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Abstract: Underwater scenes are often affected by issues such as blurred details, color distortion, and
low contrast, which are primarily caused by wavelength-dependent light scattering; these factors
significantly impact human visual perception. Convolutional neural networks (CNNs) have recently
displayed very promising performance in underwater super-resolution (SR). However, the nature of
CNN-based methods is local operations, making it difficult to reconstruct rich features. To solve these
problems, we present an efficient and lightweight dual-aware integrated network (DAIN) comprising
a series of dual-aware enhancement modules (DAEMs) for underwater SR tasks. In particular,
DAEMs primarily consist of a multi-scale color correction block (MCCB) and a swin transformer
layer (STL). These components work together to incorporate both local and global features, thereby
enhancing the quality of image reconstruction. MCCBs can use multiple channels to process the
different colors of underwater images to restore the uneven underwater light decay-affected real
color and details of the images. The STL captures long-range dependencies and global contextual
information, enabling the extraction of neglected features in underwater images. Experimental results
demonstrate significant enhancements with a DAIN over conventional SR methods.

Keywords: underwater image; super-resolution; transformer; multi-scale

1. Introduction

As global pressure on land-based resources continues to grow, increasing attention
is beginning to be focused on the oceans and seas as an important source of natural
resources. The oceans cover the vast majority of the Earth’s surface, which contains rich
biodiversity, energy potential, and mineral resources. However, due to complex factors
such as scattering, absorption, and color deviation of light in underwater environments,
the quality of underwater scenes is significantly degraded. To address these challenging
issues, many methods [1–6] have been developed to improve degraded image quality. In
the beginning, people tended to make more elaborate filters to recreate as many images
as possible captured in underwater environments, largely inspired by the theory of the
human retina [7]. Later, physical models were often used to mimic the respective complex
environments in real scenarios [8]. In addition to this, they also used a priori methods to
globally enhance the picture [9]. Image super-resolution (SR) techniques are designed to
restore high-resolution (HR) images from low-resolution (LR) images, which can restore
the details and clarity of the images and improve the visualization and application of
underwater images. Although the image improvement of these methods performs well in
some specific contexts, it may suffer from poor performance when dealing with complex,
dynamic, and variable real-world images.

Over the past few years, advances in deep learning have offered fresh solutions for
underwater image SR, allowing researchers to better utilize models such as convolutional
neural networks (CNNs) to enhance the visual quality and detail of degraded images.
Zhang et al. [10] proposed a multipath crossing module that contains both residual and
dilation blocks to boost the learning ability of the model and enhance the representation

Appl. Sci. 2023, 13, 12985. https://doi.org/10.3390/app132412985 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132412985
https://doi.org/10.3390/app132412985
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8191-4346
https://doi.org/10.3390/app132412985
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132412985?type=check_update&version=2


Appl. Sci. 2023, 13, 12985 2 of 16

of abstract features. Wang et al. [11] presented a lightweight multi-stage information
distillation network, referred to as MSIDN. The MSIDN was designed to strike a better
balance between performance and applicability by aggregating locally distilled features
from different stages to capture more potent feature representations. Sharma et al. [12]
utilized a convolutional block attention module (CBAM)) [13] to specify weights for channel
features derived from convolutional neural networks (CNNs) with varying receptive field
sizes. Wang et al. [14] proposed a progressive frequency interleaved network called PFIN
to enhance and restore underwater images, performing effective color bias correction and
detail enhancement in underwater images.

Despite a large amount of previous research on CNN-based methods, previous studies
have encountered challenges related to reconstructing optical artificialities (e.g., color
distortions) in underwater images. Wang et al. [15] were the first to integrate the HSV
color space with deep learning techniques for color correction, noise reduction in the RGB
space, and optimization of luminance and satellite images in the HSV space. Li et al. [16]
proposed a transmission-guided framework that seeks to enhance feature representation by
incorporating multi-color features. Liu et al. [17] proposed an enhancement method based
on a super-resolution convolutional neural network (SRCNN) and perceptual fusion by
combining learned and unlearned methods, which achieved exciting results in underwater
image deblurring and color enhancement. However, existing methods have limitations
that do not take into account the global information interaction.

