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Abstract: Federated learning (FL) is an emerging decentralized machine learning framework enabling
private global model training by collaboratively leveraging local client data without transferring it
centrally. Unlike traditional distributed optimization, FL trains the model at the local client and then
aggregates it at the server. While this approach reduces communication costs, the local datasets of
different clients are non-Independent and Identically Distributed (non-IID), which may make the
local model inconsistent. The present study suggests a FL algorithm that leverages regularization and
data sharing (FedRDS). The local loss function is adapted by introducing a regularization term in each
round of training so that the local model will gradually move closer to the global model. However,
when the client data distribution gap becomes large, adding regularization items will increase the
degree of client drift. Based on this, we used a data-sharing method in which a portion of server data
is taken out as a shared dataset during the initialization. We then evenly distributed these data to
each client to mitigate the problem of client drift by reducing the difference in client data distribution.
Analysis of experimental outcomes indicates that FedRDS surpasses some known FL methods in
various image classification tasks, enhancing both communication efficacy and accuracy.

Keywords: federated learning; non-IID data; regularization; data sharing; machine learning

1. Introduction
1.1. Research Questions

With the development of Internet of Things (IoT) technology, smart devices such as
cell phones and tablets are becoming more prevalent in people’s lives. These portable
devices collect many data, which can be used for training models and improving the ef-
ficiency of many applications. However, privacy concerns have made users increasingly
reluctant to upload their sensitive data. As a result, Federated Learning (FL) [1,2] has
already grown a decentralized learning framework and gained more attention in recent
years. FL allows clients to download models from a server, train them locally with private
data, and subsequently the server recycles these training parameters, which mitigates
privacy vulnerabilities that may arise from directly uploading sensitive data. Among the
earliest emerging FL frameworks is the Federated Average Algorithm (FedAvg) [3], which
facilitates distributed model training for multiple users by employing cluster servers to
aggregate locally trained models into a global model that converges over several iterations.
However, FedAvg is less accurate when faced with non-Independent and Identically Dis-
tributed (non-IID) data. Clients have different preferences and sampling spaces, leading to
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differences in data collection and resulting in data heterogeneity. The presence of hetero-
geneity among clients can cause variations in their objective functions and optimization
directions, leading to drift in local updates and slower convergence speeds. This difference
in data distribution is a crucial factor responsible for the inherent equilibrium, minimizing
the loss of locally trained experience and reducing globally trained experience loss.

1.2. Aims

The conventional FL approach exhibits poor performance on data heterogeneity and
lacks personalization for local tasks or datasets. These issues are further exacerbated via
heterogeneous local data distribution, hampering clients’ participation in the FL process.
Personalized federated learning (such as customized loss function [4], multi-task learn-
ing [5,6], meta-learning [7,8], data augmentation [9], etc.) has become a new solution to
these problems. Among them, regularization of local loss has been a popular personalized
method in recent years. Overfitting often occurs in training models and regularization is a
standard method to deal with this problem. The application of regularization in FL limits
the influence of local updates, thus improving the convergence stability with the algorithm
accuracy of the global training model. The traditional regularization method is easy to
implement, but when there is a significant difference in the degree of dispersion of client
data, the client drift will become more profound [10]. For example, FedProx [4] gradually
approximates the local optimal target to the global optimal target by adding proximal
terms. However, the presence of proximal terms hinders the local target from moving
globally. During the training process, parameter bias will gradually accumulate and am-
plify, which is the main reason for the client drift phenomenon. The original intention of
the data-sharing strategy [11,12] is to improve model accuracy by shortening the distribu-
tion separation of both local and global data. However, we found that while partitioning
the shared dataset, each client has a portion of the same dataset, which reduces the data
distribution gap between clients. Therefore, the combination of regularization and data
sharing can shorten the untoward effect of regularization while retaining the advantages of
regularization, greatly accelerating convergence efficiency and improving accuracy.

1.3. Objectives

Based on the findings above, We developed a FL algorithm based on regularization and
data sharing (FedRDS) to alleviate client drift issues caused by skewed label distribution.
FedRDS addresses these issues by using a combination of regularization and data-sharing
strategies. Specifically, FedRDS incorporates a regularization term into the FedAvg local
update process, allowing the local optimal targets to closely approximate the global optimal
targets and minimize the impact of client drift on the global target. Additionally, FedRDS
uses data sharing to relieve the unfavorable factors of heterogeneous data distribution
among clients. The proposed method provides improved the performance over existing
solutions by combining regularization and data sharing. Moreover, FedRDS employs the
widely used Stochastic Gradient Descent (SGD) optimization technique, which enhances
the overall stability of the optimization process in heterogeneous network environments.

Our work has made the following contributions:

• We design an FL algorithm FedRDS for non-IID data, which restricts the update
of local models to approach the global model via regularization and data sharing
gradually, as well as narrows the gap between client data distribution to relieve the
negative influence of client drift.

