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Abstract: The regulation of wastewater treatment plants (WWTPs) is a challenge due to their complex
biological and chemical characteristics and their accurate mathematical model is generally not
accessible because of the limitation of available measurements. To overcome such challenges, in
this paper, a novel model-free adaptive nonsingular fast integral terminal sliding mode control
(MFA-NFITSMC) is proposed. Firstly, based on the concept of dynamic linearization, a compact
format dynamic linearized (CFDL) data model for the WWTP is established. Secondly, a novel fast
integral terminal sliding mode surface is proposed to accelerate the convergence of tracking error
and a discrete-time MFA-NFITSMC is created using the CFDL model as a basis; then, its stability
is proved by theoretical analysis. Finally, the experimental verification is conducted based on the
Benchmark Simulation Model No. 1 and the results show that the proposed method has a higher
tracking accuracy and stronger robustness than other methods in the control of WWTPs.

Keywords: wastewater treatment; dissolved oxygen; data-driven control; model-free adaptive
control; dynamic linearization; fast integral terminal sliding mode control

1. Introduction

With the rapid development of the economy and the advancement of urban industri-
alization, the discharge of industrial wastewater and domestic wastewater is becoming
increasingly severe. The contradiction between the supply and demand of water has been
severely exacerbated by the shortage of available water caused by water pollution and the
increasing water demand and has become a common problem facing the world. Wastewater
treatment plants (WWTPs) are industrial systems widely used in petrochemical and resi-
dential life fields. They can reduce water pollution, promote wastewater recycling, greatly
reduce industrial water demand, and avoid environmental pollution. However, WWTPs
are very complex time-varying dynamic systems and their internal reaction processes are
influenced by the influent flow rate, pollutant load, and unknown inflow components,
exhibiting characteristics such as nonlinearity, strong coupling, and strong disturbance [1].
Therefore, research on the control of wastewater treatment plants is of great significance for
improving operational performance and improving effluent quality.

To meet the treatment efficiency standards of WWTPs, there have been many ground-
breaking research developments in recent years. Traditional control strategies such as
on-off switch control, PID control, PI feedforward control, and their combination forms
have been widely employed to regulate the concentrations of nitrate nitrogen and dissolved
oxygen (DO) [2,3]. However, due to the inability of the above controller parameters to
adaptively change online, the control performance of the WWTP system will be affected
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when it is subjected to external disturbances such as influent flow. In response to this
problem, a fuzzy control algorithm [4] is proposed to control the DO concentration. Com-
pared with traditional switch control laws, the control deviation is improved by 60% and
the energy consumption is reduced by more than 40%. Since then, more and more fuzzy
control strategies [5,6] have been applied to WWTPs, which have greatly improved control
effectiveness and reduced energy consumption. Nevertheless, these tactics are challenging
to implement in real life and mostly rely on the experience of experts.

To improve the control accuracy, some model-based control algorithms have been
applied to WWTPs, such as model predictive control (MPC) [7], adaptive control [8],
and adaptive sliding-mode control [9]. Although it is challenging to create a precise
mathematical model of a WWTP due to its strong nonlinear and non-stationary dynamic
properties, model-based control strategies frequently use a linearization method near the
operating point, using a reduced-order model to approximate the actual model. This will
cause some dynamic characteristics of the high-order system to be neglected, leading to
unmodeled dynamic problems. Therefore, it is challenging to obtain satisfactory results
using model-based control systems in industrial practice. To address the above issues,
neural networks have been applied to the identification and control of unknown dynamic
systems in WWTPs. Qiao et al. [10] proposed a multivariable PI control algorithm based
on a feedforward neural network model and an adaptive fuzzy neural network control
algorithm [11]. Han et al. [12–15] proposed nonlinear model predictive control strategies
for WWTPs which have shown good performance in robustness and energy conservation.
However, control strategies based on neural networks require a large amount of historical
data for training and, for most WWTPs, due to limitations in measurement equipment, it
is not possible to provide a large amount of data that can be used to train models. In a
broad sense, a neural network is the model of a system. When the system changes, the
network needs to be retrained and the determination of network nodes and hidden layers
requires prior knowledge of the controlled object. Therefore, control strategies based on
neural networks still cannot avoid unmodeled dynamic problems.