Nowadays, the transformer is widely used in computer vision with its powerful global
modeling capabilities. Similarly, various transformer structures are introduced in underwa-
ter image restoration tasks to achieve better restoration results. Liu et al. [18] proposed a
structure with unique hierarchical segmentation and multiple levels based on a transformer,
which overcame the challenge of processing large-size images and effectively captured
information regarding long-range dependencies. Peng et al. [19] were the first to apply
the U-shaped structure in combination with a transformer to UIE and achieved exciting
results. A dual attention transformer-based method was introduced by Shen et al. [20] for
underwater image enhancement that can better reconstruct the image. Liang et al. [21]
offered the SwinIR method for image restoration using the swin transformer to achieve
good image reconstruction. Huang et al. [22] proposed a new adaptive group attention
method which was added to the transformer to mitigate the diffusion due to underwater
magnesium. Guo et al. [23] used air images to guide underwater image clearness and
leveraged the transformer to acquire overall information from the underwater images.
Although all of the above methods have yielded some results, they all have certain draw-
backs. Models based on CNN approaches may require a large number of parameters and
computational resources, and deploying such models on resource-constrained underwater
devices may be challenging, which happens to be one of the advantages of transformers.
Similarly, transformer-based models are based on a self-attentive mechanism that pays
global attention to the entire input sequence. In some underwater scenarios, images may
contain a large number of local structures and details, and transformers may not be as
effective as methods such as CNNs in dealing with these local structures.

To address these issues, we propose an active dual-aware integrated network (DAIN)
for underwater image SR in this paper. The general architecture can be seen in Figure 1,
which shows that the DAIN mainly comprises a sequence of dual-aware enhancement
modules (DAEMs). A multi-scale color correction block (MCCB) and swin transformer
layer (STL) constitute the DAEM, which can utilize the short-range ability of the CNN
and the long-range ability of the STL to better integrate local and global information,
thereby improving the temporal resolution of degraded underwater images. The MCCB
utilizes multiple channels to process the different colors of underwater images to reduce
color bias, while the STL captures global contextual information to improve image detail
reconstruction. Experimental results display that our DAIN outperforms the most popular
methods with low model capacity.
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Figure 1. Network architecture of our proposed DAIN.

To sum up, our main contributions can be summarized as being three-fold:

• We introduce a lightweight and efficient DAIN tailored for the underwater SR domain.
Leveraging the DAME, which consists of an MCCB and STL, our approach demon-
strates superior reconstruction performance, outperforming the majority of existing
underwater SR methods.

• Our proposed DAEM adeptly integrates local and global features, enhancing the
model’s capacity to capture intricate details.

• The MCCB employs multi-channel and multi-scale strategies to address the challenge
of uneven color attenuation in underwater images. Notably, the incorporation of the
attention mechanism further elevates the representational prowess of the network.

While transformer-based methods excel in global modeling, they exhibit limitations in
local modeling. Furthermore, to streamline computations and enhance model efficiency,
transformers often entail a significant reduction in computational parameters. Conse-
quently, recent efforts have explored hybrid models that synergize global features extracted
by the transformer with local features extracted by a CNN.

2. Related Work
2.1. CNN-Based Underwater Image Super-Resolution

Developing deep learning for various computing tasks shows great benefits [24–28].
Image SR has been a major focus of research in the area of computer vision. It is focused on
increasing the quality of photos and videography. SRCNNs [29] first used CNNs in the SR task,
which can learn the relationships between paired images, achieving significant improvements
over conventional approaches. In order to push the boundaries of reconstruction accuracy,
numerous studies have been carried out in this area [30–36]. In contrast, less research has
been performed on underwater images. Owing to the paucity of extensive underwater image
datasets, the execution of the aforementioned underwater SR model has some deficiencies.
Thankfully, Islam et al. [37] proposed a dataset termed USR-248 that contains paired LR–HR
images and devised an underwater SR generative model named SRDRM. To allow for deeper
exploration of the underwater SR domain, they also developed an adversarial version of
SRDRM, called SRDRM-GAN, which adopts Markov PatchGAN [38] as the discriminator to
reconstruct more texture details. Subsequent to this, an increasing number of CNN-based and
GAN-based models have been utilized in underwater tasks. Cherian et al. [39] proposed an
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approach, called the alpha super-resolution generative adversarial network (AlphaSRGAN), to
improve restore accuracy. Improving underwater imagery quality results in higher resolution
and more concise details. Li et al. [40] proposed WaterGAN for synthesizing underwater
images based on indoor images and depth maps. Huo et al. [41] proposed an underwa-
ter residual convolutional neural network (URCNN) with great depth based on VGG [42].
Li et al. [43] developed an algorithm for underwater image processing to reduce image blur-
riness, and they then utilized an end-to-end network to create natural and color-enhanced
images. Although these approaches are effective in addressing the undesirable effects of
underwater scenes, they lack modeling of global information and they are not conducive to
generating more natural and realistic textures.