• We conduct extensive experiments on the MNIST, Fashion-MNIST, SVHN, and CIFAR-
10 datasets. From the experimental results, it can be seen that the FedRDS outperforms
other algorithms in terms of efficiency.

The other parts of this paper are organized as follows: Section 2 elaborates on related
work; Section 3 outlines the FedRDS algorithm and data-sharing principles; Section 4 consists
of analyses based on experiments and concluding remarks; and Section 5 offers the conclusion.
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2. Related Works

FL has become a wide-ranging topic across machine learning [13], cybersecurity [14],
industrial IoT [15], medicine intelligence [16], etc. FedAvg performs weighted parameter
averaging to update parameters from multiple clients, effectively reducing communication
rounds and improving the efficiency of joint learning. However, the research in [11]
indicates that the difference in client weight caused by non-IID data is the root cause of
FedAvg’s performance degradation. Some work attempts to reduce differences in client
updates to accelerate convergence speed. FedProx [4] adds proximal regularization to
the local model to overcome system heterogeneity, thus enhancing stability. Gao et al. [17]
suggest that tackling the client drift problem can make the FL model converge faster. To
reduce local drift on the global target, they propose the FedDC algorithm, which utilizes
drift decoupling correction. Horvath et al. [18] proposed FedFa: the aggregation weights are
assigned to each client at each round of global iteration based on the accuracy of client training
and the number of times they are selected, as a way to reduce the aggregation caused by non-
IID model performance degradation. Zhang et al. [19] proposed a stop-and-weight balancing
method to balance the non-dropper updates in each iteration, which effectively controls the
weight dispersion. FedBN suggests a novel aggregation approach that mitigates feature drift of
non-IID data by setting the local BN out of sync with the global parameters [20]. Li et al. [21]
proposed model contrastive learning (MOON) to enhance the algorithm performance by
introducing a contrastive loss function to accelerate local update speed and improve the
accuracy of the FL algorithm. Jeong et al. proposed a FAug approach based on FL to correct
the non-IID training dataset and again reduced the communication overhead via knowledge
distillation (FD), while also achieving a high accuracy rate [9].

Xiong et al. [22] proposed 2DP-FL to enhance the performance of privacy issues in
practical applications, adding noise to achieve differential privacy. Li et al. [23] emphasized
research on fairness and robustness under non-IID and developed a scalable solver to
achieve fairness and robustness. Orlandi et al. [24] used entropy calculation based on
FedAvg and proposed the FedAvg-BE algorithm, which reduced the data processing
workload. Another method, pFedMe [25], breaks down personal model optimization from
global model learning via the Moreau envelope function, so pFedMe can update the global
model as FedAvg while also optimizing personalized models in parallel based on the local
data distribution of each client, thereby improving the model performance. Smith et al. [5]
introduced multi-task learning in FL and proposed the MOCHA algorithm, which allows
the local training models to maintain the same structure and use an alternate optimization
algorithm [26] to resolve the optimal value. Table 1 lists the comparison of related methods.

Table 1. Comparison of related methods.

Method Author Year Characteristics Neural
Networks Personalization Data Change Effect

FedAvg Mc et al. [3] 2017 SGD CNN N N
Reduce

communication
rounds by 10 to 100×

FedProx Li et al. [4] 2020 Proximal term ANN Y N Improved testing
accuracy by 20%

FedDC Gao et al. [17] 2022 Local drift
variable FCN/CNN N Y

Improve performance
and accelerate
convergence

FedFa Horvath
et al. [18] 2021 Ordered

dropout
ResNet18/

CNN/RNN Y Y Performance
improvement
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Table 1. Cont.

Method Author Year Characteristics Neural
Networks Personalization Data Change Effect

FedBN Li et al. [20] 2021 Local batch
normalization AlexNet/CNN Y Y Faster convergence

