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Abstract: Cities and buildings represent the core of human life, the nexus of economic activity, culture,
and growth. Although cities cover less than 10% of the global land area, they are notorious for their
substantial energy consumption and consequential carbon dioxide (CO2) emissions. These emissions
significantly contribute to reducing the carbon budget available to mitigate the adverse impacts of
climate change. In this context, the designers’ role is crucial to the technical and social response to
climate change, and providing a new generation of tools and instruments is paramount to guide their
decisions towards sustainable buildings and cities. In this regard, data-informed digital tools are a
viable solution. These tools efficiently utilise available resources to estimate the energy consumption
in buildings, thereby facilitating the formulation of effective urban policies and design optimisation.
Furthermore, these data-driven digital tools enhance the application of algorithms across the building
industry, empowering designers to make informed decisions, particularly in the early stages of
design. This paper presents a comprehensive literature review on artificial intelligence-based tools
that support performance-driven design. An exhaustive keyword-driven exploration across diverse
bibliographic databases yielded a consolidated dataset used for automated analysis for discerning
the prevalent themes, correlations, and structural nuances within the body of literature. The primary
findings indicate an increasing emphasis on master plans and neighbourhood-scale simulations.
However, it is observed that there is a lack of a streamlined framework integrating these data-driven
tools into the design process.

Keywords: machine learning-based tools; building energy forecasting; data-informed design; perfor
mance-driven design; operational carbon reduction

1. Introduction

Since the dawn of the industrial revolution, urban environments have emerged as
significant influencers of energy consumption patterns. Today, as urbanisation continues
its relentless march, over half of the global population resides in cities. These urban hubs,
while being vibrant centres of culture and commerce, are also responsible for a staggering
75% of global carbon emissions [1]. This urban-centric carbon footprint underscores cities’
dual role: they are both major contributors to the climate challenge and, simultaneously,
pivotal players in its solution. A testament to this is the commitment of over 100 cities
worldwide to achieve net-zero carbon emissions by 2050 [2]. Within this urban landscape,
buildings stand out, playing an indispensable role in the carbon equation. Yet, while the
importance of buildings in this narrative is clear, the roadmap to achieving substantial
carbon emission reductions remains shrouded in complexity.

The 21st century presents a defining challenge for the built environment: constructing
energy-efficient urban spaces while retrofitting existing ones to meet modern standards.
Addressing this challenge demands a granular understanding of how buildings consume
energy and the strategies required to minimise this consumption. Building designers,
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policymakers, administrators, and even tenants, must come together, pooling their expertise
to devise and implement impactful, cost-efficient measures [3].

Building performance simulations (BPSs) have long been the bedrock of decision-
making in building design. As shown in Figure 1, BPS plays a critical role from the initial
planning stage through to occupancy, with its influence peaking during the design phase.
As legislative frameworks evolve—pushing for greener, more efficient buildings—BPS
has adapted, integrating richer, more reliable data streams into the design process. The
digital age has ushered in an era of unprecedented data availability, paving the way for the
integration of machine learning and other data-driven tools into BPS. These advancements
promise not only enhanced simulation and modelling methods but also their seamless
integration right from the earliest design stages. In this scenario, the recent revision of the
Energy Performance of Buildings Directive (EPBD) [4] echoes this sentiment, emphasising
the integration of data-informed and performance-driven tools into BPSs.
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project’s energy efficiency and sustainability outcomes.

Yet, the path is not without its hurdles. The BPS realm offers a vast array of modelling
methods, creating a maze that often leaves stakeholders, from researchers to policymak-
ers, perplexed [5]. On the other hand, the data, the lifeblood of these models, are often
fragmented, unstructured, or locked behind gates of inaccessibility.

The early design stage of a building is a period of immense potential. It is during
these phases that critical design parameters are set, influencing over 40% of a building’s
energy-saving potential [6]. To harness this potential, there is a pressing need to optimise
these parameters from the earliest stages.

While the allure of data-driven models, with their promise of rapid and reasonably
accurate energy consumption estimates, is undeniable, traditional BPS methods cannot be
overtaken with ease. Even as data-driven BPSs evolve, challenges persist, from compu-
tational intensity to potential overestimations of the energy savings [7], from underlying
biases to unclear data processing. However, recent research [8,9] shines a spotlight on
the potential of data-driven methods, with techniques like Artificial Neural Networks
(ANNs) [10,11], Support Vector Machine (SVM) [12,13], and Decision Tree-based models
(DT) [14] gaining traction in building energy modelling [15].