2.2. Transformer-Based Underwater Images

In contrast to CNN-based methods, Alexey et al. [44] suggested that the direct appli-
cation of a pure transformer to a sequence of patches in a visual transformer (ViT) could
perform the task of image classification well. Liu et al. [18] put forth a shifted windows
transformer (swin transformer) to address the difficulty of matching transformers from
the verbal domain to the visual domain due to the differences between the two domains.
Wang et al. [45] put forth an architecture that includes a novel block of locally enhanced
window transformers for stripping, denoising, and deblurring. Recently, transformers
have gradually been increasingly utilized in underwater imaging with notable success.
For example, Peng et al. [19] developed a U-shaped transformer, integrating a channel-
level multi-scale feature fusion transformer block and a spatial-level multiscale feature
fusion transformer block to model global features so as to enhance underwater images.
Ren et al. [46] presented a dual transformer structure based on a U-shaped structure
for super-resolution reconstruction of underwater images and achieved exciting results.
Zhang et al. [47] developed the WaterFormer, a two-stage network that combines deep
learning and an underwater physical model to tackle the numerous distortions found in un-
derwater images as a result of water’s absorption and scattering properties. Sun et al. [48]
developed a model comprising a strengthened LeWin transformer block-based encoder and
decoder to enhance color accuracy. The authors of [49] constructed a model consisting of a
grey-scale attention and phase transformer block for underwater enhancement. Qi et al. [50]
constructed an underwater image enhancement network, known as SGUIENet, utilizing
semantic information as high-level guidance to improve the acquisition of locally enhanced
features. Although transformers perform well in terms of capturing global dependencies,
they are relatively weak in terms of local details. This is a challenge for image SR tasks
because local features are critical for understanding details in an image. In this paper,
we propose a module, called the DAEM, which efficiently models both global and local
information and facilitates high-quality underwater image reconstruction.

3. Methods
3.1. Overall Network Architecture

The proposed DAIN, as illustrated in Figure 1, is composed of three phases. Stage 1
strives to obtain shallow feature information; Stage 2 strives to obtain and merge deeper
features; and Stage 3 strives to merge dense features and reconstruct underwater images.
The input of our network is an LR image (X ∈ RH×W×3) and its output is an HR image
(S ∈ RrH×rW×3). The height and width of the image are denoted by H and W, respectively.
The scale factor is represented by r.

In Stage 1, we first use a 3 × 3 convolution to extract shallow information:

F0 = HSFE(X) (1)

where HSFE(·) is the 3 × 3 convolution operation and the deviation term of the convolu-
tional layer is omitted for simplicity. F0 is then delivered to Stage 2 as an input to the DAEM,
which uses two MCCBs and an STL to model the multi-scale and long-range dependencies
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of features. More detailed information will be described in Sections 3.2 and 3.3. Assuming
the amount of DAEMs is D, the result of the dth DAEM Fd(1 ≤ d ≤ D) can be expressed as:

Fd = Hd
DAEM(Hd−1

DAEM · · · ((H1
DAEM(F0)))) (2)

where Hd
DAEM(·) is the operation of the dth DAEM and Fd denotes the result of the dth

DAEM. More importantly, all the results of these DAEMs are combined and transmitted
to the dense feature fusion block (DFFB), which aggregates all the hierarchical features to
generate more expressive feature representations. To ease the learning difficulties, we add
a global residual learning strategy. This specific process is defined as follows:

