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Abstract: Currently, the use of microseismic detection technology for crack detection and localization
in rock masses has great potential in detecting structural damage. As engineering safety has always
been a very important issue, this study investigated the problem of multi-crack identification in rock
masses within the environment of track tunnels using transient waves. A tunnel rock was modeled
using MIDAS GTS NX software (2019.v1.2) and a crack transient wave model in the frequency domain
was obtained through data analysis and simulation. Then, this was combined with compressive
sensing techniques to locate and detect multiple cracks in tunnel rock. The performance of the
proposed approach was validated through experimental simulations, which included experiments
on differences in the number of cracks, as well as spatial samples. The experimental results indicate
that the technique performs well for single-crack localization in tunnel rock mass, where the average
localization error is 4 m. Meanwhile, the localization error is larger in multi-crack localization, and
the number of spatial sample points set using compressive sensing also has a large impact on the
experimental results.

Keywords: track rock; localization detection; compressive sensing; restricted isometry property

1. Introduction

In the field of track tunnel engineering, engineering safety holds exceptional signif-
icance. Strengthening the real-time monitoring of tunnel rock mass stress is a common
practice in track tunnel construction to prevent accidents, such as tunnel collapse [1]. Cur-
rently, microseismic detection technology is widely used in tunnel disaster recognition and
crack monitoring. When cracks appear in rock, they release strain energy and propagate
elastic waves to the surroundings [2–5]. Crack detection based on visual and optical in-
strument assistance is currently the main means of daily inspection [6,7], but the method
is time consuming and labor intensive, and the detection data carry a certain degree of
subjectivity and are not sensitive to early cracks. There have been many research works
on crack localization and identification; some of them have focused on the study of elastic
wave propagation in a single medium [8,9], while others have analyzed the propagation
and attenuation characteristics of R-waves in non-uniform media [10,11]. Most of them
have focused on the study of propagation characteristics of elastic waves and few work on
specific crack localization detection techniques.

In recent years, theoretical models for leak detection in pipelines in frequency-domain
transient waves (pressure) have been studied [12]. Frequency-domain transient waves
have great performance in terms of localization detection accuracy. In the research on
crack identification, significant progress has been made in various aspects, including
(1) analysis using the reverse transient method [13–16], (2) integration of transient damping
techniques [17–19], (3) utilization of reflection techniques in the time domain [20–22],
and (4) identification based on frequency-domain responses [23–26]. In this study, the
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aforementioned frequency-domain methods of transient waves were applied to crack
localization and monitoring in tunnels. By conducting experimental simulations, the effect
of localization detection can be simulated, which greatly simplifies the estimation problem
of multiple cracks.

Despite the aforementioned work, there are still many unresolved issues in multi-
crack identification. Solving the identification and localization problem of multiple cracks
is challenging; the number of cracks in practical applications was previously unknown.
Previous studies have mainly focused on identifying and locating individual cracks to
simplify the process. As the number of cracks increases, the computational complexity
grows rapidly. As a result, a new low-cost approach was needed to make the estimation
process less sensitive to the number of cracks.

With the development of compressive sensing (CS) technology [27], it has been in-
creasingly utilized in various fields. In simple terms, CS leverages the sparsity of signals in
a domain to achieve accurate signal reconstruction at low sampling rates, thereby breaking
the conventional Nyquist sampling criterion under specific conditions. Currently, CS is
used successfully in image processing and communications [28–33]. In the context of crack
detection in tunnel rock mass within the field of railway transportation, there has been
limited work. Due to the spatial sparseness of the crack locations in the whole tunnel, the
transient wave model for multi-crack identification can be linearly represented in terms
of crack size but not in terms of crack location [26]. Nonetheless, the actual cracks within
the tunnel can be considered sparse; therefore, investigating the problem of multi-crack
localization using a sparse structure became a viable approach.

By establishing a transient wave model in the frequency domain for tunnel rock masses,
using the geotechnical analysis software MIDAS GTS NX 2019v1.2, a transient wave model
suitable for track tunnel rock masses was simulated and obtained the corresponding pres-
sure transfer function through data analysis, which can reflect the propagation relationship.

This work was a CS-based multi-crack identification technique, due to the nonlinearity
of the measurement model with respect to crack parameters, directly modeling and estimat-
ing the data, which obtained from real-world applications can be highly challenging. To
address this issue, spatial sampling techniques were employed to transform the application
problem into a defined space, thereby converting the problem of crack localization into a
mathematical problem for modeling and solution.