Currently, data-driven techniques have been used in fields such as control, decision-
making, scheduling, and fault diagnosis. Hou et al. [16,17] proposed a data-driven model-
ing technique for nonlinear systems called compact format dynamic linearization (CFDL).
This method only relies on the input and output (I/O) data of the control system, does
not need any system model, and implements model-free adaptive control (MFAC) for
unknown control systems. Up to now, CFDL data-driven modeling methods have played
an important role in many fields [18–20]. Through theoretical analysis, simulation re-
search, and practical applications, it has been demonstrated that the data-driven CFDL
modeling method produced a control system with strong robustness, simplicity, practical-
ity, low computational complexity, and ease of implementation. Unmodeled dynamical
problems of unknown nonlinear time-varying systems can be effectively solved with this
technique [16,17]. Meanwhile, sliding mode control (SMC) can force the current state of
the system (such as errors and their derivatives) to move according to the predetermined
sliding mode state trajectory during dynamic processes. Due to the design of the sliding
surface being independent of target parameters and disturbances, SMC has the advantages
of fast response, insensitivity to parameter changes and disturbances, and simple physical
implementation. Understanding the control system’s mathematical model is necessary for
designing SMC controllers. \Therefore, designing SMC based on CFDL data models is of
great significance for simultaneously leveraging their advantages [21–23].

Motivated by the above discussion and aiming at the characteristics of the WWTP,
such as the difficulty of accurate modeling and the existence of unknown interference, this
paper establishes a CFDL data model for the WWTP and proposes a data-driven model-free
adaptive nonsingular fast integral terminal sliding mode control (MFA-NFITSMC) strategy.
The advantages of this strategy are as follows:

(1) The proposed method does not rely on the mathematical model or human experience
of WWTP and only requires real-time I/O measurement data. It can effectively
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avoid the uncertainty of the model and the impact of unmodeled dynamics on the
closed-loop system.

(2) A novel fast integral terminal sliding mode surface (FITSMS) is proposed to ensure
that the tracking error can converge quickly when it is far from the equilibrium point.
This addresses the issue that the conventional integral sliding mode control (ISMC)
cannot ensure that the system state convergences to zero in a finite time and the rate
of convergence of the tracking error is slow.

(3) The BSM1 was used to validate the suggested approach’s control performance and it
was contrasted with other control schemes including PID and MPC. The simulation
experiment results indicate that the MFA-NFITSMC strategy has a better tracking
performance and stronger robustness in the control of WWTP.

2. Problem Description

In this section, the layout and dynamic model of the BSM1 will be introduced and a
CFDL data model for WWTP based on dynamic linearization technology will be established.

2.1. Benchmark Simulation Model No. 1 (BSM1)

To effectively evaluate wastewater treatment control strategies, the European Co-
operation in Science and Technology (COST) and the International Water Association
(IWA) jointly developed the benchmark simulation model BSM1 for the activated sludge
method [24]. Figure 1 shows the general layout of the model’s two components, the
biochemical reactor and the secondary clarifier. The biochemical reactor consists of two
anoxic tanks and three aerobic tanks. The activated sludge model No. 1 (ASM1), which
has 13 components in Table 1, 8 biochemical reaction processes, and 19 parameters, was
adopted by the mechanistic model of the biochemical reaction. The secondary clarifier,
which has 10 layers, is where the wastewater goes after the biochemical reaction. The
primary purpose of the secondary clarifier is to use sedimentation to separate mud and
water. After sedimentation, the upper layer of clear water is discharged and the lower layer
of sludge is sent in two parts—partly to the biochemical reaction to take part in the reaction
and partly to be drained from the system. The secondary clarifier’s mechanism model uses
a double-exponential sedimentation velocity model.
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Due to the significant biochemical reactions and main operating variable quantity of
WWTPs occurring in ASM1, a large amount of research has focused on this. The general
formula for mass conservation in ASM1 can be expressed as follows:

dZk
dt

=


QintZint+QrZr+QiZi+r1V1−Q1Z1

V1
, k = 1

Qk−1Zk−1+rkVk−QkZk
Vk

, k = 2 ∼ 5
(1)
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where Vk represents the volume of unit k, and rk, Qk, and Zk respectively represent the
reaction rate, flow rate, and concentration of each component in unit k. Similarly, subscripts
r, int, and i represent external reflux, internal reflux, and inflow, respectively.

Table 1. List of ASM1 variables.

Notation Definition

SI Soluble inert organic matter
SS Readily biodegradable substrate
XI Particulate inert organic matter
XS Slowly biodegradable substrate

XB,H Active heterotrophic biomass
XB,A Active autotrophic biomass
XP Particulate products arising from biomass decay
SO Oxygen

SNO Nitrate and nitrite nitrogen
SNH NH4

+ + NH3 nitrogen
SND Soluble biodegradable organic nitrogen
XND Particulate biodegradable organic nitrogen
SALK Alkalinity

Studies reveal that the nitrate concentration in unit 2 (SNO,2) and the DO concentration
in unit 5 (SO,5) are directly related to the quality of effluent and they are essential to the
effectiveness of wastewater treatment. In BSM1, the control of SNO,2 and SO,5 is achieved
by controlling the internal return flow rate (Qint) and the oxygen transfer coefficient (KLa5)
of unit 5. The variation of SNO,2 can be represented by Equation (1) and the variation of
SO,5 can be expressed as:

dSO,5

dt
=

1
V5

(Q4SO,4 + r5V5 −Q5SO,5+ (KLa5)V5(SO,sat − SO,5)) (2)

where SO,sat is the DO saturation concentration, which is usually taken as 8 g/m3.