While several reviews have analysed specific tools [8,16], simulation techniques and
algorithms, and related indices and evaluation tools [7,17,18], this study pivots to explore
the current state of the art concerning the integration of data-driven tools in the archi-
tecture, engineering, and construction (AEC) sector. The main contribution of this study
lies in offering a comprehensive review of the Artificial Intelligence (AI)-based tools sup-
porting performance-driven design and identifying an increasing focus on master plans
and neighbourhood-scale simulations. Most significantly, it uncovers the absence of a
streamlined framework for embedding these data-driven tools within the early stages of
the design process.
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Through this work, we aim to clear the mist surrounding the potential of data-driven
BPS, mapping out a direction for future research and practical application, with a vi-
sion to empower stakeholders to make informed, impactful decisions for the sustainable
transformation of our urban landscapes.

2. Research Methodology

Informed by the understanding that urban environments significantly influence en-
ergy consumption patterns, and the pivotal role buildings play in carbon emissions, our
methodology sought to delve deep into the integration of digital tools with BPS. The press-
ing need to optimise design parameters from the earliest stages underpinned our analytical
approach. This imperative led us to adopt a data-driven perspective, considering both
traditional BPS and emerging data-driven methodologies.

To structure our exploration, we adopted a systematic literature review approach, as
presented in Figure 2. Our methodology comprised of keyword identification, which was
steered by the overarching aim of the paper. This process ensured a comprehensive review,
encompassing advanced digital tools for data-informed design, performance-driven design
concepts, and early stage energy and operational carbon assessment strategies. Recognising
the importance of interdisciplinary research, multiple bibliography databases were utilised
to achieve a holistic view. Further, the extraction process was not limited to a simplistic
keyword search. Given the complexity and vastness of the topic, bibliometrics and data
processing techniques were used to discern patterns, correlations, and thematic structures
in the available literature. This approach allowed us to identify both dominant themes and
gaps in the research landscape, which served as a foundation for our subsequent analyses
and discussions.
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It is pertinent to note that while data-driven techniques and their application in
building performance simulations are undoubtedly significant, this review will not focus on
a systemic analysis of the tools and instruments, including their indexes and measurements.
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Instead, the emphasis will be on the broader integration of data-driven tools into BPS,
especially in the early design stages of buildings. The methodology’s robustness lies in
its multi-faceted approach, combining a traditional literature review with advanced data
analysis techniques. It provides a balanced perspective, ensuring both breadth and depth
in the exploration of the topic.

The methodology adopted for this research presents a systematic review process,
ensuring a structured approach to the literature analysis. Initially, three distinct keyword
searches were conducted, respectively, K1, K2, and K3. The records identified from the
database searches were subsequently collated, resulting in a combined total of 2336 records.
To maintain the quality and uniqueness of the data, duplicate records were removed.

Following the de-duplication process, the merged database underwent an automated
analysis using specialised tools, such as VosViewer [19], to identify notable correlations,
patterns, and significant themes within the literature. The insights derived from this
automated analysis informed the final keyword search, designated as K4. This culminated
in the identification of articles from Scopus (n = 76) and Web of Science (n = 112).

The final phase involved a scrupulous screening of the K4 search results based on
their titles and abstracts to ensure their alignment with the research objectives. Out of
the screened articles, 92 were identified as being of the utmost relevance, forming the
foundational dataset for the review. These selected articles were incorporated into the
research bibliography, providing the basis for subsequent discussions and findings.

2.1. Application of the Methodology

This section outlines how the described methodology was employed, from keyword
identification to the analysis of the results. We commenced with a precise definition of the
primary research question, which, in turn, naturally steered our selection of keywords by
pinpointing the essential concepts relevant to the query. As described in the introductory
paragraph, the aim of this paper is to analyse the current scenario in the predictive energy-
and carbon-related analyses and machine learning tools for data-informed building design.

A preliminary review of the existing literature provided a baseline understanding
of the dialogue within the field, identifying the terms frequently used by authors on the
subject. This initial scan was instrumental in building a foundation of commonly used
language and jargon in the domain of energy-efficient building design. These selected
keywords were categorised into three sub-topics:

1. Advanced digital tools for data-informed design: including terms like Artificial Neural
Networks, machine learning, genetic algorithm, sensitivity analysis, multi-objective
optimisation, and Metamodel.

2. Performance-driven design: encompassing performance, energy consumption predic-
tion, and building performance simulation, among others.

3. Early stage energy and operational carbon assessment: featuring early stage life-cycle
assessment and operational carbon.

Bibliography databases, such as Web of Science and Scopus, along with the European
Commission research project platform CORDIS, were utilised. Searches were conducted
considering the intersection of different keywords to evaluate both the quantity and quality
of the results. The filters applied to refine the search included open access results, specific
subject areas (engineering, energy, environmental science, etc.), all document types, time
periods, and affiliations.