Using MATLAB software (R2023a) with simulation analysis, the facilitation of further
evaluation of the performance of this technique can be obtained. For a single-crack case, the
average localization error is approximately 4 m. For the localization of two or more cracks,
the experimental simulation results show that the average localization error is related to
the distance between multiple cracks, and when the distance between multiple crack points
is short, larger errors or missed detections will be caused.

2. Materials and Methods

The pressure-domain transient wave model for tunnel rock masses is elucidated and
the presence of multiple cracks within the rock mass can be simulated. Based on this, the
mathematical relationship between the tunnel cracks and the transmission of pressure-
domain transient waves can be derived.

2.1. Transient Wave Model in the Frequency Domain of the Pressure of Tunnel Rock

Considering a tunnel rock mass with dimensions of 100 m in length, 50 m in width, and
50 m in height. Through simulation, modeling of the rock mass and setting its properties
was based on real-world mechanical parameters. For illustration purposes, this model
simulated a common rock mass with a density of 2730 kg/m3, an elastic modulus of
11 GPa, and a Poisson’s ratio of 0.21. The simulation was conducted using the Midas
GTS NX (2019.v1.2) geotechnical analysis software. A grid system within the tunnel was
created, with 50 observation points (ci, where i = 1, 2, . . . , 50) evenly distributed along the
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100 m length of the rock mass. At one end of the rock mass, dynamic loads in the form of
concentrated forces were applied. Table 1 lists some of the simulated data

Table 1. Position-dependent pressure data at specified angular frequency (200π as an example).

Angular Frequency Measuring Point
Coordinates (m) Pressure Data (N)

628.3185 1 3.262333
628.3185 2 2.673342
628.3185 3 2.211276
628.3185 4 1.845488
628.3185 5 1.553216
628.3185 6 1.318036
628.3185 7 1.127432
628.3185 8 0.971705
628.3185 9 0.843691
628.3185 10 0.737694

. . . ... . . .

Then, we performed experimental simulations, which consisted of two parts:
Simulating the perfect rock mass under dynamic loads of different angular frequencies

to obtain the corresponding data Z0(ci;ω); simulating the practical rock mass with cracks
under dynamic loads of different angular frequencies to obtain the corresponding data
Z(ci; ω).

During the process of experimental simulation, the model design was based on the
geological properties of the tunnel rock mass and the experimental requirements. Figure 1
illustrates the application of dynamic loads at the position and direction indicated by the
red arrow in the tunnel, with loads applied at different angular frequencies. Figure 2
demonstrates the introduction of cracks within the rock mass, where a spherical cavity
is used to simulate the cracks, representing their location and volume as an indication of
their size.
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2.2. Data Analysis and Derivation

Based on the pressure frequency-domain transient wave transmission function de-
scribed in [26], we adopted this model to establish the transmission law of pressure within
the rock mass. Reference [12] proposed a pressure function related to position and angular
frequency within the tunnel:

h0
m(ω) = −Z(ω)sinh(µ(ω)sm)qU(ω), (1)

here, qU(ω) represents the head oscillation, Z(ω) is the characteristic impedance, µ(ω)
is the propagation function, consisting of two constants with angular frequency as the
independent variable, sm is the distance from the loading point to the rock mass, and ω is
the angular frequency of the applied dynamic load. This function is position- and angular
frequency-dependent, representing the theoretical pressure value in the absence of cracks
at the distance sm from the loading point. The specific physical parameters of the formula
are provided in Appendix A.

Normalizing the two sets of observations Z0(di; ω) and Z(di; ω). Normalization can
provide several benefits, including: (1) accelerating convergence; (2) preventing bias in
feature weighting; (3) improving model performance; and (4) enhancing interpretability.

Proposing an expression for the pressure frequency-domain transient wave model of
the tunnel rock mass:

H0
M(ω) = −

(
a
√
−ω2 + ibω

icω

)
sinh

(√
−ω2 + ibω

a
∗ sm

)
d, (2)

This expression is derived by simplifying Equation (1) and representing the constants as
four unknown constants: a, b, c, and d. These four constants are the unknowns, which we
aim to determine through experimental data. The observed data sets are used for machine
learning training using the least squares method, with 20% of the data set used for testing.

By substituting the test set data into Equation (2) for solving, the four unknown
constants a, b, c, and d are determined as 1.5724, 3.4860 × 10−6, 2.5129, and 9.2144 × 10−2,
respectively. Testing based on the training set achieved an MSE of 0.00197, indicating good
accuracy of the pressure frequency-domain transient wave model for the tunnel rock mass.

Based on the simulated pressure frequency-domain transient wave model of the
tunnel rock mass, along with the modeling of the rock mass, frequency-domain transient
wave analysis can be performed, providing the transmission relationship of pressure
frequency-domain transient waves with respect to position (as given by Equation (2)). This
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provides theoretical support for transforming the pressure difference vector into a vector
representation of crack position and size.