2.2. CFDL Model for WWTP

Taking the DO concentration as an example, the nonlinear discrete system of the SO,5
in a WWTP can be expressed as:

y(k + 1) = f
(
y(k), y(k− 1), ...y

(
k− ny

)
, u(k), u(k− 1), ..., u(k− nu)) (3)

where u(k) ∈ R represents the system input KLa5, y(k) ∈ R indicates the system output
SO,5, nu and ny indicate the input and output order of the system, and f (·) represents a
nonlinear function which is unknown.

Based on the CFDL theory [25], reasonable assumptions are introduced for the WWTP
system shown in Equation (2).

Assumption 1. The partial derivative of f (·) in (3) is continuous under the action of the control
input KLa5.

Assumption 2. The generalized Lipschitz condition is met by the WWTP system (3) that is, at
any particular moment k, if ∆u(k) 6= 0, then |y(k + 1)− y(k)| 6 b|∆u(k)|, where the constant b
is positive.

Remark 1. Indeed, the input-output change rate of a nonlinear control system for a WWTP
is typically constrained by Assumption 1. A bounded input energy change should result in a
bounded output energy change inside the system, since the WWTP complies with the rule of energy
conservation, satisfying Assumptions 1 and 2.

For a WWTP system satisfying the above assumptions, we have Lemma 1 as follows.
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Lemma 1. For the system (3) of SO,5 in a WWTP satisfying Assumptions 1 and 2, when
|∆u(k)| 6= 0 at time k, there is a time-varying parameter φc(k) ∈ R referred to as the pseudo
partial derivative (PPD), that system (2) can be converted into the following model:

∆y(k + 1) = φc(k)∆u(k) (4)

where φc(k) is bounded for any time k.
For the unknown PPD φc(k) in the data model (4) with dynamic linearized, an im-

proved projection algorithm is used for estimation, considering the following PPD estima-
tion criterion function:

J(φc(k)) = |y(k)− y(k− 1)− φc(k)∆u(k− 1)|2 + µ
∣∣φc(k)− φ̂c(k− 1)

∣∣2 (5)

where µ > 0 is the weighting factor.
Let ∂J/∂φc(k) = 0, then the estimation formula of φc(k) can be computed in the

following way:

φ̂c(k) = φ̂c(k− 1) +
η∆u(k− 1)

(
∆y(k)− φ̂c(k− 1)∆u(k− 1)

)
µ + ∆u(k− 1)2 (6)

where η ∈ (0, 1] denotes the weighting factor, which is aimed to make the algorithm more
flexible and general. φ̂c(k) represents the estimation of φc(k).

Due to the fact that the WWTP is a typical time-varying system with significant
parameters change, in order to enhance the tracking ability of PPD estimation algorithm (6)
for time-varying parameters, when

∣∣φ̂c(k)
∣∣ 6 ε or |∆u(k− 1)| 6 ε, make

φ̂c(k) = φ̂c(1) (7)

where ε is a sufficiently small positive number usually taken as 10−5, and φ̂c(1) is the initial
value of φ̂c(k). Combining Equations (4), (6) and (7) can obtain the CFDL data model for
the WWTP:

y(k + 1) = y(k) + φ̂c(k)∆u(k) (8)

3. Controller Design for WWTP

In this section, a fast integral terminal sliding mode surface is proposed and a discrete
time model-free adaptive nonsingular fast integral terminal sliding mode controller is
designed based on the dynamic linearization data model of WWTP. The stability of the
closed-loop system is demonstrated through theoretical analysis.

3.1. Fast Integral Terminal Sliding Mode Surface

There are two phases to the SMC design. Creating the sliding mode surface is the first
step in forcing the system state to reach the equilibrium point. Creating the reaching law is
the second step in making sure the system’s motion trajectory is driven to and maintained
on the sliding mode surface. The robustness of the system during the arrival stage cannot
be guaranteed by a standard SMC. To solve this problem, integral sliding mode control
(ISMC) is introduced to eliminate the reaching phase.