FDFFB = HDFFB[F0, F1, F2, · · · , FD] (3)

where HDFFB(·) denotes the operation of the DFFB, which contains a 3 × 3 convolution
and a 1 × 1 convolution. [F1, F2, · · · , Fd] is the combination of all the characters produced
by the DAEM. Finally, Stage 3 functions as the element for recuperation. An upsampling
operation is utilized to upgrade the depth detail to the HR image required. We use 3 × 3
convolutional layers and sub-pixel convolution to reconstruct the SR image S as follows:

S = HUP(FDFFB) (4)

where HUP(·) is the function of upsampling.
Based on the existing image SR, the L1 loss can be integrated into the training of the

DAIN, which helps maintain rich texture and local structure [51].

L = L1(G) = EX,S[‖S− D(X)‖1] (5)

Here, ‖·‖1 represents the L1-norm function. The mapping relationship between LR
and HR is implemented by D : {X} → S .

3.2. Dual-Aware Enhancement Module (DAEM)

In the realm of underwater image processing, the correction of color distortions and
the recovery of texture details in degraded images necessitate meticulous decomposition.
Many existing methods tend to overlook the integration of optical and visual perception,
relying solely on simple convolution for high-frequency feature extraction. However, the
unique characteristics of underwater images demand separate operations for distinct colors
due to uneven color recession. Additionally, the entire image is affected by uniform blurring
caused by light scattering and absorption issues, which extend beyond localized regions.
Consequently, incorporating long-range dependencies becomes crucial to further enhance
reconstruction results.

To address the challenges posed by the diverse complexities of the underwater en-
vironment and to elevate image reconstruction performance, we propose the dual-aware
enhancement module (DAEM). This module captures dual-aware information, integrating
both local and global features to progressively generate natural and realistic textures.

As shown in Figure 1, the DAEM consists of two MCCBs, a 3 × 3 convolutional
layer, and an STL. The MCCB mitigates color shifts and distortions in underwater images
caused by uneven light attenuation. More details will be shown in Section 3.3. Given the
input features Fd−1, it first undergoes processing in MCCBs to achieve color bias correction
and high-frequency detail recovery, and then fuses the different features using a 3 × 3
convolution. Finally, the STL models long-range dependencies to generate powerful feature
representation.

3.3. Multi-Scale Color Correction Block (MCCB)

In underwater images, uneven decay of light propagation leads to low contrast and
high color distortion leading to color asymmetry, with the degree of decay varying with
wavelength. Conventional underwater processing methods usually adopt a global color
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compensation strategy and ignore the problem that different color channels are subject to
different degrees of attenuation in underwater environments. Consequently, we propose
an MCCB that differentially handles three color channels and effectively compensates for
different attenuation conditions, avoiding the shortcomings of global processing.

As illustrated in Figure 1, the input features were initially divided into three scales
through the use of various convolution sizes dependent on the level of underwater light re-
duction. Since the attenuation of red light is the most significant, we use a 1× 1 convolution,
while green light and blue light utilize 3 × 3 and 5 × 5 convolution kernels, respectively.
This is because different sizes of convolution kernels have different performance in terms
of image details and a wide range of features. Let us take the first MCCB as an example,
where the procedure could be written as follows:

FR,1 = σ( f1×1(Fd−1)) (6)

FG,3 = σ( f3×3(Fd−1)) (7)

FB,5 = σ( f5×5(Fd−1)) (8)

where f (·) represents the convolution operation, subscripts represent convolution kernels,
and σ(·) represents the Relu activation function.

Subsequently, we splice and fuse the feature information extracted from each of the
three colors:

Fcat = FR,1 � FG,3 � FB,5 (9)

where � denotes the channel connection and Fcat(·) denotes the output after the channel
connection. Also, to combine the spatial and channel attentional weights, we use a convo-
lutional block attention module (CBAM) [13]. Finally, we fuse and extract more advanced
feature information through the CBAM, which can be defined as follows:

FMCCB = HCBAM(Fcat) (10)

where HCBAM(·) denotes the operation of the CBAM. FMCCB is the output of the MCCB.
The CBAM is an effective and efficient attention module that is widely used in many

computer vision tasks. It integrates channel and spatial attention mechanisms to improve
the model’s ability to perceive different feature channels and spatial locations. Overall,
the use of a CBAM module in underwater image processing can assist the neural network
in concentrating on significant features, intensifying the details and contrast of the image
and mitigating the lighting problem, thereby enhancing the quality and visualization of
underwater images.