3. Tunnel Rock System Model

A transient wave model was developed for locating and detecting cracks in the tunnel
rock in a rail transit environment and a compressive sensing (CS) model for multi-crack
detection problems was proposed.

Considering a rock mass (geotechnical properties are set as in Section 2, corresponding
to common soft rock tunnels) with N cracks, as shown in Figure 3, where setting the first
and last ends to sU and sD, setting xn and vn to be the position and size information of
the n-th crack, ∀n = 1 : N, and assuming sU < x1 < x2 · · · < xN < sD. A total of M
pressure sensors were deployed along the tunnel to collect observational results for crack
identification, where sm denotes the location of the mth sensor installation, and the location
is a section of the rock body that emits a dynamic load point.
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Crack detection employing the frequency-domain transient wave model [12]. Based
on the description in Section 2, it can be established that the pressure values, at the detection
points, vary depending on the position and size of the cracks [26]. Thus, the pressure values
can serve as the primary observations for determining the location and size of the cracks,
which will be utilized in subsequent model development.

The data on pressure is collected by M sensors for subsequent crack detection. Hm(ω)
denotes the data collected by sensor sm at angular frequency ω. The set of frequencies used
in collecting data at Ω has a total of NΩ angular frequencies

Setting the pressure values {Hm(ω), ∀ω ∈ Ω} by sensor sm, the pressure difference
can be expressed as:

dm(ω) = Hm(ω)− H0
m(ω), (3)

where H0
m(ω) is the theoretical pressure at sm when there are no cracks within the range

[0, sm], as given by Equation (2).
Expressing dm(ω) as a vector d ∈ RNΩ M:

d = vec[dm(ω)|∀ω ∈ Ω, ∀m = 1 : M], (4)

here, setting x and v as the information about the location and size of the cracks in the
tunnel, which can be obtained as:

x = vec[xn|∀n = 1 : N], (5)

v = vec[vn|∀n = 1 : N], (6)

where x1 < · · · < xN for the position x.
From the transient wave model derived in [12], a representation of the pressure

difference of the crack related to the crack size and location information is written.

d = ρ(x)v + ε. (7)

This linearly represents the crack size but not the crack position. ε represents mea-
surement errors, ρ(x) ∈ RNΩ M×N is the measurement matrix, and the composition of the
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measurement matrix is related to the location information of the crack point, which can be
expressed as:

ρ(x) = [ϕ(x1), . . . ,ϕ(xN)], (8)

where ϕ(xN), n = 1 : N, is the measurement function ψm(xn; ω) dependent on the crack
position xn, given by:

ϕ(xn) = vec[ψm(xn; ω) | ∀ω ∈ Ω, ∀m = 1 : M], (9)

and ψm(xn; ω) is provided in [26], with the expression:

ψm(xn; ω) =

{
−
(
Z(ω))2sinh(µ(ω)(sm − xn))sinh(µ(ω)xn)qU(ω), if xn ≤ sm

0, otherwise
(10)

In Equation (9), the relevant unknown variables are represented in Equation (2). Based
on the modeling analysis of the tunnel rock mass in this Section, the transient wave model in
the tunnel rock mass allows for compressive sensing (CS) sparse modeling. This transforms
the practical application problem into a mathematical problem for solution.

4. CS Sparse Model

In this Section, the process of transforming rock transient wave modeling to coefficient
modeling is described, transforming the application problem into the problem of finding a
sparse recovery signal.

4.1. Sparse Modeling of Pressure Differences

The purpose is to estimate the location and size of the crack based on the collected
data d. Directly estimating x and v is challenging due to the nonlinear relationship between
d and x and v. Proposing to use spatial sampling to transform a portion of the linear
model into a sparse representation simplifies the associated signal processing. Consider
I spatial samples of crack positions α = vec[αi | ∀i = 1 : I], where αi ∈ [sU , sD]. These
sample positions α represent potential crack positions.

The corresponding column vectors of the basis matrix of the spatial sample points αi
are:

φ(αi) = vec[ψm(αi; ω) | ∀ω ∈ Ω, ∀m = 1 : M], (11)

where ψm(αi; ω) depends on αi and is given by Equation (8) with αi substituted. Let
G(α) ∈ RNΩ M×I be the base matrix, defined as:

G(α) = [φ(α1), . . . , φ(αI)], (12)

where NΩ represents the number of frequencies utilized. Consequently, the measured
value d:

d = G(α)t + ε+ εs, (13)

The error εs in this is due to the fact that the spatial sample points set during the spatial
sample modeling cannot be aligned with the sensor sampling points. The vector t represents
the sparse crack size signal, where its non-zero elements correspond to the actual crack
sizes, and its support corresponds to the spatial samples closest to the actual crack positions.
When setting up the spatial sample points, a larger number of spatial sample points are
generally set up to obtain better results, so a small number of cracks in the tunnel rock mass
can be regarded as sparse for the spatial sample point.