Describing the tracking error of the system e = yd − y, where yd is the desired output,
y is the system output, then ISMC’s sliding mode surface is created as:

s(t) = e(t) + k
∫ t

0
e(τ)dτ (9)

where k > 0 is a coefficient that requires designing.
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Assuming the initial tracking error is e(0), when the integral in Equation (9) has the
initial value −e(0)/k, s(t) starts at zero and stays there for the duration of the system
response. On the manifold s(t) = 0 of ISMC, we have

e(t) = e(0) exp(−kt) (10)

which suggests that there is no guarantee that the tracking error will converge to zero in
a finite amount of time. To solve this problem, the ISMC is combined with the terminal
sliding mode control (TSMC) which makes finite-time tracking possible. The sliding mode
surface of the integral terminal sliding mode control (ITSMC) is intended to be:

s(t) = e(t) + α
∫ t

0
ep1/p2(τ)dτ (11)

where α > 0 is a coefficient that requires designing, p1 and p2 are positive odd integers
satisfying p2 > p1 > 0.

For Equation (11), define the integral term eI(t) =
∫ t

0 ep1/p2(τ)dτ, and ensure eI(0) =
−e(0)/α, when s(t) = 0 (i.e., e(t) = −αeI(t)), we have

.
eI(t) = −αp1/p2ep1/p2

I (t) (12)

The convergent time of eI(t) can be obtained by solving the error dynamic Equation (12)
as follows:

Tf 1 =
|eI(0)|1−p1/p2

αp1/p2(1− p1/p2)
=
|e(0)|1−p1/p2

α(1− p1/p2)
(13)

which indicates that in a limited amount of time Tf 1, the tracking error, can converge
to zero.

Since p1/p2 < 1, when far away from the equilibrium point, i.e., |eI(t)| � 1, the
value of

∣∣ .
eI(t)

∣∣ will significantly decrease according to Equation (12); thus, the convergence
speed of eI(t) will be greatly reduced. To solve this problem, according to the research of
Chiu [26], a FITSMS with fast convergence properties is intended to be:

s(t) = e(t) +
∫ t

0

[
α|e(τ)|p1/p2sgn(e(τ)) + βsgn(e(τ))

]
dτ (14)

where e(t), α, p1, and p2 have the same definition as in Equation (11), and β > 0 is a
coefficient that requires designing. The difference between the fractional order term in the
integral term and Equation (11) is to ensure that when the error is negative, the calculation
result is a real number. It is essentially the same as Equation (11).

Theorem 1. For the WWTP system shown in Equation (8), using FITSMS based on Equation (14),
when the tracking error is on the sliding mode surface, the tracking error can converge to zero in a
finite time to make the WWTP system stable.

Proof of Theorem 1. Assuming only the second term of the integral term in Equation (14)
is considered, we have

s(t) = e(t) +
∫ t

0
βsgn(e(τ))dτ (15)

For Equation (15), define the integral term eI(t) =
∫ t

0 βsgn(e(τ))dτ, and ensure
eI(0) = −e(0)/β, when s(t) = 0 (i.e., e(t) = −βeI(t)), we have

.
eI(t) = −sign(αeI(t)) (16)
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The convergent time of eI(t) can be found by solving the error dynamic Equation (16)
as follows:

Tf 2 = |eI(0)| =
e(0)

β
(17)

By combining Equation (13), the convergence time of FITSMS can be obtained

Tf < min

(
|e(0)|1−p1/p2

α(1− p1/p2)
,
|e(0)|

β

)
(18)

Due to the initial the tracking error e(0) of the DO concentration is bounded and
non-zero, the convergence time Tf is also bounded. Therefore, the tracking error of the DO
concentration satisfies the finite time convergence on the FITSMS, and

Tf < Tf 1 (19)

The convergence time Tf can be adjusted by adjusting α and β. Thus, Theorem 1
is proved. �

Compared with Equation (9), Equation (12) contains an integral term of βsign(e), so
when the system state is far from the equilibrium point, the tracking error converges faster.
In fact, due to the effect of the integral sliding mode term, the integral term’s starting value
−e(0) guarantees that s(t) stays at zero at all times, thereby ensure the global robustness of
the system.