rate

MOON Li et al. [21] 2021 Contrastive
learning

CNN/
ResNet-50 Y N -

FAug Jeong et al. [9] 2021 Data
augmentation - Y Y Low communication

delay

FedCS Nishio
et al. [27] 2019 Resource

constraints CNN N N Shorter training time

pFedMe Dinh et al. [25] 2020 Moreau
envelopes MLR/DNN Y Y Accelerate

convergence

2DP-FL Xiong
et al. [22] 2022 Differential

privacy - N Y -

Ditto Li et al. [23] 2020 Multi-task
learning

Linear
SVM/CNN Y N -

Energy-
aware

Dynamic
Sun et al. [28] 2019 Dynamic

scheduling MLP N Y Improve accuracy by
9.8%

Flexible
Sparse

Method
Shi et al. [29] 2021 Sparsification - N N -

FedAvg-BE Orlandi
et al. [24] 2023 Border entropy

evaluation CNN N N Reduce data execution
time

EPPDA Song et al. [30] 2023

Privacy-
preserving

data
aggregation

- Y Y Tolerate failing
devices

FedPAD Pei et al. [31] 2022 Network traffic
detection LSTM Y N Better detection

performance

DTEI Yang et al. [32] 2023
Deep

reinforcement
learning

CNN N N
Avoid the straggler
effect and clustering

mechanism

FedCLIP Lu et al. [33] 2023
Attention-

based
adapter

AlexNet Y N
Reduces

computational and
communication costs

Some works consider the impact of network and communication resources of clients.
Nishio et al. [27] proposed the FedCS protocol to continuously add new clients during
the training process, enabling them to deliver high-performance learning models in a
very short time continuously. Wang et al. [34] considered computation heterogeneity
as the bottleneck of FL and therefore used two near-optimal algorithms to schedule the
IID vs. non-IID data workloads. The collaborative learning classification method in the
IAS decision system plays an important role in resource management and performance
optimization in heterogeneous network environments [35].

Moreover, several works have investigated the problems associated with skewed label
distribution. In the realm of transfer learning, joint distribution adaptation (JDA) [36]
is a technique that seeks to adjust marginal and conditional distributions in order to
enhance the feature representations as follows: CO-ALignment (COAL) [37], a generalized
domain adaptive framework for co-alignment, computes source prototypes by learning
similarity-based classifiers and uses a minimum, maximum entropy algorithm, moving it
to the target domain by using estimated target label distributions, training the classifier
using class-balanced self-training methods, aligning label distributions in the context of
feature shifting, and then merging feature and label distribution alignments into an end-to-
end deep learning framework; Selective Adversarial Network (SAN) [38] is designed to
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maintain consistency source and target data distribution. It performs well in facilitating the
positive migration of relevant data while mitigating the negative migration of irrelevant
data by utilizing an end-to-end framework. Training classifiers on datasets with long-tailed
data and imbalanced class distributions can be a formidable challenge, as they are often
biased towards the more frequent classes [39–41].

In contrast to these studies, we focus on the non-IID problem of label distribution skew
in FL and propose FedRDS to compare the representations learned using different models.

3. Proposed Method

We have summarized the notations used in the proposed method and placed them in
Appendix A.1.

3.1. Problem Formulation

Figure 1 displays a summarized outline of the FedRDS algorithm. At the beginning,
the server chooses specific clients to join the FedRDS round and issues work request
information (Step 1). Upon accepting the request, the client sends an acknowledgment to
the server (Step 2). Subsequently, the server transmits the pre-trained model, the global
model, and a shared data fraction α to the client (Step 3). Then, the client uses its private
data and shared data fraction α for training (Step 4). Following the completion of local
training, after the model is trained on the client, it will be uploaded to the server (Step 5).
Finally, utilizing the FedRDS algorithm, the server aggregates the local models uploaded
by the client to form a global model (Step 6). The server saves the model and the next FL
round is opened.

Figure 1. The proposed framework of FedRDS.

Given the compact space X , the class space Y = {i|i = 1 : I}. The data points {x, y}
follow the distribution p over X ×Y . The function f : X → S maps x to the probabilistic

simplex S , in which S = {z|
I

∑
i=1

zi = 1, zi ≥ 0, ∀i ∈ [I]} with fi denoting the probability of
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the ith class. f parameterized on the hypothesis category Θ. In FL, our goal is usually to
optimize the following functions:

Θ∗ = argmin
Θ
L(Θ) =

K

∑
k=1

nk
n

lk(Θ), (1)

where K is the number of total clients, nk is the number of samples on client k, n is the total
number of samples on all clients, also known as ∑k

nk
n = 1, where lk is the loss function of

client k, and Θ is the set of global model parameters. In this paper, we consider L(Θ) as
non-convex.

In traditional FL algorithms, all participating clients perform the same amount of
local work. This approach would be appropriate if the data were evenly distributed across
each client. In many cases, however, each client may also differ in storage, computation,
and communication capabilities due to differences in hardware, power, and network
connectivity. At this point, the client training by FL creates the client drift problem (shown
in Figure 2, which leads to the client subproblem optimal solution being inconsistent
with the global objective [42]. Although many previous studies solved the non-IID data
problem by adding regularization, they did not discuss regularization terms when the data
distribution gap is enormous.

Figure 2. Client drift under the non-IID setting.

3.2. Federal Regularization

To obtain more benefits from the computational resources of the edge devices and
increase the amount of light computation to reduce the performance divergence between
different local clients caused by non-IID, the dynamic regularization strategy is employed
to enable the local loss function to converge to the global model gradually. During the
training process, the selected client k ∈ Sr uses the untrained local model Θ and the global
model Θt sent from the server to regularize the loss function. Formally, we solve the
following optimization problem:

Θt+1
k = argmin

Θ
lk(Θ) +

σ

2
‖Θ−Θt‖2 (2)

Take the first derivative of Equation (2) to obtain the following equation:

∇lk(Θt+1
k ) + σ(Θt

k −Θt) = 0. (3)
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In the t-th round of training, the value of hyperparameter σ in the client regularization
term σ