3.4. Swin Transformer Layer (STL)

The swin transformer originates from the design of the initial transformer layer, which
relies on regular multi-head self-attention to model long-range dependence and thus
enhance network representation.

As illustrated in Figure 1, with an initial input of FMCCB ∈ RH×W×C, the swin trans-
former reshapes the input HW

M2 ×M2×C feature first, where HW
M2 represents the total number

of windows. Then it performs self-attention calculations simultaneously h times, where
h represents the quantity of self-attention heads. For a local window feature Fswt

in ∈ RM2×C,
the query, key, and value matrices Q, K, and V ∈ RM2×C are expressed as

Q = Fswt
in WQ, K = Fswt

in WK, V = Fswt
in WV (11)



Appl. Sci. 2023, 13, 12985 7 of 16

where d = C
H ,WQ, WK, and WV are shared learnable projections over different windows. The

attention matrix Attn(Q, K, V) is then computed via the self-attention in the local window.

Attn(Q, K, V) = So f tMax(
QKT
√

d
+ b)V (12)

Here, b is the trainable relative positional coding. Multi-head self-attention (MSA) is
combined to maintain consistent embedding dimensions. After the attention operation,
there are two Multilayer Perceptrons (MLPs) with GELU activation in them. The Layer-
Norms (LNs) are then added ahead of MSA and the MLP and use residual connections.
The transformer’s overall functionality can be summarized as follows:

Fswt
inter = HMSA(HLN(Fswt

in )) + Fswt
in

Fswt
out = HMLP(HLN(Finter)) + Fswt

inter
(13)

where HLN(·) denotes the LN operation, HMSA(·) represents MSA operation, and HMLP(·)
denotes the operation function. On the one hand, the STL exploits regular and shift
window partition alternately, realizing efficient information transmission and interaction
between different windows. On the other hand, it uses local attention and a shifted window
mechanism to greatly reduce computational effort while maintaining strong modeling
power. Therefore, we introduce the STL to better catch local features and details, thus
enhancing underwater image processing.

4. Experiments
4.1. Experimental Setup

Two open datasets were adopted to train our proposed work, namely USR-248 [52]
and UFO-120 [53], as well as the EUVP dataset [52]. USR-248 was the first dataset made
for the SR reconstruction task of underwater optical images, which uses 1060 pairs of
underwater images for training and 248 pairs of samples for testing. UFO-120 contains over
1500 pairs of training samples and 120 pairs of testing samples. It is important to note that
the LR samples in the USR-248 and UFO-120 datasets are acquired by artificial distortion.
Both of them follow the standard procedures [54,55] for optical/spatial image degradation
and use manually labeled saliency mappings to create pairs of data.

Adam optimization is utilized to minimize the objective function, with the parameters
configured as follows: β1 = 0.9,β2 = 0.999, and ε = 10−8. The learning rate is initially set to
10−4 and then decreased by 50% after 300 iterations. In the STL, the number of multi-heads
is set to h = 5 and the number of channels is set to C = 50. The performance of image super-
resolution (SR) was thoroughly assessed using three criteria: peak signal-to-noise ratio
(PSNR), the structural similarity index (SSIM), and the underwater image quality measure
(UIQM). Our model is implemented using the PyTorch framework and was executed on an
NVIDIA RTX 3080 GPU.

4.2. Experimental Evaluation on the USR-248 Dataset

The assessment of the USR-248 dataset is presented in Table 1. The proposed DAIN is
compared to some popular SR networks, namely SRCNN [29], VDSR [31], DSRCNN [56],
EDSRGAN [57], SRGAN [58], ESRGAN [59], SRDRM [37], SRDRM-GAN [37],
LatticeNet [60], Deep WaveNet [12], ESRGCNN [61], AMPCNet [10], and RDLN [62].
We can observe that our proposed DAIN attains comparable results when compared to
popular methods. In comparison to mainstream SR methods, our method obtains up to
0.08 dB and 0.1 increases in PSNR and SSIM. Although the DAIN fails to obtain optimal
values in terms of UIQM, it still achieves positive results. For example, in the case of a
scale factor of ×8, compared to AMPCNet, our DAIN lags behind by 0.05 in terms of
UIQM but boosts PSNR and SSIM by 0.14 dB and 0.02, respectively. Visual comparisons
of the USR-248 dataset are shown in Figure 2. It is evident that our DAIN produces
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clearer and more natural image reconstruction. SRDRM and SRDRM-GAN generate visible
reconstruction artifacts.