3.2. MFA-NFITSMC Design

For the system shown in Equation (8), the discrete time tracking error is defined
as follows:

e(k) = yd(k)− y(k) (20)

where yd(k) is the desired output at time k, y(k) is the system output at time k.
The discrete form of the FITSMS (12) is defined as follows:

s(k) = e(k) + TE(k− 1) (21)

where T is the sample time. The integral error term is

E(k) =
k
∑

i=1

[
α|e(i)|

p1
p2 sgn(e(i)) + βsgn(e(i))

]
= E(k− 1) + α|e(k)|p1/p2sgn(e(k)) + βsgn(e(k))

(22)

Due to the interference of the inlet flow rate and the unknown component concentra-
tion in WWTP, the tracking error of the DO concentration cannot always be on the sliding
surface, which will lead to a deterioration of the global robustness of the system. In order
to meet the reachability of tracking error to sliding mode surface, accelerate convergence
speed, and reduce chattering, the following approach law [27] is selected:

.
s = −m|s|λsgn(s)− ns (23)

where m and n are constants that are positive, 0 < λ < 1. Its discrete form is as follows:

s(k + 1)− s(k) = −mT|s(k)|λsgn(s(k))− nTs(k) (24)

Considering Equations (8) and (20)–(22), we can obtain
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s(k + 1)− s(k)= e(k + 1) + TE(k)− e(k)− TE(k− 1)

= yd(k + 1)− y(k + 1)− (yd(k)− y(k)) + T
(

α|e(k)|
p1
p2 sgn(e(k)) + βsgn(e(k))

)
= ∆yd(k)− φ̂c(k)∆u(k) + T

(
α|e(k)|p1/p2sgn(e(k)) + βsgn(e(k))

) (25)

By combining Equations (24) and (25), the following control law can be obtained

∆u(k) =
1

φ̂c(k)
(mT|s(k)|λsgn(s(k)) + nTs(k) + ∆yd(k)+αT|e(k)|p1/p2sgn(e(k)) + βTsgn(e(k)) (26)

In Equation (26), the desired output increment ∆yd(k) is required to calculate the con-
trol variable. In fact, the trajectory to be tracked is usually predefined in the control system,
so ∆yd(k) is a priori known. When the desired output is a constant value, Equation (26)
can be expressed as:

∆u(k) =
1

φ̂c(k)
(mT|s(k)|λsgn(s(k)) + nTs(k)+αT|e(k)|

p1
p2 sgn(e(k)) + βTsgn(e(k))) (27)

Hou and Jin [25] have proved that the PPD estimation value φ̂c(k) is bounded and the
reset algorithm (7) guarantees that the lower bound of φ̂c(k) is not zero, so the control law
given by Equation (27) is nonsingular. Thus, a complete MFA-NFITSMC method for the
WWTP control system is constructed by Equations (4)–(7) and (20)–(27), and the structure
of control system is shown in Figure 2.
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3.3. Stability Analysis

To demonstrate the stability of the designed WWTP control system, the following
assumptions are added:

Assumption 3. Every time a bounded expected output signal yd(k + 1) is given, a bounded u(k)
always exists, so that the system’s output approach is yd(k + 1) driven by this control input signal.

Assumption 4. At any time k, when ∆u(k) 6= 0, the sign of the system’s PPD remains unchanged;
that is, φc(k) > ε > 0 or φc(k) < −ε, where ε is a small positive constant.

Remark 2. Assumption 3 is a necessary condition for system controllability. Assumption 4 suggests
that the system output should not decrease in proportion to an increase in the control input, which
can be considered as a quasi-linear characteristic of the system. Obviously, the WWTP system meets
the above assumptions.

Theorem 2. For the WWTP system in Equation (3), under the conditions of Assumptions 1–4,
when yd(k + 1) = yd = const, using the MFA-NFITSMC control strategy in Equation (27),
there are:

(1) The WWTP system’s tracking error is convergent., and lim
k→∞
|yd(k + 1)− y(k + 1)| = 0.

(2) The output and input sequences {y(k)} and {u(k)} are bounded.
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Proof of Theorem 2. The following one-step forward sliding mode function can be obtained
from Equation (21):

s(k + 1) = e(k + 1) + TE(k) (28)

By introducing Equation (20) into Equation (28) and considering Equations (8) and (25),
it can be concluded that:

s(k + 1) = yd(k + 1)− y(k + 1) + TE(k)
= yd(k + 1)−

(
y(k) + φ̂c(k)∆u(k)

)
+ TE(k)

= yd(k + 1)− (y(k) + mT|s(k)|λsgn(s(k)) + nTs(k)

+αT|e(k)|
p1
p2 sgn(e(k)) + βTsgn(e(k))) + TE(k)

= e(k) + TE(k− 1)−mT|s(k)|λsgn(s(k))− nTs(k)

= s(k)−mT|s(k)|λsgn(s(k))− nTs(k)

(29)

Thus
s(k + 1)− s(k) = −mT|s(k)|λsgn(s(k))− nTs(k) (30)

Since both m and n are greater than 0, when s(k) > 0

s(k + 1)− s(k) < 0 (31)

and when s(k) < 0
s(k + 1)− s(k) > 0 (32)