2 ‖Θ−Θt‖2 is calculated based on the similarity between the initial local model Θt
k of

client k and the global model Θt sent by the server, as shown in the Equation (4):

σt
k = exp(sim(Θt

k, Θt)) (4)

Among them, sim(Θt
k, Θt) represents the cosine similarity between Θt

k and Θt.
The global objective function needs to satisfy the following formula,

∇L(Θ) ,
1
K

K

∑
k=1
∇lk(Θ) =

K

∑
k=1

E(x,y)∇L(Θ; (x, y)) = 0. (5)

We assume that Θ∗k is the optimal solution of the local loss function lk satisfying

∇lk(Θ∗k ) = 0, Θ∗ is the optimal solution of L(Θ) in Equation (1), and Θ∗ = 1
K

K
∑

k=1
Θ∗k in

FL. But, in the non-IID setting with data distribution pi(x, y) 6= pj(x, y), there is Θ∗i 6= Θ∗j ,
which leads to Θ∗k 6= Θ∗. Different client updates towards the local subproblem optimal
solution Θ∗k , causing Θ∗ to be inconsistent with the theoretical value, which leads to a
decrease in global model accuracy and slow convergence. In Equation (2), we incorporate a
regularization term into the initial loss function to slightly modify the local loss function
and create a dynamic link between the global and local models that gradually aligns the
local target with the global target, thereby minimizing the influence of the client drift.

3.3. Data Sharing

Although the inclusion of regular terms in the calculation of weights can alleviate the
issue of client drift resulting from non-IID data in a heterogeneous network environment to
some extent, the parameter bias gradually accumulates and amplifies during the training
of the model using FL, and this is a crucial factor that contributes to the algorithm’s
decreased accuracy and slower convergence rate. It has been proven that shortening the
dissimilarity of the local and global data distribution allows the local target to gradually
approach the global target, quantified via the EMD (Earth Mover’s Distance) [11]. The
same conclusion holds even when regularization is applied in parallel. Therefore, we can
introduce additional strategies to further improve the efficiency and effectiveness of FL
algorithms under non-IID conditions.

To this end, we instantiate lk(Θ) with the cross-entropy loss for further explanation:

lk(Θ) =
I

∑
i=1

p(y = i)Ex|y=i[log fi(x, y)]. (6)

If the generalization error is ignored and the total training loss is directly optimized,
the problem turns:

argmin
Θ

I

∑
i=1

p(y = i)Ex|y=i[log fi(x, Θ)]. (7)

Using the SGD optimization algorithm to calculate the value of Θ, the weight of the
central server after the t-th update will be:

Θt = Θt−1 − η
I

∑
i=1

p(y = i)∇ΘEx|y=i[log fi(x, Θt−1)]

− σ(Θt −Θt−1).

(8)
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Generally, there are K clients, and a separate SGD optimization is performed locally at
each client. Correspondingly, the weights of client k after the t-th round of updates will be:

Θt
k = Θt−1

k − η
I

∑
i=1

p(y = i)∇ΘEx|y=i[log fi(x, Θt−1
k )]

− σ(Θt
k −Θt−1).

(9)

Suppose that synchronization is performed every T optimization round at the central
server; thus, the global model weight after T synchronizations will be:

ΘmT
f =

K

∑
k=1

nk
n

ΘmT
k . (10)

Denote pk as the data distribution of client k and suppose that ∇ΘEx|y=i log fi(x, Θ) is
λ− Lipschitz for each class i ∈ [I], where the extent of client drift (a.k.a the weight variance)
after m-th synchronization for each class i follows the inequality (Equation (10)) every T
steps, according to [11]:

‖ΘmT
f −ΘmT

c ‖ ≤
K

∑
k=1

nk(ak)
T

n
‖Θ(m−1)T

f −Θ(m−1)T
c ‖︸ ︷︷ ︸

(1)

+ η
K

∑
k=1

nk

I

∑
i=1
‖pk(y = i)− p(y = i)‖︸ ︷︷ ︸

(2)

+
T−1

∑
j=1

(ak)
jgmax(ΘmT−1−k

c )

(11)

where
gmax(Θ) = maxI

i=1‖∇ΘEx|y=i log fi(x, Θ)‖, and

ak = 1 + σ + η
I

∑
i=1

pk(y = i)λx|y=i.
(12)

The weight variance after the m-th synchronization is as follows: (1) the weight
variance after the (m− 1)-th synchronization; and (2) the weight variance of the probability
distance of the client k data distribution relative to the actual joint distribution.

Let all clients be initialized from the same weights, and the client drift will be mainly
attributed to the component (1) and the coefficient ak. The component (1) measures the
EMD between the data distribution of client k and the collective distribution on the central
server [11]. Consequently, the regularization coefficient σ plays a significant role in ak. The
larger the EMD and σ, the greater the degree of client drift. Hence, properly reducing EMD
can also influence the performance of FL algorithms, even given the optimal value of σ.