Table 1. Quantitative results of different methods in the USR-248 dataset with scale factors of ×2, ×4,
and ×8. Bold is the best performance.

Scale Method FLOPs
(G) Params (M) PSNR (dB) SSIM UIQM

×2

SRCNN [29] 21.30 0.06 26.81 0.76 2.74
VDSR [31] 205.28 0.67 28.98 0.79 2.57
DSRCNN [56] 54.22 1.11 27.14 0.77 2.71
EDSRGAN [57] 273.34 1.38 27.12 0.77 2.67
SRGAN [58] 377.76 5.95 28.08 0.78 2.74
ESRGAN [59] 4274.68 16.70 26.66 0.75 2.70
SRDRM [37] 203.91 0.83 28.36 0.80 2.78
SRDRM-GAN [37] 289.38 11.31 28.55 0.81 2.77
LatticeNet [60] 56.84 0.76 29.47 0.80 2.65
Deep WaveNet [12] 21.47 0.28 29.09 0.80 2.73
AMPCNet [10] — 1.15 29.54 0.80 2.77
RDLN [62] 74.86 0.84 29.96 0.83 2.68
DAIN(ours) 85.55 1.16 29.98 0.84 2.77

×4

SRCNN [29] 21.30 0.06 23.38 0.67 2.38
VDSR [31] 205.28 0.67 25.70 0.68 2.44
DSRCNN [56] 15.77 1.11 23.61 0.67 2.36
EDSRGAN [57] 206.42 1.97 21.65 0.65 2.40
SRGAN [58] 529.86 5.95 24.76 0.69 2.42
ESRGAN [59] 1504.09 16.70 23.79 0.65 2.38
SRDRM [37] 291.73 1.90 24.64 0.68 2.46
SRDRM-GAN [37] 377.20 12.38 24.62 0.69 2.48
LatticeNet [60] 14.61 0.78 26.06 0.65 2.43
Deep WaveNet [12] 5.59 0.29 25.20 0.68 2.54
AMPCNet [10] — 1.17 25.90 0.68 2.58
RDLN [62] 29.56 0.84 26.16 0.66 2.38
DAIN (ours) 21.78 1.18 26.23 0.70 2.56

×8

SRCNN [29] 21.30 0.06 19.97 0.57 2.01
VDSR [31] 205.28 0.67 23.58 0.63 2.17
DSRCNN [56] 6.15 1.11 20.14 0.56 2.04
EDSRGAN [57] 189.69 2.56 19.87 0.58 2.12
SRGAN [58] 567.88 5.95 20.14 0.60 2.10
ESRGAN [59] 811.44 16.70 19.75 0.58 2.05
SRDRM [37] 313.68 2.97 21.20 0.60 2.18
SRDRM-GAN [37] 399.15 13.45 20.25 0.61 2.17
LatticeNet [60] 4.05 0.86 23.88 0.54 2.21
Deep WaveNet [12] 1.62 0.34 23.25 0.62 2.21
AMPCNet [10] — 1.25 23.83 0.62 2.25
RDLN [62] 18.23 0.84 23.91 0.54 2.18
DAIN (ours) 5.99 1.26 23.97 0.64 2.20
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USR-248 dataset for scale factors of ×2, ×4, and ×8. Left to right: the original HR image, SRCNN,
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4.3. Experimental Evaluation on the UFO-120 Dataset

In the case of Table 2, our proposed DAIN demonstrates competitive performance,
particularly achieving the highest values in terms of PSNR. Our DAIN is slightly inferior to
Deep WaveNet in terms of SSIM and UIQM, but the gap is at most 0.05. The quantitative
results of AMPCNet lag far behind our method. Compared with transformer-based meth-
ods such as URSCT and RDLN, our method yields a 0.42 dB improvement in PSNR at the
scale factor of ×2. In the case of ×4, our DAIN has better performance, obtaining a 0.06
increase in SSIM compared to URSCT. Additionally, the DAIN does not surpass the RDLN
in terms of UIQM, but the margin is 0.02 at a scale factor of ×4.