The results from the database searches were analysed to understand the significance
and temporal impact of each sub-topic. Tools like VosViewer and Bibliometrix [20] fa-
cilitated a deep semantic analysis. Preliminary findings indicate a rising interest in the
confluence of these sub-topics. While performance-driven design for energy optimisation
is a prevalent theme, words such as “framework”, “integration”, and “requirements” inte-
grated with carbon assessment elements remains sparse, indicating a potential gap in the
literature.
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2.2. Bibliometrics and Data Processing

The starting phase of our research was marked by a detailed and sensitive analysis,
an approach designed to identify primary sources and ensure a comprehensive, cross-
disciplinary exploration across the research landscape. In this brainstorming phase, we cast
a wide net for potential keywords and phrases, considering a broad range of related terms,
synonyms, and variations in terminologies that might impact the search results’ breadth
and depth.

We formulated search strings by synthesising and Boolean combining the previously
delineated keywords. Examples of these combinations include:

1. K1: ((“Artificial Neural Network” OR “ANN” OR “Neural Network”) AND (“Build-
ing Energy consumption” OR “Building Energy performance”));

2. K2: ((“Metamodel” OR “Surrogate model”) AND “Building” AND (“Energy perfor-
mance” OR “Operational carbon”));

3. K3: ((“Artificial Neural Network” OR “Artificial Intelligence”) AND “Building” AND
“Energy” AND “Performance”).

Using these strings, a pilot search was conducted to test the effectiveness of the
keywords chosen. Based on the relevance and quality of the articles retrieved, we fine-
tuned our search terms, ensuring that the literature we collated was of the utmost relevance
to our research aims.

Following our preliminary review, we conducted a correlation analysis to assess the
relative prominence of each keyword within the domain of our study. In the network
visualisation in Figure 3, a nuanced constellation of the thematic clusters emerges, each
representing a topic within the scientific literature. At the centre of the visualisation, sub-
stantial nodes in red highlight the pivotal concepts of ‘model’, ‘performance’, and ‘design’.
This central clustering indicates an intensive focus on theoretical issues and performance
metrics, which are foundational to the field’s discourse. These nodes are not only larger,
suggesting their higher frequency or importance, but are also densely interconnected, signi-
fying a robust dialogue within the literature concerning the development and evaluation of
systemic models and performance-based design methodologies. Adjacent to this core, we
observe nodes in shades of green, representing the applied facets of the domain, including
specific models and analytical techniques. Another discernible cluster, in yellow, punctu-
ates the visualisation with the themes associated with energy consumption and systems’
efficiency. The variance in node size and the dispersion within this group suggests a range
of subtopics of variable research intensity focused on building energy-related aspects. The
more dispersed light-green clusters highlight discussions on multiobjective optimisation,
sensitivity analysis, and meta-modelling. This subdomain, combined with the orange one
more focused on algorithms and networks for consumption predictions, signifies a rich
exploration of abstract modelling processes and transformations, and their overarching
significance in the broader research context.

Informed by these correlations and aiming for a more focused review, we refined our
search strings. Notably, the term “Artificial intelligence” was set aside, given its ubiquity,
which risked overshadowing more specific topics. The refined, primary search string was:

4. K4: ((“Metamodel” OR “Surrogate model”) AND “Building” AND (“Energy perfor-
mance” OR “Operational carbon”)).

It is paramount to emphasise that this refined, targeted analysis is designed to com-
plement, not supplant, the broader exploration based on a diverse array of keyword
combinations.
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3. Results

The results obtained from the analysis of the papers retrieved from the string K4 reveal
that the annual production of scientific papers regarding metamodelling and surrogate
modelling techniques for the energy performance and operational carbon assessment in
buildings has an average annual growth rate of 8%.

Two notable observations from Figure 4 are the exponential growth around 2010 and
the peak in publications on the topic in 2019. Several factors could have contributed to
this surge.

The early 2010s saw a rise in environmental advocacy groups and movements, bring-
ing attention to the importance of sustainable building practices to combat climate change.
Moreover, after the 2010s—called, by Chaillou [21], the “Deep Learning Revolution”
period—several other events could have influenced this growth. For instance, the Deep
Learning Breakthroughs. The early 2010s marked significant advancements in deep learn-
ing. The introduction of architectures like AlexNet in 2012 revolutionised the field of
computer vision. The triumph of this convolutional neural network in the ImageNet Large
Scale Visual Recognition Challenge served as a catalyst, accelerating the embrace of deep
learning methodologies across diverse fields, building performance simulations included.
Furthermore, in 2014, Ian Goodfellow, alongside his team, unveiled Generative Adversarial
Networks (GANs). GANs opened up new possibilities for generating synthetic data. In the
context of building simulations, this could mean generating synthetic building designs or
performance metrics to augment datasets.