We attempted to introduce the data-sharing strategy to minimize the magnitude of
EMD values. Therefore, during the initialization phase for FL, we take a portion β of
the global data D as the shared dataset D′and then distribute a portion of D′ to each
participating client. Each client has a portion of the same data αβD, which narrows the
data distribution gap between each client. Subsequently, every client employs its data and
shared data to train the localized model.

Figure 3 illustrates the diagrammatic representation of data sharing. Data sharing can
reduce the EMD of the clients, thus significantly improving the loss of accuracy of the FL
algorithm caused by non-IID data. Additionally, we have provided the selection criteria for
α and β in Appendix A.2. To help readers understand the details of FedRDS, Algorithm 1
showcases the fundamental steps of our approach, which we present below.
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Algorithm 1: FedRDS
Input: K, T, σ, α, β, pk, k ∈ Sr;
Output: T-round global model ΘT ;

1 Initialize global model and global variables of loss function;
2 Remove part β from the global data as a shared dataset;
3 Send part α of the shared dataset to the client;
4 for t=1:T do
5 Select the subset of clients to be involved: Sr ∈ S with a probability of pk;
6 The server sends Θt to all selected clients;
7 for k ∈ Sr do
8 Θt+1

k = lk(Θ) + σ
2 ‖Θ−Θt‖2;

9 Sends Θt to the server;
10 end
11 Server aggregation Θ as Θt+1 = 1

k ∑
k∈Sr

Θt+1
k ;

12 end
13 Return ΘT

Figure 3. Data-sharing strategy.

4. Experiments and Analysis
4.1. Datasets and Settings

The datasets for the experiments include MNIST, Fashion-MNIST, SVHN, and
CIFAR-10, and the network models in the experiments are all convolutional neural net-
works (CNNs).

MNIST: Consists of grayscale images of handwritten digits classified into 10 cate-
gories. Consisting of 60,000 training samples and 10,000 test samples, the dataset features
images that are 28× 28 pixels in size. The neural network model for this dataset comprises
two convolutional layers, each with a kernel size of 5× 5, and the first layer has 32 chan-
nels. In contrast, the second layer has 64 channels, both featuring a max-pooling layer of
2× 2. Additionally, it consists of a fully connected layer that employs 512 neurons, which
are activated using the rectified linear unit (ReLU) mechanism, followed by a softmax
output layer.

Fashion-MNIST: an image dataset replacing the MNIST handwritten dataset, consist-
ing of 10 classes of clothing items with (28× 28) pixel grayscale images. The Fashion-MNIST
dataset is divided into training and test sets in the same manner as MNIST, comprising
60,000 training samples and 10,000 test samples. Each image in this dataset measures
28× 28. The neural network architecture for this dataset incorporates two convolutional
layers and one fully connected layer.
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SVHN: Derived from Google Street View house numbers and consists of images
comprising Arabic numerals ‘0–9’. It necessitates minimal data pre-processing and is
comparable to the MNIST dataset, but it contains a more extensive collection of labeled
data. The training set comprises 73,257 digits, while the test set comprises 26,032 digits
and an additional 531,131 digits. We used the same neural network model as CIFAR-10 for
this dataset.

CIFAR-10: (32× 32) 3-channel pixel RGB images belonging to 10 categories of ob-
jects, with each image measuring 32× 32. The dataset comprises five batches allocated
for training and one batch for testing, each containing 10,000 images. For the test batch,
1000 images have been randomly drawn from each category. The remaining 50,000 im-
ages have been evenly distributed among the five training batches, resulting in around
5000 images per category. Due to the breakdown of the remaining 50,000 images into five
training batches, the number of images per category may be different across batches. This
leads to the possibility of some categories having more images than others. This dataset’s
neural network comprises two convolutional layers, two fully connected layers, and a
linear transformation layer.

For dividing the dataset, we used the method in [3]. For IID data, we shuffle the data
and divide it into 100 clients with 600 shards per client. For non-IID data, we partitioned
the training and test data into 200 shards based on their labels and randomly allocated two
shards to each client.

For the edge computing scenario, many data nodes often have the problem of non-IID
data and this paper simulates the non-IID in the scenario. For the actual scenario simulated
on the four datasets, we set the learning rate (η), the number of local epochs (E), batch
size (B), the fraction of shared data (β), the regularization coefficient (σ), the fraction of
shared data per client (α), and the fraction of clients (C) as shown in Table 2. In order
to assess the effectiveness of the algorithms, the experiments were run on a Windows
computer with NVIDIA GeForce RTX 3070 Laptop GPU and 16 GB of memory.

Table 2. Experimental Settings.