Table 2. Quantitative results of different methods in the UFO-120 dataset with scale factors of ×2,
×3, and ×4. Bold is the best performance.

Method
Params (M) PSNR (dB) SSIM UIQM

×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

SRCNN [29] 0.06 0.06 0.06 24.75 22.22 19.05 0.72 0.65 0.56 2.39 2.24 2.02
SRGAN [58] 5.95 5.95 5.95 26.11 23.87 21.08 0.75 0.70 0.58 2.44 2.39 2.56
SRDRM [37] 0.83 - 1.90 24.62 - 23.15 0.72 - 0.67 2.59 - 2.57
SRDRM-GAN [37] 11.31 - 12.38 24.61 - 23.26 0.72 - 0.67 2.59 - 2.55
Deep WaveNet [12] 0.28 0.28 0.29 25.71 25.23 25.08 0.77 0.76 0.74 2.99 2.96 2.97
AMPCNet [10] 1.15 1.16 1.17 25.24 25.73 24.70 0.71 0.70 0.70 2.93 2.85 2.88
ESRGCNN [59] 1.53 1.53 1.53 25.82 26.19 25.20 0.72 0.71 0.70 2.98 2.96 2.85
LatticeNet [60] 0.76 0.77 0.78 25.86 26.13 25.10 0.71 0.71 0.70 2.97 2.94 2.94
HNCT [63] 0.36 0.36 0.36 25.73 25.86 24.91 0.71 0.71 0.69 2.96 2.88 2.84
URSCT [46] 11.37 - 16.07 25.96 - 23.59 0.80 - 0.66 - - -
RDLN [62] 0.84 0.84 0.84 25.96 26.55 25.37 0.76 0.74 0.73 2.98 2.98 2.94
DAIN(ours) 1.16 1.17 1.18 26.38 26.62 25.56 0.76 0.76 0.72 2.97 2.94 2.92

The visual comparisons of the UFO-120 dataset are presented in Figure 3. Our pro-
posed DAIN consistently delivers superior results and effectively recovers finer texture
features, bringing it closest to the HR image. Notably, LatticeNet exhibits over-saturation,
while AMPCNET and Deep WaveNet result in significant blurring artifacts and distortions.
In contrast, our proposed method is better equipped to mitigate these adverse effects.
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This is attributed to the fact that the DAIN comprises a series of chained DAEMs, which
effectively capture both local and global image information, thereby enhancing the quality
of image reconstruction.
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4.4. Experimental Evaluation on the EUVP Dataset

To further show the robustness and effectiveness of the proposed DAIN, we performed
enhancement experiments on the EUVP dataset and compared our model with models
including UGAN [54], UGAN-P [54], Funie-GAN [52], Funie-GAN-UP [52], Deep SESR [53],
and Deep WaveNet [12]. EUVP consists of 11,435 pairs of underwater images for training
and 515 pairs of samples for testing. They follow the standard procedures [54,55] for
optical/spatial image degradation and use manually labeled saliency mappings to create
pairs of data.

Table 3 displays the competitive performance of the DAIN proposed by us, attaining
the highest values in terms of both PSNR and SSIM. Specifically, PSNR and SSIM are
improved by at least 0.57 dB and 0.02, respectively. The DAIN is found to be slightly lower
than Deep SESR in terms of UIQM, but the difference is only 0.03. The quantitative results
of Funie-GAN-UP are far below our method. A visual comparison of the EUVP dataset
is shown in Figure 4. Our DAIN produces much sharper image reconstruction. Most
algorithms, including UGAN, Funie-GAN, and Deep SESR, ignore global dependency mod-
eling, resulting in poor performance. By contrast, our DAIN adequately incorporates global
dependency modeling whilst also considering local information, enabling our network to
acquire more valuable information and enhance image quality.