On the other hand, 2019 marked another significant step in the field thanks to several
factors such as:

1. Technological Advancements: By 2019, there were significant breakthroughs in com-
putational capabilities, particularly in the realm of AI and machine learning. The
development and dissemination of tools like TensorFlow and PyTorch, which made
deep learning more accessible, played a pivotal role. Additionally, the proliferation
of cloud computing platforms, such as AWS, provided researchers with affordable,
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scalable computational resources, enabling more intricate simulations and models
related to building energy performance.

2. Regulatory Changes: Around 2019, the European Union introduced the ‘Clean Energy
for All Europeans’ package—which includes the EPBD.

3. Funding and Grants: In 2019, international bodies like the United Nations and the
European Union emphasised the sustainable development goals, leading to increased
funding opportunities for research on sustainable infrastructure and green building
practices. Such financial injections often catalyse academic research, leading to a surge
in publications.
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After noting the growing interest in the researched topics, we proceeded with a
more in-depth semantic analysis of the word occurrences across the titles, keywords, and
abstracts of the papers obtained from the string K4, returning an initial identification
of the most widely addressed topics. The treemap in Figure 5 shows the frequency of
terms in the surveyed literature, helping in identifying areas of concentrated research and
emerging trends.

For clarity and structured interpretation, we categorised these keywords into six
thematic clusters, as depicted in the list below and visually represented in Figure 6.

• Performance—incorporating terms such as simulation, global optimisation, and pa-
rameters.

• Optimisation—covering concepts like framework, algorithm, regression, and reliabil-
ity.

• Carbon—highlighting terms like impact, construction, life-cycle assessment, and
emissions.

• Consumption—encompassing terms like consumption, prediction, neural network,
and surrogate model.

• System—including descriptors like system, water, and storage.
• Sensitivity analysis—capturing concepts like calibration, tool, metamodelling tech-

niques, and decision-making.
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To evaluate the significance and coherence of these clusters, a Density–Centrality
diagram was utilised (Figure 7). In this analysis, Centrality represents the degree of
interaction a cluster has with other parts of the network [22]. It essentially measures the
strength of the links from one research theme or community to other research themes
or communities, and is an indicator of the significance of a theme or community in the
development of an entire field [23]. As a cluster obtains stronger links in a network, the
more central its position becomes [24]. On the other hand, Density is the measurement of a
cluster’s development [23]. It can be understood as the strength of all internal ties (edges)
linking together the nodes that make up a theme or community [25]. Density provides a
good representation of a cluster’s ability to maintain itself and grow over time [26]. As a
cluster increases in density, the more coherent it becomes and the more likely it is to contain
inseparable nodes [22].

The analysis spotlighted “Consumption”, “Carbon”, and “Performance” as core
themes. Within the “Consumption” cluster, emphasis is placed on neural networks and
predictive models. The “Carbon” cluster seeks to merge digital tools with carbon and
emission reduction analyses, while the “Performance” cluster underscores foundational
elements such as global optimisation and simulation.
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4. Discussion
4.1. Background

The projected increase in global built floor area, projected to reach an overwhelming
235 billion m2 by 2050 [27], stands as one of the main challenges stemming from population
growth and ever-growing living standards [28]. Such a projection carries profound impli-
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cations, spanning environmental, economic, and social dimensions. Given that buildings
account for roughly 40% of the total energy consumption and 38% of the CO2 emissions
within the European Union [29], the global energy-saving potential is estimated at a stag-
gering 53 Hexajoules annually by 2050 [30]. In this context, the role of building designers
becomes paramount in harnessing this vast energy conservation potential. Moreover, as
illustrated in Figure 8, sustainable building and city planning must face the pressing need
for a holistic approach to energy and climate goals, integrating strategies for sustainable
infrastructure that encompass fuel depletion, escalating energy prices, and climate finance,
while also addressing the imperatives for healthier infrastructure and the urgent transition
towards Net Zero Energy and Carbon buildings.
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Urban centres globally, in their pursuit of net-zero emissions, are tasked with the dual
responsibility of curtailing greenhouse gas (GHG) emissions whilst also compensating for
residual emissions. It is worth noting that emission reductions yield a plethora of benefits,
encompassing enhanced community health, improved air and water quality, the mitigation
of urban heat islands, and efficient resource stewardship.

