
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As shown in Figure 8, the CNN equalizer could improve the BER performance com-
pared with the conventional equalizer in [18] and the decision feedback equalizer (DFE)
with a reliability factor in [2]. In addition, branch structures could achieve better perfor-
mance than straight structures. However, the performance of Structure 4 was similar to that
of the straight structure. Because Structure 4 has excessive layers (a long network) and the
skip branch connects only to the beginning layer from the perspective of the long network,
the weights were not updated completely. This led to Structure 4 and the straight structure
achieving similar performance. In addition, we designed Structures 7 and 8 with skipped
branches that skipped two and three layers, respectively. Notably, Structure 8 achieved a
better performance than Structure 7. When Structure 8 skipped three layers, the parameter
information was updated more easily than in Structure 7, with two layers skipped. In
other words, Structure 8 reduced the vanishing gradient better than Structure 7. Therefore,
Structure 8 improved the BER performance better than Structure 7. Generally, our proposed
model achieved a gain of 3.5 dB at a BER of 10−3 compared to the previous model.

In the next simulation, we set blur = 1.85 and 10% misalignment for the HDS channel.
The results are shown in Figure 9.
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As shown in Figure 9, the proposed model could still improve the BER performance
of the HDS channel. As the misalignment increases, the 2D ISI increases. Nevertheless, by
employing the proposed model that considers the nonlinear connection within the CNN,
we could compensate for this effect, thereby maintaining the BER performance of the HDS
channel at 0% misalignment. Our proposed model obtained a gain of 2.5 dB at a BER of
10−3 under 10% misalignment.

In the final simulation, the blur level was changed from 1.8 to 3 with 0% and 10%
misalignments. We also set SNR = 15 dB. The results are presented in Figure 10. The
proposed model achieved the best performance when the blur was less than 2.8.

4.2. Complexity and Latency

In this section, we consider the complexity of our proposed model and that of previous
studies in Table 2. The operators are counted in the equalizer to detect a bit. In Table 2, we
can see the trade-off between the BER performance and the complexity of the models.

Table 2. Complexity of our proposed model and previous studies.

Methods Mul/Div Add/Sub

Structure 1 1998 1955
Structure 2 4578 4435
Structure 3 2623 2555
Structure 4 4581 4438
Structure 5 6489 6271
Structure 6 7114 6871
Structure 7 7739 7471
Structure 8 7123 6817

Conventional equalizer in [18] 33 48
DFE with reliability factor [2] >36 >34
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In Table 3, we consider the processing time for each CNN structure to detect one bit.
These results present the latency/delay of the proposed model.

Table 3. The processing time for eight CNN structures.

Methods Latency (ms)

Structure 1 4.1
Structure 2 6.448
Structure 3 6.151
Structure 4 7.25
Structure 5 8.23
Structure 6 8.532
Structure 7 8.623
Structure 8 8.854

Conventional equalizer in [18] 0.0902

5. Conclusions

In this study, we introduced a CNN-based equalizer designed for HDS channels.
Using a pretrained CNN, we processed the received signal from the HDS channel output
to mitigate the 2D ISI and achieve an equalizer output signal close to the desired target
signal. In addition, we conducted experiments to determine the optimal CNN equalizer
structure. The proposed equalizer demonstrated superior accuracy compared to traditional
equalizers. Simulations showed that the proposed model outperformed those of prior
studies. Specifically, at a BER of 10−3, the proposed model yielded a gain of approximately
3.5 and 2.5 dB in contrast to conventional equalizers with 0% and 10% misalignment,
respectively. Furthermore, even in the presence of misalignments and blurred conditions,
the proposed model consistently exhibited exceptional performance. The proposed model
can resist the blur effect up to 2.8. However, our proposed model still trades off between
performance and complexity/latency.
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