As shown in Figure 4, this illustrates the graphical representation of sparse modeling
for crack detection in tunnel rock mass, where d = G(α)t + ε+ εs. From the figure, it can
be observed that the measurement value d can be expressed as the product of G(α) and the
estimated value t, where each column of G(α) corresponds to φ(αi). The spatial sample
points corresponding to the non-zero values in t represent possible crack locations in the
rock mass, and the magnitude of the non-zero values represents the crack sizes.
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4.2. Estimating Crack Positions x and Sizes v

In the expression of Equation (12), by incorporating the known transient wave model,
it is possible to represent the tunnel cracks by the recovered vector, which simultaneously
provides information about the crack locations and sizes. Within the recovered vector, all
non-zero entries correspond to crack points, with the position information reflected by the
index of the entry, and the value at that position indicating the size of the respective crack;
therefore, the focus is to estimate t from d, translated into questions P0.

(P0) :

t̂ = argmin
t
||t||0

s.t.
∣∣∣∣∣∣d−G(α)t

∣∣∣|22 ≤ dth

Here, ||t||0 is the l0-norm, is the number of non-zero terms in the recovery vector,∣∣∣∣d−G(α)t ‖2
2 is the l2-norm, and dth is The set error threshold, dth = (1 + ςz)σ2, where

ςz ∈ [0.1, 0.3] and σ2 is the variance of the measurement error ε.
Problem P0 is explained by the following lemma, where D(I,2) =

{
µ ∈ CI :‖ µ ‖0≤ 2

}
represents the set of sparse signals:

Lemma 1. [The restricted isometry property (RIP) of G(α) for 2-sparse signals] The base matrix
G(α) satisfies the following RIP for ∀µ ∈ D(I,2):

(
1− δ(2)

)
‖ µ ‖2

2≤ ‖ C−1
(2)G(α)µ ‖2

2
≤
(

1 + δ(2)

)
‖ µ ‖2

2, (14)

the value of δ(2) is defined as (λmax − λmin)/(λmax + λmin), and C(2) is calculated as (λmax + λmin)
/2, where λmax and λmin are obtained from Appendix B. The proof of Lemma 1 can be found in
Appendix B.

Lemma 2. [For the error analysis of a single crack] There exists an optimal solution to the problem
for a single crack based on a specific basis matrix G(α) under the transient wave model in the
frequency domain, which has the following constraints:

‖ t? − t ‖2 ≤
2(‖ ε ‖2 +‖ εs ‖2)

C(2)

(
1− δ(2)

) (15)

The proof of Lemma 2 is provided in Appendix C. The optimal solution to the problem
P0 is the one that is closest to the real signal with enough spatial sample points. By modeling
the crack detection problem in tunnel rock mass using CS, the problem of crack detection is
transformed into seeking the optimal solution of P0.
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5. Crack Detection Method Based on CS

In this Section, the logic of the sparse recovery algorithm and analysis of the algorithm
are described. Then, based on the estimated value d, the crack position x and crack size v
are determined.

5.1. Reconstruction of Sparse Signals

Problem P0 is a standard sparse recovery problem. For the selection of sparse recovery
algorithms, the Orthogonal Matching Pursuit (OMP) algorithm is employed. According
to Equation (12), given G(α) and d, the goal is to recover t from these values. It is evident
that we need to fully utilize the sparsity of u. Based on the knowledge of linear algebra, d
can be represented as a linear combination of the column vectors of matrix G(α), where t
acts as a weight for the column vectors of G(α). As t is sparse, only a few column vectors
in G(α) significantly contribute to d. The objective is to identify the column vectors that
have a significant impact on d. Simultaneously, based on the positions of the column
vectors in G(α), the positions of the non-zero elements in t can be determined. This is
the fundamental application of the OMP algorithm in the crack estimation. Summarizing
the pseudocode for the OMP algorithm to recover t, the specific algorithm steps are as
Algorithm 1 below:

Algorithm 1: The OMP-Based Sparse Signal Recovery

Input: Measurement values of pressure difference d.