Considering Equations (31) and (32), it can be concluded that

s(k + 1) < s(k), s(k) > 0s(k + 1) > s(k), s(k) < 0 (33)

Equation (33) satisfies the existence and arrival conditions of a discrete sliding mode

[s(k + 1)− s(k)]sgn(s(k)) < 0[s(k + 1) + s(k)]sgn(s(k)) > 0 (34)

Therefore, s(k) is monotonically decreasing and Equation (34) is a necessary and
sufficient condition for the existence of discrete quasi sliding mode states [28]. This means
that under the action of Equation (27), the tracking error of the WWTP system can converge
to the neighborhood of zero, that is, {e(k)} is bounded. According to Theorem 1, e(k) can
converge to zero in a finite time, i.e., lim

k→∞
|yd(k + 1)− y(k + 1)| = 0.

The tracking error is defined as e(k) = yd(k)− y(k); given that {yd(k)} is bounded
and it has been proven that {e(k)} is bounded, thus {y(k)} is bounded. According to the
zero dynamic characteristics of the system’s asymptotic stability, there are constants a, b,
and k0 that satisfy:

|∆u(k− 1) 6|amax
τ<k
|y(τ)|+ b, ∀k > k0 (35)

That is, {u(k)} is bounded. Thus, Theorem 2 is proved. �

Remark 3. The βsgn(e(k)) in Equation (27) will cause higher chattering, the sign function is
replaced with the sigmoid function, which is given below, in order to lessen the chattering it causes.

sigmoid(σ, e(k)) =
2

1 + exp(−σe(k))
− 1 (36)

where σ > 0 and σ = 2 is chosen in order to obtain a balance between chattering and robustness.
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4. Simulation

In Figure 1, the BSM1 employs the constructed MFA-NFITSMC to confirm the intended
method’s control effect. The BSM1 used the rainy and dry weather input data files, which
came from the working groups of COST Actions 682 and 624. These files were downloaded
as normative data to be used in the controller evaluation. Figure 3 shows the dynamic
inflow data and key component concentrations on dry and rainy weather from the 7th day
to the 14th day, including the influent flow Qi, the ammonia nitrogen SNH , and the readily
biodegradable substrate SS. The operating period is two weeks, with a sampling interval
of 15 min. The inflow data from the previous week is used to stabilize the system, while
the dynamic data from the following week is used to test the controller performance. The
MFA-NFITSMC parameters are set as follows: T = 10−5 day, m = 0.1, n = 0.1, α = 10,
β = 15, q1 = 3, q2 = 5, λ = 0.6, φc(0) = 0.2, η = 0.8, µ = 1. For model-free adaptive
integral terminal sliding mode control (MFA-ITSMC), simply set β = 0, and the other
parameters are the same as above. Furthermore, umin = 0 and umax = 360 are assigned
to the actuator constraints’ upper and lower bounds, respectively. The evaluation of the
system control effectiveness is mainly based on the following indicators

ISE =
∫ t f

t0 e2
i dt

IAE =
∫ t f

t0 |ei|dt
Devmax = max|ei|

(37)

where the control system’s response rate is indicated by the integral of square error (ISE),
the transient response and appropriate damping are indicated by the integral of absolute
error (IAE), and the stability of the control system is indicated by the maximal absolute
deviation (Devmax), respectively.
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Figure 3. Dry and rainy weather influent. (a) Flow rate Qi; (b) Constituent concentrations SS and SNH .

Case 1. Usually, when the fifth unit’s DO concentration is maintained around 2 mg/L, the
effluent quality meets the standard. Therefore, there are two types of reference trajectories in Case 1.
SO5re f = 2 mg/L is the first time-invariant reference trajectory of DO. The second is the DO
reference trajectory SO5re f that varies over time and includes 2 mg/L from days 7–9, 1.9 mg/L
form days 9–11, 2.2 mg/L from days 11–12 and 2 mg/L from days 12–14. Considering the external
interference of influent flow and component concentration in Figure 3, the controller performance
was tested on dry and rainy weather and compared with other methods.

The proposed method’s control effect on the DO concentration in the WWTP is shown
in Figures 4 and 5. The results show that the MFA-NFITSMC strategy can ensure the
tracking of the DO concentration to the reference value under different weather conditions
and reference trajectory; it has a fast response speed and strong anti-interference ability,
and the control effect is better than PID and MFA-ITSMC methods. Tables 2 and 3 show
the control effects of different control strategies on DO concentration on dry and rainy
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weather using three evaluation indicators: ISE, IAE, and Devmax. It can be seen that
MFA-NFITSMC is better than other control strategies for all indicators. Therefore, the
proposed method has a better tracking performance and is suitable for a WWTP with
strong disturbances.
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Table 2. The comparison of the performance of various control strategies for an invariant trajectory
in Case 1’s dry weather.