Over the recent decades, BPSs have ascended as indispensable tools, assisting design-
ers in navigating a multitude of design alternatives. Yet, these simulations encompass
numerous variable parameters, giving rise to an expansive multi-dimensional “design
space”. Navigating this space necessitates significant modelling and computational en-
deavours, escalating costs and perpetuating inherent uncertainties [31]. Consequently, the
feasibility of large-scale applications, encompassing design space exploration, uncertainty
analysis, sensitivity analysis, and optimisation, remains constrained. However, the swift
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technological evolution, especially in the realms of data-centric and AI-driven BPS, presents
unparalleled opportunities [32]. Such advancements hold promise to bolster sustainability
initiatives, further carbon reduction agendas, and pave the way for more sustainable and
inclusive urban development strategies.

The assimilation of AI systems emerges as a pivotal factor in addressing the multi-
faceted challenges of urbanisation, spanning social, economic, and ecological dimensions.
In this scenario, the European Green Deal [33] underscores the urgency for comprehen-
sive, robust policy responses to the climate crisis, with an emphasis on optimising health,
quality of life, resilience, and competitiveness dividends. Recognising the pivotal role of
digital innovations, including AI, the Green Deal envisions them as instrumental catalysts
in realising sustainability objectives across diverse sectors [33]. Concurrently, the EU’s
sustainable investment framework [34] and the revised EPBD [4] are geared towards incen-
tivising energy sobriety in the built environment. These strategic policies are anchored in
the ambition to curtail the GHG emissions and energy consumption in buildings by 2030,
whilst setting sights on achieving EU-wide climate neutrality by 2050.

4.2. AI in the AEC Sector

The genesis of what we understand as AI today can be traced back to the 1940s. Pio-
neering work by American scientists Warren McCulloch and Walter Pitts in 1943 introduced
a mathematical representation of the biological neuron, offering an early conceptualisation
of an “artificial network” [35]. Over the decades, AI has evolved from isolated research
endeavours in the 1950s to its current interdisciplinary nature, influencing numerous fields,
including architecture [21].

As Song, Ghaboussi, and Kwon [36] have indicated, in the realm of architecture, the
design process is uniquely multifaceted. The design exploration phase, often derived from
abstract concepts, significantly influences various performance metrics, including energy
consumption, daylight utilisation, and acoustics [37]. This initial design phase is pivotal, as
it sets the trajectory for the subsequent construction and the building’s entire lifecycle. AI’s
role in this context is not to provide definitive solutions but to aid in exploring potential
design avenues [38]. While some design aspects can be quantified, many remain intangible,
making it challenging to establish explicit evaluation criteria [39,40].

Beyond technological advancements, the successful implementation of AI in the AEC
sector requires robust interdisciplinary collaboration. It is not just about integrating AI
tools but ensuring that AI experts, environmental scientists, urban planners, and architects
collaboratively harness these tools to create sustainable and efficient designs [41]. This
collaborative approach ensures that the technological solutions align with the real-world
complexities of urban environments and architectural challenges.

4.3. Metamodels and Data-Driven Models for Energy Forecasting

There has been a notable transition within the field of architectural design, moving
away from conventional problem-solving instruments towards embracing optimisation as
a tool for exploration, predominantly in the early design stages [42–48]. However, the real-
world application of optimisation during these early stages remains limited. This limited
application can be ascribed to various factors, including the intensive time requirements,
difficulties in interpretation, constraints inherent to parametric models, and the frequently
indistinct character of performance objectives in the realm of architectural design.

Buildings, throughout their lifecycle, contribute to both embodied and operational
emissions. While construction primarily results in embodied emissions, operational emis-
sions persist throughout the building’s life. These operational emissions are influenced by
evolving factors like climate change, electricity grid decarbonisation, and user behaviour.
Notably, a discrepancy often exists between a building’s design performance and its actual
operational performance [49–51]. This ‘performance gap’ arises from complex interde-
pendencies not accounted for during optimisation, such as building construction, supply
systems, environmental parameters, and occupant behaviour. Considering the influence



Appl. Sci. 2023, 13, 12981 12 of 20

of global warming on the future performance of buildings, planning based exclusively
on historical weather data proves to be inadequate. Therefore, it is of paramount impor-
tance to integrate uncertainty into building energy evaluations and meticulously assess the
robustness of building energy systems in the face of the forthcoming conditions [50,52–54].

Metamodels, also known as data-driven models, act as approximate mathematical
depictions crafted to explore the intricate relationships between inputs and outputs that
are displayed by more sophisticated physics-based models [55]. Essentially, while mathe-
matical models abstract the real world, data-driven models or metamodels abstract these
mathematical models further [56]. Metamodels boast the advantage of being constructible
from a modest dataset obtained through the simulation of physics-based models. These
models are not only user-friendly but also allow for analytical expression in their formu-
lations. After being adequately trained with a selected set of inputs and outputs from
a physics-based model, metamodels possess the capability to forecast outputs for input
values that were not part of the initial training set.