Dataset η B C β α E
MNIST 0.001 8 0.1 0.1 0.5 10

Fashion-MNIST 0.0001 14 0.1 0.1 0.5 10
SVHN 0.1 500 0.1 0.1 0.5 10

CIFAR-10 0.01 10 0.1 0.1 0.5 10

4.2. Baselines

We compare FedRDS with the following three state-of-the-art models: FedAVG [3]
randomly selects a portion of the clients, samples their parameters to compute local model
updates, and aggregates these updates to generate a global model update. The non-sampled
clients then substitute their local models for the updated global model. FedProx [4] allows
the local models with incomplete training; namely, all local models do not need to be finely
tuned. The loss of the local model is constrained by adding the proximal term. MOON [21]
introduces a loss function that utilizes contrastive learning to incentivize improving the
accuracy of local models, ultimately enhancing the performance of the global model.

4.3. Comparison of Average Accuracy

Figure 4 presents the four models’ comparative experimental results on the MNIST,
Fashion MNIST, SVHN, and CIFAR-10 datasets (FedAvg, FedProx, MOON, and FedRDS).
The figure displays the accuracy trend and training loss under non-IID nodes.

In Figure 4a, after 126 rounds, the FedRDS algorithm gradually converges and its
model accuracy reaches 98.23%. Figure 4b shows that the accuracy of FedRDS differs
from other methods during the initial phase of model training and reaches a smooth
accuracy curve after 165 rounds. The accuracy of the model can ultimately reach 88.74%. In
Figure 4c,d, the FedRDS accuracy curve showed significant fluctuations in the early stages,
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and before 36 rounds, the loss curve experienced severe tremors. However, the two curves
gradually stabilized as the number of communication rounds increased. The accuracy of
FedRDS after 200 rounds of communication reached 84.95%, MOON achieved an 83.98%
accuracy, FedProx achieved an 83.32% accuracy, and FedAvg achieved an 82.62% accuracy,
while FedRDS achieved an accuracy of 55.91% for CIFAR-10 and FedAvg only achieved
53.03% (2.88% lower than FedRDS). FedProx and MOON showed moderate accuracy and
some convergence in all four datasets. However, their performance is relatively weak in
non-IID situations and further optimization and improvement are needed.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Average accuracy and training loss in the non-IID scenario. (a) Average accuracy on MNIST.
(b) Average accuracy on Fashion-MNIST. (c) Average accuracy on SVHN. (d) Average accuracy
on CIFAR-10. (e) Training loss on MNIST. (f) Training loss on Fashion-MNIST. (g) Training loss on
SVHN. (h) Training loss on CIFAR-10.

The data in Figure 4 indicates that FedRDS has faster convergence and higher model
accuracy compared to other baselines in most non-IID situations. This is due to the use
of dynamically balanced weights and allocated FedRDS algorithm node weights being
reasonable, which improves the model’s performance. The FedRDS algorithm gradually
converges after training because the FedRDS algorithm avoids the overfitting of local
models, thus improving the generalization ability of models. The accuracy curve in the
experiment fluctuates more because the data-sharing strategy promotes data flow between
all clients and allows them to use the existing data better. The data-sharing strategy aids in
minimizing the gap between local and global data and provides more categories of training
data. The loss curve indicates that most algorithms have a smooth decreasing curve, and
the loss curve of FedRDS decreases faster and lower than other algorithms. This result
indicates that FedRDS has better training efficiency when processing non-IID data and can
use data from each client more effectively. Therefore, compared to FedAvg, FedProx, and
MOON, FedRDS has faster and higher accuracy improvements. We provide a detailed
comparison of the accuracy of four methods in Table 3.



Appl. Sci. 2023, 13, 12962 12 of 18

Table 3. Performance comparisons with standard FL algorithms. Columns correspond to three scenes.
The average accuracy of the 200 rounds is reported.

Method
Dataset FedAvg FedProx MOON FedRDS
MNIST 97.87% 97.94% 98.07% 98.23%

Fashion-MNIST 88.18% 88.29% 88.45% 88.74%
SVHN 82.62% 83.32% 83.98% 84.95%

CIFAR-10 53.03% 53.85% 54.88% 55.91%
The best results are marked in bold.

4.4. Effect of the Number of Local Epochs

Furthermore, we examined how varying numbers of local epochs affected the model’s
accuracy, with local epochs ranging from 10, 20, 40, to 80, as shown in Figure 5. When E = 10,
the client executes fewer local epochs and is forced to stop before full training, thus affecting
the accuracy of all methods. However, FedRDS performs exceptionally well on the CIFAR-
10 dataset, achieving higher accuracy than other methods. This is because the optimized
local loss function can use the global model as additional knowledge and is robust to
insufficient local periods. As E gradually increases, the accuracy of most methods has
improved due to more thorough training on local datasets. When E = 20, FedRDS gradually
widens the gap with other methods. However, on MNIST, the accuracy of all methods is
very close because MNIST has fewer data categories and can train quickly regardless of
the size of E. FedRDS can rely on a small number of local epochs E to dynamically correct
the local model via the regularization method to achieve a faster model performance.
Therefore, increasing E has little benefit for local models, and the increase in accuracy
tends to be gradual. When E = 40, FedRDS shows performance degradation on the Fashion
MNIST and CIFAR-10 datasets. Excessive local epochs result in the overfitting of local
models, exacerbating the issue of client drift caused by non-IID data. Therefore, selecting
an appropriate number of local epochs can help the regularization method perform better.
When E = 80, the accuracy of FedRDS on the SVHN dataset is even lower than that of
MOON. However, other methods maintain a trend of continuously improving accuracy, as
they rely on more local epochs to achieve the same accuracy.