Control Strategy ISE IAE Devmax

MFA-NFITSMC 0.00014 0.0273 0.0083
OS-ELM [29] 0.00069 * 0.0475 * 0.0381 *
PI + AT [30] 0.0009 * 0.0490 * -

AFC [31] 0.0012 * 0.0792 * 0.0198 *
MPC [7] 0.0026 * 0.0890 * 0.0781 *
BFC [31] 0.0049 * 0.1507 * 0.0578 *

PID 0.0078 0.1576 0.1425
* The data originates from the corresponding articles.

Table 3. The comparison of the performance of various control strategies for an invariant trajectory
in Case 1’s rain weather.

Control Strategy ISE IAE Devmax

MFA-NFITSMC 0.00014 0.0273 0.0083
OS-ELM [29] 0.00067 * 0.0375 * 0.0389 *
NNOMC [10] 0.00053 * 0.0390 * -
SR-RBF [15] - 0.0630 * -

RBFNNPID [32] 0.0025 * 0.0947 * 0.0694 *
SORBF-MPC [12] - 0.0810 * -

PID 0.0045 0.1239 0.0952
* The data originates from the corresponding articles.

Case 2. The inflow data (6 January 2022 to 29 July 2022) of an actual WWTP shown in Figure 6
is used to test MFA-NFITSMC, indicating that the external disturbance to WWTP is random rather
than periodic. The actual WWTP consists of three anoxic tanks and five aerobic tanks, with physical
parameters of 45.35 × 4.85 × 5 m. It has three aeration fans, each with a flow rate of 90 m3/min
, a lift of 5 m, and a power of 110 kW, and its maximum processing capacity is 12, 000 m3/day.
In Case 2, there are three different kinds of reference trajectories. SO5re f = 2 mg/L is the first
time-invariant DO reference trajectory. The second is the time-varying DO reference trajectory
SO5re f , including 2 mg/L from day 0–1, 2.3 mg/L from day 1–1.5, and 1.8 mg/L from day 1.5–2.
Figure 6b shows the changes in DO concentration for the third reference trajectory SO5re f , which
corresponds to the practical reference trajectory.

Figure 6. Influence information and trajectory changes in a real WWTP. (a) Flow rate and concentra-
tions; (b) Practical reference trajectory changes.

Figure 7 shows the control effect of MFA-NFITSMC on DO concentration using actual
data of a WWTP. The results show that the proposed method can effectively suppress
nonperiodic disturbances in the WWTP system and has strong robustness. The three
evaluation indicators of ISE, IAE, and Devmax in Table 4 verify that the proposed method
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has a good control performance, can accurately track time-varying reference trajectories,
and has good dynamic performance.
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Table 4. Performance metrics of the proposed MFA-NFITSMC based on Case 2’s real data.

Reference Trajectory ISE IAE Devmax

Trajectory 1 3.3604 × 10−4 0.0031 0.1768
Trajectory 2 3.4848 × 10−4 0.0042 0.1768
Trajectory 3 5.2901 × 10−4 0.0142 0.1004

Case 3. As key indicators in WWTP, SNO,2 and SO,5 need to be controlled within a reasonable
range. However, controlling SNO,2 by adjusting the internal recycle flow rate can also cause
significant interference with SO,5. Traditional methods are difficult to effectively control SNO,2
and SO,5 simultaneously. To verify the control effect of the proposed method, two independent
MFA-NFITSMC controllers are used to control the second unit nitrate nitrogen concentration
and the fifth unit DO concentration in rainy whether. The reference trajectory of nitrate nitrogen
concentration is set to SNO2re f = 1 mg/L and the reference trajectory of DO concentration is
set to SO5re f = 2 mg/L. The controller parameters for nitrate nitrogen are set to: m = 0.5,
n = 0.5, α = 20, β = 30, φc(0) = 0.0001; other parameters are the same as the DO controller.
Furthermore, umin = 0 and umax = 92, 230 are assigned to the lower and upper bounds of the
actuator constraints, respectively.

The control effect of the proposed method on the DO concentration and the nitrate
nitrogen concentration in the WWTP is shown in Figure 8. The outcomes demonstrate
MFA-NFITSMC’s good performance in the control of SNO,2 and SO,5, with a control error
of ±0.05 mg/L for SNO,2 and ±0.015 mg/L for SO,5. Table 5 compares the three evaluation
indicators of ISE, IAE, and Devmax with PID, SMC, and ASMC strategies. The results
show that the MFA-NFITSMC strategy is better than other strategies in all indicators, with
higher control accuracy and stronger robustness, and can effectively suppress internal and
external disturbances in the WWTP system.