Conversely, data-driven models, which are trained using data harvested from real
buildings, aim to emulate real-world scenarios rather than another model. For a data-driven
approach to be effective, extensive long-term measurements across various building types
are essential. Nevertheless, this method may predominantly be applicable to existing build-
ing stocks, thereby restricting the examination of alternative energy-efficient constructions.
In contrast, the metamodelling approach is capable of efficiently producing the necessary
database, thereby facilitating the use of virtually unlimited values for design variables.

All supervised metamodelling approaches follow a comparable procedure, which
includes constructing representative samples of inputs for both training and validation
purposes. For each set of inputs, a physics-based model is executed to generate the
respective outputs. The metamodel is then trained with the gathered input–output samples
utilising a selected technique, followed by a validation process using multiple performance
indicators [32,57,58]. Upon the completion of these stages, the metamodel is ready for quick
deployment in future BPS analyses.

Within the sphere of BPS applications, various techniques are prominently utilised,
including polynomial regression, multivariate adaptive regression splines (MARS), the
Gaussian process (also known as Kriging), SVM, and ANNs. For example, Romani et al. [59]
applied polynomial models to metamodel the requirements of heating and cooling energy,
contributing to the optimisation of the envelope design for a low-energy building situated
in Morocco. In a similar vein, Cheng and Cao [60] devised a method for forecasting the
energy performance of buildings, leveraging evolutionary multivariate adaptive regres-
sion splines. Furthermore, Rackes et al. [61] employed SVM to provide design guidance
and performance labelling for passive commercial structures located in regions with hot
climates. Additionally, Yuan et al. [62] utilised Gaussian processes to craft a method that
simultaneously calibrates and ranks parameters for building energy models.

While the promise of AI-driven metamodels in energy forecasting is evident, it is
essential to recognise their inherent challenges and limitations. The accuracy of the data,
the dynamic and ever-evolving nature of urban environments, and the unpredictability of
human behaviour can pose significant challenges to even the most advanced models. As
the field progresses, the continuous refinement and understanding of these limitations will
be crucial. Looking ahead, the intersection of AI and the AEC sector promises even more
revolutionary changes. Emerging technologies and methodologies on the horizon could
further refine and enhance the capabilities of AI in this field. As AI models become more
sophisticated and data collection becomes more nuanced, the next decade could witness a
transformative shift in how cities are planned, designed, and experienced.

4.4. AI and Cities

The European Commission’s recent proposal for a regulation, known as the Artificial
Intelligence Act, holds significant implications for the construction and urban development
sectors. This act is a testament to the growing recognition of AI’s transformative potential,
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especially within the construction ecosystem. It seeks to strike a harmonious balance in
the deployment of AI systems, particularly for professionals in the construction sector
who are increasingly relying on data-driven systems within the European Union. Key
areas of concern for the AEC sector encompass the establishment of harmonised rules
for AI systems, the delineation of specific requirements for high-risk AI systems, and the
introduction of supportive measures to foster innovation [63].

In the broader urban context, cities are emerging as focal points in AI discourse. As
underscored by the United Nations Habitat in their report titled “AI and Cities” [64], cities
are uniquely positioned to harness the capabilities of AI to address a myriad of socio-
economic and ecological challenges. As urban centres grapple with multifaceted issues
ranging from resource constraints to governance complexities and mounting environmental
threats, the infusion of AI-driven innovations is becoming indispensable. However, to truly
capitalise on the transformative potential of AI, a concerted effort is required from various
stakeholders to create an ecosystem that promotes sustainable and inclusive development.
This necessitates a judicious balance between leveraging the opportunities presented by AI
and mitigating the associated risks.

While numerous countries have proactively rolled out national AI guidelines [65],
local governments, urban planners, and policymakers are navigating the intricate maze of
developing, implementing, and evaluating regulatory frameworks tailored to their unique
urban contexts. The rapid pace of AI advancements has opened up a plethora of potential
applications in urban settings. The United Nations, in its deliberations, has spotlighted
several sectors ripe for AI integration, including “energy, mobility, public safety, water and
waste management, healthcare, urban planning, and city governance” [64].