(a) (b) (c) (d)

Figure 5. Effect of different numbers of local epochs E on the average accuracy. (a) Average accuracy
on MNIST. (b) Average accuracy on Fashion-MNIST. (c) Average accuracy on SVHN. (d) Average
accuracy on CIFAR-10.

The above indicates that FedRDS can perform better than other methods with relatively
sufficient local training. FedAvg, FedProx, and MOON require more local epochs than
FedRDS for the same accuracy. In the actual application scenario of FL, the computing
performance and connection stability of the client are uncertain and more local epochs mean
longer connection times and more excellent dropout opportunities, which is a considerable
challenge for large FL networks. FedRDS does not require too many local epochs, which is
more advantageous in extreme cases of insufficient local epochs and can address dropout
issues in FL due to network bandwidth and other reasons. However, FedRDS may also
suffer from overfitting caused by too many local epochs. Hence, selecting the proper
number of local epochs is crucial in FL.
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4.5. Comparison of Communication Efficiency

In our experimental setup, for MNIST, Fashion-MNIST, and SVHN, we established the
baseline accuracy using FedAvg’s performance after 100 training rounds. Table 4 displays
the count of communication rounds necessary for all methods with default parameters to
reach the benchmark accuracy. As seen from the table, FedRDS demands notably fewer
communication iterations when compared to FedAvg and FedProx, indicating that regular-
ization methods can offer efficient communication besides improving the generalization
performance. Furthermore, in most cases, FedProx follows FedAvg throughout the training
process. We used a small µ parameter (µ = 0.01), so the proximal term in FedProx seems to
have a minor effect on the training procedure. The findings illustrated in Figure 4 indicate
that FedRDS converges faster than the other two methods in the initial stage due to its
higher stability with non-IID data, enabling it to reach the benchmark accuracy sooner and
ensure efficient communication.

The FedRDS algorithm has proven to be highly efficient in communication across all
the datasets used in our experiments. It is worth highlighting that the algorithm demon-
strated remarkable efficiency when dealing with the difficult-to-classify and semantically
complex SVHN dataset, achieving a 2.78-fold enhancement. Incorporating a larger shared
dataset size for CIFAR-10 proved beneficial in reducing the gap between the client and
server data distributions. It facilitated faster target accuracy attainment during the initial
training stages of FedRDS. Moreover, dynamically adjusting the shared dataset size as
per actual requirements is possible without any additional communication costs, and this
strategy only needs to be executed once during initialization.

Table 4. Communication efficiency comparison under the default setting.

Dataset
FL Method MNIST Fashion-MNIST SVHN CIFAR-10

Rounds Speedup Rounds Speedup Rounds Speedup Rounds Speedup
FedAvg 100 1× 100 1× 100 1× 100 1×
FedProx 74 1.35× 95 1.05× 79 1.26× 92 1.09×
MOON 61 1.64× 83 1.2× 42 2.38× 64 1.56×
FedRDS 40 2.5× 67 1.49× 36 2.78× 57 1.75×

4.6. Ablation Experiment

Figure 6 demonstrated that using either the regularization term alone or data sharing
was more effective than FedAvg, and both approaches mitigated the non-IID problem while
improving model accuracy. Combining dynamic regularization and data sharing can give
the FL algorithm the best of both worlds. Also, the results confirm our speculation that
both dynamic regularization and data-sharing strategies can mutually promote each other.

(a) MNIST (b) CIFAR-10

Figure 6. Ablation Experiment.
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We further investigate the specific performance of Fed regularization and Fed data
sharing. The results show that the accuracy of Fed regularization in Figure 6b is low in the
early training period due to the high computational complexity of introducing regulariza-
tion terms and the more complex data classes of CIFAR-10 compared to MNIST. But, as the
model continues to learn, Fed regularization eventually outperforms the benchmark model
FedAvg. Fed data sharing is achieved by sharing server-side data rather than client-side
data. Fed data sharing performs better than Fed regularization, which indicates that nar-
rowing the data distribution gap significantly impacts the experimental results more than
regular terms. Nevertheless, if a is set too large, it will make the distribution of client-side
data too similar to that of server-side data, which elevates the possibility of compromising
privacy. The experimental results show that using the regularization term alone or data
sharing can significantly alleviate the non-IID problem and boost the model’s robustness.
However, when updating the weights, the combined approach of combining regularization
terms and data sharing makes the local loss function more complex, and FedRDS takes
longer to converge.