1. Set algorithm parameters, such as I and the setting of dth
2. Initialize the index set S = ∅ and the set of spatial samples A = {1, . . . , I}
3. Set the measured value d\ = d
4. Loop through the following steps until ‖ d\ ‖2 ≤ dth

5. Calculate νi =
(φ(αi))

Hd\

‖φ(αi)‖2
, ∀i ∈ Ar S

6. Find i? such that i? = arg max
i∈ArS

||νi||2
7. Gain the index set S as S = i? ∪ S
8. Update the estimated value t̂ as t =

(
G(α))†d , where

(
G(α))† is the pseudo-inverse of

G(α)

Calculation result of d\ = d−G(αS )t̂
Output: Estimated value t̂

5.2. Determination of Crack Position and Size

Given t̂, the crack position x and size v are determined. The computational steps
used are to first set up an index set of spatial samples, expressed using the following
Equation (14), which needs to be taken into account when setting up the index set, with
respect to the previous values of the error thresholds:

K(t̂; tth) = {i | R{t̂i} ≥ tth, ∀i = 1 : I}, (16)

R{•} is used to represent the part of the real part of the complex number; subsequent
problems on crack estimation are analyzed based on the part of the real part, and the
estimate obtained by the specific algorithm can be expressed as follows:

x̂ = vec[xi|∀i ∈ K(t̂; tth)]; (17)

v̂ = vec[R{t̂i}|∀i ∈ K(t̂; tth)], (18)

t̂i represents the ith estimated value of t̂.
Due to the error in the measurement estimation, there will be a projection of the error

in the OMP basis matrix. So when setting the threshold tth, the value should be set to be
larger than this projection of the error, but should not be too large in order to produce false
detections and missed detections in the test. If tth is set too large, it may lead to missed



Appl. Sci. 2023, 13, 13007 9 of 15

detections where small cracks may go undetected. On the other hand, if tth is too small, it
may cause false detections.

The recovery vector calculated using the algorithm is able to reflect the real crack
situation to a certain extent; specifically, the estimated vector can be correlated with the real
crack sparse signal throughout the transformation. For the algorithm, the signal with good
recovery effect, it corresponds to the non-zero spatial sample point, which is actually very
close to the real crack. This is also related to the setting of the algorithm parameter, as well
as the setting of the spatial sample point; its ith element tth will be equal to vn, otherwise it
will be zero for ∀i ∈ S . The OMP algorithm essentially comes up with a search for column
vectors on G(αS ) that contribute more to the measurements, while at the same time, based
on the position of the column vectors in G(αS ), the position of the non-zero elements in t
can be determined.

6. Simulation Results

Simulating the leakage detection method based on compressive sensing (CS) to vali-
date the experimental performance of the proposed scheme.

6.1. Simulation Setup

Considering the overall properties of the tunnel rock mass, a rectangular model with
a length of 100 m and both width and height of 50 m was constructed. A scenario that
involves a maximum of two cracks was built, with crack sizes ranging from 5× 10−4m2

to 10× 10−4m2. For this purpose, we adopted that I = 1000 uniformly distributed spatial
samples, and equally spaced M = 50 sensors along the 100 m length of the tunnel rock
mass for data acquisition. The frequency set Ω was defined as Ω = {iω|∀i = 1 : NΩ},
where NΩ = 20.

The transmission relationship of frequency-domain transient waves in tunnel rock
mass is explained in Section 2 of this study, based on the same material properties and
relevant parameters, with the transfer function given by Equation (2).

6.2. Analysis of the Crack Detection Results of the OMP Algorithm

Analyzing the results of the experimental simulation in terms of a single crack as ll as
two cracks.

6.2.1. Analysis of the Results for a Single Crack

The localization of individual cracks was simulated and analyzed. The simulated
estimation of the leak location is shown in Figure 5, where the number of spatial sample
points determines the localization accuracy. The average error in crack location analysis
for a single crack was 4.3547 m. The method was not applied in tunnel crack detection,
and a comparison of the average errors in [12] shows that the simulation error is decreased,
and the cumulative distribution functions (CDFs) of the estimated crack position errors are
shown in Figure 6.

As shown in Figure 5, the simulation results obtained using the CS-based Orthogonal
Matching Pursuit (OMP) algorithm are presented. The widely spaced points in the figure
represent the measurement nodes, which are the locations where the sensor detection
data are obtained. The closely spaced nodes represent the spatial sample points, which
correspond to the potential crack locations.