Appl. Sci. 2023, 13, 13023 14 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 18 
 

 

Table 4. Performance metrics of the proposed MFA-NFITSMC based on Case 2’s real data. 

Reference Trajectory ISE IAE Devmax  

Trajectory 1 3.3604 × 10−4 0.0031 0.1768 
Trajectory 2 3.4848 × 10−4 0.0042 0.1768 
Trajectory 3 5.2901 × 10−4 0.0142 0.1004 

Case 3. As key indicators in WWTP, ,2NOS  and ,5OS  need to be controlled within a reasonable 

range. However, controlling ,2NOS  by adjusting the internal recycle flow rate can also cause sig-

nificant interference with ,5OS . Traditional methods are difficult to effectively control ,2NOS  and 

,5OS  simultaneously. To verify the control effect of the proposed method, two independent MFA-
NFITSMC controllers are used to control the second unit nitrate nitrogen concentration and the 
fifth unit DO concentration in rainy whether. The reference trajectory of nitrate nitrogen concen-
tration is set to = 1 mg / LNO2refS   and the reference trajectory of DO concentration is set to 

= 2 mg / LO5refS . The controller parameters for nitrate nitrogen are set to: = 0.5m , = 0.5n , 

= 20α , = 30β , ( )φ = 0.0001c 0 ; other parameters are the same as the DO controller. Further-

more, min = 0u  and max = 92,230u  are assigned to the lower and upper bounds of the actuator 
constraints, respectively. 

The control effect of the proposed method on the DO concentration and the nitrate 
nitrogen concentration in the WWTP is shown in Figure 8. The outcomes demonstrate 
MFA-NFITSMC’s good performance in the control of ,2NOS  and ,5OS , with a control er-

ror of ±0.05 mg / L  for ,2NOS  and ±0.015 mg / L  for ,5OS . Table 5 compares the three 

evaluation indicators of ISE , IAE , and maxDev  with PID, SMC, and ASMC strategies. 
The results show that the MFA-NFITSMC strategy is better than other strategies in all 
indicators, with higher control accuracy and stronger robustness, and can effectively sup-
press internal and external disturbances in the WWTP system. 

 
(a) (b) 

Figure 8. ,5OS  and ,2NOS  tracking effect in rainy weather. (a) Control effect of ,5OS  and ,2NOS ; 

(b) Tracking error of ,5OS  and ,2NOS . 
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Table 5. The comparison of the performance of different control algorithms in Case 3.

Control Strategy
SO,5 SNO,2

ISE IAE Devmax ISE IAE Devmax

MFA-NFITSMC 0.00058 0.0013 0.0128 0.0016 0.0782 0.0571
ASMC [9] 0.00493 * 0.035 * 0.49 * 0.00527 * 0.046 * 0.42 *
SMC [9] 0.00552 * 0.030 * 0.61 * 0.00562 * 0.046 * 0.44 *

PID 0.0143 0.072 0.74 0.0081 0.056 0.53

* The data originates from the corresponding articles.

In summary, the proposed method can effectively control the WWTP system with
nonlinear, slow time-varying, and strong disturbance characteristics. Compared with other
methods, the MFA-NFITSMC method has a superior dynamic and steady-state performance
and stronger robustness.

5. Conclusions

In this paper, a novel data-driven model-free adaptive nonsingular fast integral ter-
minal sliding mode control algorithm is proposed to solve the problems of difficult to
establish an accurate model and unknown disturbance in a WWTP. The proposed method
doesn’t need a precise mathematical model and prior knowledge of WWTP, only real-time
I/O data, and has fast error convergence, nonsingular control law, and global robustness.
Furthermore, the error convergence and BIBO stability of the closed-loop system have been
proven through theoretical analysis. The simulation results in three cases indicate that
compared with other control strategies, the MFA-NFITSMC has a higher control accuracy
and stronger robustness in the control of WWTP and can effectively suppress the impact of
unknown interferences on the WWTP system. In addition, the proposed method provides
a new solution for the tracking control problem of a class of nonlinear slow time-varying
and difficult to establish models for complex systems under multiple operating conditions.

Although the proposed method MFA-NFITSMC has achieved excellent results for the
control of WWTPs, there are still some problems that need to be addressed urgently. For
example, the selection of controller parameters was only obtained through a large number
of experiments and further research work is focused on optimizing controller parameters
and designing controllers for MIMO systems.
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