As a regularization and data sharing strategy for FL, FedRDS offers a unique solution
to some challenges that arise when dealing with non-IID data. By combining a regulariza-
tion term with the data-sharing strategy, the algorithm effectively mitigates the issue of
uneven model distribution and overfitting, resulting in better model generalization. The
results of the experiments indicate that FedRDS outperforms the benchmark models. Our
findings suggest that dynamic regularization and the data-sharing strategy have significant
practical applications for FL-related problems, including reducing the effects of overfitting
and heterogeneous model distributions as well as improving generalization and accuracy
in non-IID data settings. Therefore, dynamic regularization and data sharing is of great
significance and value and has broad application prospects for solving problems in FL
networks, which will help improve the efficiency, accuracy, and robustness of various FL
applications in such diverse fields as healthcare, finance, and manufacturing.

4.7. Effect of the Regularization Coefficient

How to choose the proper regularization coefficient σ is a crucial problem. If the σ is
too large, it will make the client and global model too similar and the fitting of local data
insufficient, increasing the degree of client drift. Choosing σ as a relatively small value may
result in insufficient constraints on local updates. Therefore, we explored the regularization
coefficient on the MNIST and SVHN datasets. The impact on the algorithm’s accuracy
is shown in Figure 7. Throughout all trials, we fine tune the optimal variable σ from a
restricted pool of candidates set {0.001, 0.01, 0.1, 1.0}. When σ = 0.001, the regularization
term has insufficient generalization ability to the full according model, so the algorithm’s
accuracy is relatively low. With the increase in σ, the advantage of the regular term
gradually becomes noticeable and the accuracy reaches the highest at σ = 0.01. But, as the σ
value further increases, the accuracy begins to decrease. The reason for this is that if σ is too
large, it can worsen the problem of client drift, which will negatively impact the model’s
overall performance. While increasing σ can improve the model’s generalization ability,
this benefit is not significant enough to offset the adverse effects of client drift. Therefore,
the experimental results confirm our previous conjecture that the optimal σ values for both
datasets in Figure 7 are 0.01.
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(a) MNIST (b) SVHN

Figure 7. Coefficient Experiment.

5. Conclusions

With edge devices’ growing computing power and storage capacity, the risk of data
privacy breaches also increases. FL is expected to become a prominent framework in the fu-
ture. Even with the non-IID characteristic of the data, FL may be unstable and less efficient
during the training period. We suggest the FedRDS algorithm as a solution for dealing with
the client drift problems caused by non-IID in federated networks. The algorithm utilizes a
regularization term when constructing the local loss function to gradually align the local
model with the global model and relies on the data-sharing strategy to diminish the gap be-
tween local and global data distributions, thus significantly improving accuracy. Extensive
experiments were conducted on different datasets and the results demonstrate the feasi-
bility of our solution in handling non-IID data and the advantages of FedRDS over some
existing state-of-the-art methods concerning accuracy and communication effectiveness.

6. Future Work

Our future efforts will focus on enhancing the theoretical research and practical
application of the FedRDS algorithm, particularly by optimizing its performance for use in
real-world scenarios and improving its overall efficiency.
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Appendix A

Appendix A.1

Table A1. Notations.

Notations Description

Θ∗, Θ(Θk), Θt(Θt
k) Global or Local model parameters (at iteration t)

i, j, t, k, p, c, f Indices for clients, iteration, client, Probability distribution, client of SGD, client of FedRDS
X ,Y ,S , K Compact space, Class space, Probabilistic simplex, Total number of clients
S, Sr Collection of clients, Subset of clients
D, D′ The global data, The shared data
m, n(nk) synchronization, The amount of data (at client k)
T, I The number of steps before synchronization, Total number of classes
E Expectation
L, lk Global loss function, Local loss function (at client k)
f (x, y) The neural network based function to map the input x ∈ X to the output y ∈ Y
α, β, η The fraction of shared data per client, The fraction of shared data, The learning rate
B, C, E Batch size, The fraction of cilents, The number of local epochs
σ, µ The regularization coefficient of FedRDS, The regularization coefficient of FedProx

Appendix A.2

We conducted relevant experiments on CIFAR-10, as shown in Figure A1. In Figure A1b,
as β increases, the average accuracy can reach 78.82%, and when b = 10%, the accuracy can
reach 74.22%. In the experiment, we found that as β gradually increases, the time required
to train the model increases. Therefore, the size of β should be selected according to actual
needs. In Figure A1c, we selected two specific β values of 10% and 20%, respectively.
We can see that the accuracy of α increases rapidly from 0 to 10% in the initial stage, but
after increasing to 50%, the accuracy tended to flatten out. Therefore, we should select
α appropriately, which can minimize the size of the data distributed to clients as much
as possible.

(a) (b) (c)

Figure A1. (a) EMD vs. β, (b) average accuracy vs. β, and (c) average accuracy vs. the distribution
function α.
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