Table 3. Quantitative results of different methods in the EVUP dataset. Bold is the best performance.

Numbers PSNR(dB) SSIM UIQM

UGAN [54] 26.45 0.79 2.87
UGAN-P [54] 26.44 0.79 2.91

Funie-GAN [52] 26.16 0.78 2.95
Funie-GAN-UP [52] 25.16 0.78 2.91

Deep SESR [53] 27.03 0.80 3.06
Deep WaveNet [12] 28.56 0.83 3.02

DAIN(ours) 29.13 0.85 3.03
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4.5. Model Analysis

Analysis of varying numbers of DAEMs. To explore the influence of model depth
on reconstruction accuracy, we set the number of DAEMs to D = 10, 12, and 14. From
Table 4, it can be seen that there is no significant improvement in the reconstruction results
as depth increases. This is because the deeper the depth of the network, the more prone
network weights are to deactivation, which makes it difficult to improve performance.
Considering the size of the network and restoration accuracy, we opted for D = 12 as the
number of DAEMs.

Table 4. Effect of the number of DAEMs on the USR-248 dataset at a scale factor of ×4.

Numbers FLOPs (G) PSNR (dB) SSIM UIQM

10 18.53 29.83 0.8177 2.7585
12 21.79 29.86 0.8196 2.7724
14 25.04 29.81 0.8177 2.7803

Analysis of edge detection. To further investigate different methods for preserving
edge features in the restored images, we employed the Canny algorithm [64] to illustrate
the benefits of our proposed method. As depicted in Figures 5 and 6, our DAIN exhibits
more prominent edge detection features compared to the majority of methods. These
outcomes demonstrate the efficiency of our DAIN in extracting feature information and
aiding in the recovery of additional texture details, resulting in visually pleasing effects.
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4.6. Ablation Study

To clearly show how our proposed components can improve reconstruction perfor-
mance, we conducted various experiments, as documented in Table 4. We conducted a
stepwise removal of the MCCB, the STL, and the cascades within the MCCB to illustrate the
effectiveness of each component. Notably, we modified the MCCB, where we changed the
different convolutional sizes to a uniform use of 3 × 3 convolution for feature extraction,
and named it as a DAIN with a PCB. We retrained the network and obtained another
four models.

As is evident in Table 5, when the MCCB is erased, reconstruction performance
drops drastically, with PSNR and SSIM dropping by at least 0.06 dB and 0.0029. It can be
observed that both the DAIN without an MCCB and the DAIN with a PCB have worse
performance than the DAIN alone. Similarly, although the number of parameters decreases
after removing the STL and concatenation, model performance decreases substantially,
with PSNR and SSIM decreasing by at least 0.15 dB and 0.0187, respectively. In summary,
our proposed MCCB, STL, and concatenation components have a beneficial effect on both
the recovery performance and computational efficiency of the network.
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Table 5. Ablation studies of different components on the UFO-120 dataset at a scale factor of ×4.

Models Params (M) PSNR (dB) SSIM UIQM

DAIN w/o MCCB 0.93 25.35 0.7132 2.91
DAIN with PCB 1.54 25.34 0.7143 2.91
DAIN w/o STL 0.67 25.26 0.6974 2.89

DAIN w/o DFFB 1.02 24.79 0.6961 2.89
DAIN 1.16 25.41 0.7161 2.92

5. Conclusions

Underwater images display unique characteristics such as light absorption, scattering,
and color attenuation, unlike terrestrial images. To bridge this gap, our study introduces an
effective approach called the DAIN for SR reconstruction of underwater imagery. Specifi-
cally, the DAIN encompasses a series of DAEMs that tackle image distortion and blurriness
by exploring both local and global features. MCCBs examine various colors in an un-
derwater image using multiple channels to reduce color bias and restore texture details.
Meanwhile, the STL is capable of modeling global features to enhance high-quality images
even further. Thanks to the incorporation of an MCCB and an STL in the DAEM, the net-
work can considerably improve the accuracy of underwater SR. It is proven that our model
has higher robustness and efficiency. Through experimentation on benchmark datasets,
findings demonstrate that the proposed DAIN achieves competitive performance while
requiring fewer parameters compared to other popular methods.
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