As shown in Figure 6, the CDF of the error obtained from experimental simulation for
a single crack indicates the distribution of the error. The error, denoted as |x̂− x|, represents
the distance between the estimated position and the actual location of the crack, reflecting
the accuracy of the estimation.
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6.2.2. Analysis of Results for Two Cracks

The simulated estimation of crack positions for two cracks is shown in Figure 7. It can
be observed that when the distance between the two cracks is close, the localization error
increases. This indicates that the resolution for the performance of crack identification is
degraded, which may be related to the wavelength of the transient wave, i.e., it is difficult
to identify two cracks if the distance between them is smaller than the wavelength of
the transient wave. The cumulative distribution functions (CDFs) of the estimated crack
position errors are shown in Figure 8.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 15 
 

Figure 5. Monitoring results for a single crack. 

As shown in Figure 5, the simulation results obtained using the CS-based Orthogonal 
Matching Pursuit (OMP) algorithm are presented. The widely spaced points in the figure 
represent the measurement nodes, which are the locations where the sensor detection data 
are obtained. The closely spaced nodes represent the spatial sample points, which corre-
spond to the potential crack locations. 

Crack positioning error（m）

St
at

ist
ica

l C
DF

 
Figure 6. CDF of estimated error in single-crack position. 

As shown in Figure 6, the CDF of the error obtained from experimental simulation 
for a single crack indicates the distribution of the error. The error, denoted as |xො − x|, rep-
resents the distance between the estimated position and the actual location of the crack, 
reflecting the accuracy of the estimation. 

6.2.2. Analysis of Results for Two Cracks 
The simulated estimation of crack positions for two cracks is shown in Figure 7. It 

can be observed that when the distance between the two cracks is close, the localization 
error increases. This indicates that the resolution for the performance of crack identifica-
tion is degraded, which may be related to the wavelength of the transient wave, i.e., it is 
difficult to identify two cracks if the distance between them is smaller than the wavelength 
of the transient wave. The cumulative distribution functions (CDFs) of the estimated crack 
position errors are shown in Figure 8. 

 
Figure 7. Monitoring results for two cracks. 

As shown in Figure 8, the CDF analysis of the error using the CS-based OMP algo-
rithm for two cracks reveals that the detection error for two cracks is obviously greater 
than that for a single crack. During the simulation process, the distance between the two 

Figure 7. Monitoring results for two cracks.



Appl. Sci. 2023, 13, 13007 11 of 15

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 15 
 

crack points has a significant impact on the error. The closer the crack points are, the larger 
the error will be, and it may even fail to detect the two cracks. 

Crack positioning error（m）

St
at

ist
ica

l C
DF

 
Figure 8. Cumulative distribution function of estimated error in two crack positions. 

6.2.3. Analysis of Results for Different Spatial Sample Sizes (I) 
Then, the performance of CS-based crack detection with different spatial sample sizes 

was analyzed. The range of values for the spatial sample number I is from 100 to 3000. The 
resulting crack position and size estimation errors relative to I are shown in Figure 9. The 
simulation results demonstrate that the crack detection performance improves as the 
number of spatial samples increases. 

The number of spatial samples , I

Lo
ca

tio
n 

es
tim

at
io

n 
er

ro
r

 
Figure 9. Relationship between crack detection error and spatial sample size. 

The detection error for multiple cracks is greater than that for a single crack. The 
chosen spatial sample size I also has a substantial impact on the simulation results, as 
increasing the number of spatial samples can improve the accuracy of localization detec-
tion simulation to some extent. 

7. Discussion and Conclusions 
A compression-aware tunnel crack localization technique using the OMP recovery 

algorithm in the field of railway transportation is proposed. This CS-based crack detection 
method relies on the pressure difference at a point in the rock mass, considering both the 

Figure 8. Cumulative distribution function of estimated error in two crack positions.

As shown in Figure 8, the CDF analysis of the error using the CS-based OMP algorithm
for two cracks reveals that the detection error for two cracks is obviously greater than that
for a single crack. During the simulation process, the distance between the two crack points
has a significant impact on the error. The closer the crack points are, the larger the error
will be, and it may even fail to detect the two cracks.

6.2.3. Analysis of Results for Different Spatial Sample Sizes (I)

Then, the performance of CS-based crack detection with different spatial sample sizes
was analyzed. The range of values for the spatial sample number I is from 100 to 3000.
The resulting crack position and size estimation errors relative to I are shown in Figure 9.
The simulation results demonstrate that the crack detection performance improves as the
number of spatial samples increases.
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The detection error for multiple cracks is greater than that for a single crack. The
chosen spatial sample size I also has a substantial impact on the simulation results, as
increasing the number of spatial samples can improve the accuracy of localization detection
simulation to some extent.