One sector in which the impact of AI is particularly pronounced is energy. Data-driven
systems, underpinned by AI, are poised to revolutionise energy management, propelling
cities towards a more sustainable, low-carbon future. These systems are adept at forecasting
the energy supply from various sources, facilitating predictive maintenance, and optimising
energy distribution [64]. As urban landscapes increasingly pivot towards renewable energy
sources, the role of data-driven models in forecasting, planning, and optimising energy
consumption and distribution becomes paramount. These models can harness a diverse
array of data to generate forecasts, offering insights into emissions and consumption
patterns in intricate urban matrices.

However, for several years, climate datasets tailored to building performance sim-
ulations have been accessible, primarily due to the inception of an effective data format
known as the typical meteorological year (TMY) [66]. This was further bolstered by the
global availability of data in this format. Beyond merely expanding the global reach of
these datasets, recent research endeavours have delved into techniques used to simulate
local microclimatic events within urban landscapes, such as the urban heat island effect [67].
In a research study focused on London, Mavrogianni et al. amalgamated temperature
profiles obtained locally with an Urban Building Performance Simulation (U-BPS). This
integration aimed to elucidate the influence exerted by the urban heat island effect on not
only the energy consumption of buildings but also on the well-being of the residents within
these structures [68]. Concurrently, there is a burgeoning interest in forecasting local wind
trajectories [69] and in aligning current TMYs with climate change projections from the
Intergovernmental Panel on Climate Change (IPCC) [70]. These are pivotal research areas
with direct ramifications for U-BPSs.

In many instances, researchers have amalgamated the export/import functionalities of
existing platforms, such as Geographic Information Systems (GIS) and Building Information
Modelling (BIM), with bespoke scripts. This approach facilitates the creation of a thermal
model, oversees the simulations, and presents the findings through tools like spreadsheets
or GIS applications [68,71–74]. Some teams have further refined and automated these
simulation workflows, incorporating additional urban performance indicators to make
U-BPS more accessible to urban planners and designers.
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The efficacy of U-BPS models in informing design choices or policy decisions hinges
significantly on the accuracy of the simulation outcomes. Considering the potential dis-
crepancies between individual BPS predictions and actual measurements, due to variables
like infiltration rates and occupant behaviours, one might question the U-BPS’s capac-
ity to authentically forecast energy consumption across numerous buildings. Yet, when
juxtaposing aggregated yearly measured data against simulated energy usage spanning
multiple structures, the individual model deviations appear to neutralise. This results in
documented error margins of merely 7% to 21% for heating loads [73,75,76] and a range of
1% to 19% for the overall Energy Use Intensity (EUI) [77–80].

The integration of AI and machine learning models into U-BPSs has garnered consider-
able attention in recent years. Nutkiewicz and Jain (2019) delved into the amalgamation of
physics-based building simulation methodologies and machine learning techniques, with
a particular focus on transfer learning. Their exploration aimed to evaluate the effects of
retrofit policies on urban structures [81]. This integrated methodology, dubbed Data-driven
Urban Energy Simulation (DUE-S), showcased its potential in identifying the energy impli-
cations urban environments have on buildings undergoing retrofit processes. In a similar
vein, Neumann et al. (2021) conducted an examination into the viability of establishing
Positive Energy Districts (PEDs) within various urban typologies located in Wien [82]. Their
work underscored the necessity of implementing extensive energy efficiency measures,
promoting electrification, and harnessing renewable energy sources, as pivotal steps in
the transformation of existing building stocks into PEDs. Moreover, the imperative of
understanding the building stock at a larger scale, with a spotlight on building geometry,
was accentuated by Dai et al. (2022) [83]. Their research unveiled a novel methodology
designed to automatically gauge the building dimensions derived from remote sensing
data, employing unsupervised machine learning algorithms in the process. Concluding
their series of studies, Hey et al. (2022) stressed the crucial role of modelling in the adoption
of energy retrofits within urban residential building stocks. They introduced an innovative
concept in which carbon valuations are assigned to households, serving as a determinant
for identifying optimal retrofit solutions [84]. Their approach combined surrogate models,
optimisation procedures, and neural networks to evaluate building performance, offering
insights into the potential of such models in informing policy decisions.

These AI-driven models are equipped to provide granular insights into the energy
demand within buildings [85], elucidate energy dynamics in urban microclimates [86],
and categorise distinct energy demand patterns [87], thereby facilitating more informed
decision-making.

4.5. Frameworks and Workflows

The integration of artificial intelligence in the AEC sector has seen the emergence
of various frameworks in recent times. Geraldi and Ghisi [88] introduced a seven-step
framework that seamlessly integrates surveying, data collection, and ex-post analysis. This
framework trains an Artificial Neural Network to predict a building’s performance with
high precision.

In contrast, Mouakher et al. [89] delved into the realm of explainable deep learning
models (XAI) to address the “black box” nature of traditional neural networks. Their
approach aimed to provide more transparency and an understanding of how these models
make decisions.