7. Discussion and Conclusions

A compression-aware tunnel crack localization technique using the OMP recovery
algorithm in the field of railway transportation is proposed. This CS-based crack detection
method relies on the pressure difference at a point in the rock mass, considering both
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the presence and absence of cracks. As the linear representation of crack positions is
not feasible, CS for modeling analysis, utilizing the OMP algorithm for signal recovery,
is employed, followed by experimental simulations to analyze the results. The specific
conclusions are as follows:

1. The existing frequency-domain transient wave analysis method is applicable to tun-
nel rock mass environments. Through data analysis and simulation, the existing
frequency-domain transient wave model is applied to the rail transportation field to
solve the crack detection technology of tunnel rock, which has scalability.

2. According to the proposed crack detection method, a more efficient scheme can be
proposed for sensor deployment based on the results obtained from the simulations.
Sensor placement in practical engineering can be guided by the expected error range,
providing practical guidance for engineering applications.

3. The accuracy of CS-based crack detection primarily depends on the number of spatial
samples. These simulation results demonstrate that increasing the number of spatial
sample points can reduce the error.

4. The resolution of the proposed crack identification technique is related to the wave-
length of the transient wave. If the distance between the two cracks is smaller than
the wavelength of the transient wave, it becomes challenging to distinguish between
the two crack points.

5. In the experimental simulations for localization detection, the employed physical for-
mulas and corresponding relationships are currently based on theoretical derivations.
To improve the accuracy of localization, further research should focus on enhancing
the content related to these aspects.

The CS-based framework utilizing the transient wave model shows potential for
crack detection in tunnel rock masses. The findings of this study provide insights into the
application of CS-based methods; different models should be used to study specific rock
properties and future works will analyze the theoretical performance of CS-based tunnel
crack detection.
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Appendix A

Analysis of Physical Parameters in Equation (1). In Equation (1), based on the refer-
enced physical formulas applicable in pipelines, we have µ(ω) = a−1

√
−ω2 + igAωR and

Z(ω) = µ(ω)a2/(iωgA) [34,35]. Here, a represents the wave velocity, i =
√
−1, A is the

area of the pipeline, g is the gravitational acceleration, and R is the frictional resistance term.

Appendix B

Proof of Lemma 1. Let h̄ ⊂ {1, · · · , I} and |h̄|≤ 2 . Let αh̄ ∈ R|h̄| = vec[αi | ∀i ∈ h̄] and
G(αh̄) ∈ CNΩ M×|h̄| be the submatrix formed by indexing the columns of G(α) with h̄, i.e.,

G(αh̄) =
(

mat
[
(φ(αi))

> | ∀i ∈ h̄
])>

. λmax and λmin as
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λmax = max
} ⊂ {1, · · · , I},

s.t.|h̄| = 1, 2

{
eig
(
(G(αh̄))

HG(αh̄)
)}

(A1)

λmin = min
} ⊂ {1, · · · , I}

s.t.|h̄| = 1, 2

{
eig
(
(G(αh̄))

HG(αh̄)
)}

(A2)

where eig(•) yields all eigenvalues of a matrix.
Let µh̄ ∈ C|h̄| be the subvector of µ

(
in D(I,2)

)
indexed by h̄. Using these formulas,

the inequality in Lemma 1 can be simplified to
(

1− δ(2)

)
‖ µh̄ ‖2

2 ≤ ‖ C−1
(2)G(αh̄)µh̄ ‖

2

2
≤(

1 + δ(2)

)
‖ µh̄ ‖2

2, where ∀h̄ ⊂ {1, · · · , I} and |h̄|≤ 2 . This implies that, given an appro-

priate regularization factor C(2), the eigenvalues of C−1
(2)(G(αh̄))

HG(αh̄) need to be within

the range
[
1− δ(2), 1 + δ(2)

]
, where δ(2) is a constant and δ(2) ∈ (0, 1), ∀h̄ ⊂ {1, · · · , I},

|h̄|≤ 2 [36]. Therefore, we need to prove that (i) all eigenvalues of (G(αh̄))
HG(αh̄) are

upper bounded and (ii) G(αh̄) is full column rank for h̄ ⊂ {1, · · · , I}, |h̄|≤ 2 .

• Condition (i): According to Equation (8), we know that ψm(αi; ω) is finite for all
∀αi ∈ [sU , sD]. Hence, all elements and eigenvalues of (G(αh̄))

HG(αh̄) are bounded.
• Condition (ii): Our goal is to prove that G(αh̄) satisfies condition (ii) when |h̄| is 1 and

2, respectively.

If |h̄| = 1 (i.e., ‖ µ ‖0= 1), G(αh̄) reduces to a vector ϕ(αi). In this case, G(αh̄) is full
column rank, if ‖ G(αh̄) ‖2 6= 0, which is obviously satisfied.

If |h̄| = 2 (i.e., ‖ µ ‖0= 2), let us assume that αh̄ =
[
αi, α

′
i

]
when αi 6= α

′
i ∈ [sU , sD].

Then, G(αh̄) can be specified as G(αh̄) =
[
ϕ(αi),ϕ

(
α
′
i

)]
. Let Ω =

{
ω1, · · · , ωNΩ

}
and

let β =
[
s1, · · · , sM, ω1, · · · , ωNΩ

]>. Consider ℘(β; κ) = ϕ(αi) + κϕ
(

α
′
i

)
(where κ is a

constant), which is a composite function involving hyperbolic functions. If ℘(β; κ) = 0NΩ M

for some constant κ (κ 6= 0), then ϕ(αi) and ϕ
(

α
′
i

)
would be correlated, and G(αh̄) would

not be full column rank. Based on this, P is the probability of describing G(αh̄) as full
column rank can be expressed as:

P = 1− Pr{℘(β; κ) = 0}; (A3)

P = 1−
∫

A I℘(β;κ)=0(β; κ)d(β, κ)∫
A 1d(β, κ)

, (A4)

here, if ℘(β; κ) = 0, for some κ 6= 0, I℘(β;κ)=0(β; κ) = 1; otherwise, it is 0.

Additionally, A =
{[

β>, κ
]>

: s1, · · · sM ∈ (sU , sD], ω1, · · · , ωNΩ ∈ (0, ωB], κ 6= 0
}

, where
ωB represents the utilized measurement bandwidth. Thus, ℘(β; κ) = 0 represents a set of
points that have a finite solution. Hence, the Lebesgue integral

∫
Â I℘(β;κ)=0(β; κ)d(β, κ) = 0.

Consequently, for the case of |h̄| = 2, the probability of G(αh̄) being full column rank is 1.
Therefore, for |h̄| = 1 and 2, there exists a regularization constant C(2) and a 2-RIP

constant δ(2) (where δ(2) ∈ (0, 1)), such that G(αh̄) is full column rank. Thus, inequality in
Lemma 1 is proven.

Next, we specify the minimum possible values for the RIP constant δ(2) and the
regularization constant C(2) to satisfy the equality in Lemma 1. Let λmax and λmin represent

the maximum and minimum possible eigenvalues of (G(αh̄))
HG(αh̄) for ∀h̄ ⊂ {1, · · · , I}
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and |h̄|= 1, 2 . Furthermore, let λ denote a general eigenvalue of (G(αh̄))
HG(αh̄). Then

we have:
λ

C(2)
∈
[

λmin
C(2)

,
λmax

C(2)

]
, (A5)

we can impose the constraint δ(2) ∈ (0, 1) [35] to minimize δ(2). The optimal solution for
C?
(2) can be expressed as:

C?
(2) = min

C(2)

max

{
1− λmin

C(2)
,

λmax

C(2)
− 1

}
; (A6)

s.t. 0 < 1− λmin
C(2)

< 1; (A7)

0 <
λmax

C(2)
− 1 < 1, (A8)

according to Equations (A7) and (A8), the range of C(2) allowed by the RIP condition in
Lemma 1 is (max{λmax/2, λmin}, λmax). Additionally, the optimal regularization constant
is given by C?

(2) = λmax+λmin
2 , and the corresponding minimum possible RIP constant is

δmin
(2) = λmax−λmin

λmax+λmin
. Therefore, Lemma 1 is proven. �

Appendix C

Proof of Lemma 2. Based on the proof in Appendix B, we observe that ‖ d−G(α)t? ‖2 =‖
d−G(α)t + G(α)t−G(α)t? ‖2≥‖ G(α)(t? − t) ‖2 − ‖ d−G(α)t ‖2. According to Lemma
1, ‖ G(α)(t? − t) ‖2 ≥ C(2)

(
1− δ(2)

)
‖ t? − t ‖2, where t ∈ S(I,1) for t? and t. Additionally, ‖

d−G(α)t ‖2= ‖ ε + εs ‖2 ≤‖ ε ‖2 +‖ εs ‖2. Therefore, we have C(2)

(
1− δ(2)

)
‖ t? − t ‖2 ≤

‖ d−G(α)t? ‖2+ ‖ ε ‖2 +‖ εs ‖2. Since t? is the optimal solution of P0 and u is one of
the feasible solutions of P0, we have ‖ d−G(α)t? ‖2≤‖ d−G(α)t ‖2≤‖ ε ‖2 + ‖ εs ‖2.
Therefore, ‖ t? − t ‖2 ≤ 2

C(2)(1−δ(2))
(‖ ε ‖2 +‖ εs ‖2). Therefore, Lemma 2 is proven. �
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