Dong et al. [90] underscored the imperative for a framework that can intelligently
automate the design process with a concentration on daylight and energy performances.
Within the workflow of energy-efficient design, they identified three predominant knowl-
edge gaps. The initial gap is the ambiguous correlations existing between different building
components, resulting in repetitive modelling in the course of adjusting parameters within
building information models. The subsequent gap involves the necessity for the generation
of optimal alternatives that exhibit the desired performances. The third and final gap is the
indispensable need for a method of decision-making that is effective, serving to sift through
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and select the most appropriate design plan. The task of assessing a framework’s efficacy
in implementing an energy-efficient design is fraught with challenges. This scenario neces-
sitates the need for a process that is automated from start to finish, spanning from building
information modelling to the final stages of decision-making. Furthermore, there is a call
for a method of decision-making that is not only effective but is also seamlessly integrated
with an algorithm dedicated to optimisation.

In the urban context, the rise of U-BPS tools has been notable. These tools expand the
application of BPS to the urban level, leveraging physics-based methods and incorporating
statistical approximations to address computational, data, and statistical challenges. The
surge in U-BPS frameworks [91] can be attributed to global carbon reduction commitments,
increased accessibility of urban datasets [92], advancements in computational tools, and
affordable hardware.

U-BPSs are designed to provide data-driven insights applicable to a variety of urban-
level scenarios, including urban planning initiatives, the development of new neighbour-
hoods, strategies for reducing carbon at the stock level, and the integration of buildings
into the electrical grid [93]. The simulation results from U-BPSs can be aggregated and
displayed at various temporal and spatial scales, contingent upon the use case in question.
For example, a U-BPS that is crafted for the purpose of formulating policies for retrofitting
buildings city-wide may employ an archetype approach. This approach involves simulating
the distributions of energy usage for different types of residential buildings. However,
to obtain accurate results at the level of individual buildings, a calibration process that
is conducted building by building and is based on actual data is necessary [94]. There
are various approaches available for the development of U-BPSs [95]. At its most basic, a
U-BPS will incorporate the fundamental geometries of buildings, files pertaining to the
relevant weather, and templates for building simulations that represent various categories
of buildings [86].

Tardioli et al. (2019) introduced a novel feature engineering procedure that combines
results from calibrated physics-based building energy models with traditional predictors in
a forecasting framework, demonstrating improved forecasting outcomes for the heating
demand in urban districts [96]. Xu and Wang (2023) presented a comprehensive method-
ological framework for urban decarbonisation strategies, emphasising “the integration of
multi-scale energy performance evaluation within the design development process” [97].
Their data-driven methodology, utilised in a Sheffield, UK, case study, assesses scenar-
ios of energy demand and supply at the urban level. Monien et al. (2017) highlighted
the challenges in building energy evaluation tools, particularly the balance between data
availability and the assumptions made [98]. Their research compared two tools based on
3D models, demonstrating the scalability of their urban simulation tool, SimStadt, from
single buildings to city districts. Moreover, as encapsulated by Cappelletti and Ballarini
(2021), the Building Simulation 2019 conference spotlighted recent trends in the applica-
tions of building simulation. It underscored the amalgamation of various pre-existing tools
aimed at evaluating comprehensive building performance while aiding both the design
and control processes of buildings [99].

5. Conclusions

This paper has conducted a literature review to chart the progression of artificial
intelligence within the AEC sector, focusing on its integration into building performance
simulations and its integration into the broader design process.

The review has identified a marked shift in the application of AI tools. While the use
of AI for BPS at the building scale is becoming increasingly established, there is a notable
emerging trend in its application for larger-scale projects, such as neighbourhood-scale
developments or master plans. In these contexts, the literature highlights AI’s value in
facilitating complex calculations and analyses that surpass the capabilities of traditional
BPS methods. This trend underscored a growing recognition of AI’s potential to handle the
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complexities and nuances associated with achieving energy efficiency and decarbonisation
objectives within the AEC sector.

Despite these advances, several open questions persist. The research has identified a
large number of systematic methods for incorporating data-driven BPS in the early design
stages and a need for clarity on how these tools can best support the sustainability goals.
Central to the conclusions of this review is the advocacy for a coherent framework that
delineates how AI-driven BPS can be embedded into design workflows. Such a framework
would streamline the adoption of AI, ensuring it is effectively leveraged to optimise design
choices, particularly those impacting sustainability and energy efficiency. This proposed
framework would serve as a cornerstone for future research, guiding the development of
actionable strategies that harness AI’s full potential in the design process.
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