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Abstract: Migraine is now the sixth most common disease in the world and affects approximately 15%
of the population. Non-steroidal anti-inflammatory drugs, including ketoprofen, diclofenac sodium,
and ibuprofen, are often used during migraine attacks. Unfortunately, their efficiency can be reduced
due to poor water solubility and low cellular uptake. This requires the design of appropriate porous
carriers, which enable drugs to reach the target site, increase their dissolution and stability, and
contribute to a time-dependent specific release mode. In this research, the potential of the MIL-88A
metal-organic frameworks with divergent morphologies as diclofenac sodium delivery platforms was
demonstrated. Materials were synthesized under different conditions (temperature: 70 and 120 ◦C;
solvent: distilled water or N,N-Dimethylformamide) and characterized using X-ray diffraction, low-
temperature nitrogen adsorption/desorption, thermogravimetric analysis, infrared spectroscopy,
and scanning electron microscopy. They showed spherical, rod- or diamond-like morphologies
influenced by preparation factors. Depending on physicochemical properties, the MIL-88A samples
exhibited various sorption capacities toward diclofenac sodium (833–2021 mg/g). Drug adsorption
onto the surface of MIL-88A materials primarily relied on the formation of hydrogen bonds, metal
coordination, and electrostatic interactions. An in vitro drug release experiment performed at pH 6.8
revealed that diclofenac sodium diffused to phosphate buffer in a controlled manner. The MIL-88A
carriers provide a high percentage release of drug in the range of 58–97% after 24 h.

Keywords: MOFs; morphology control; drug delivery platforms; anti-migraine therapy; non-steroidal
anti-inflammatory drug adsorption; two-stage drug release

1. Introduction

Migraine is one of the most common neurological illnesses, characterized by episodic,
severe headache attacks, typically lasting between 4 to 72 h. It impacts approximately
14–15% of the worldwide population, including two to three times more females than
males [1,2]. Headaches often occur in adults aged 20 to 50, but children and adolescents
are also subjected [2]. In addition to a higher incidence of migraines, women declare
longer attack durations and recovery times, as well as greater disability [3]. This gender
disparity suggests that hormonal factors, particularly estrogen levels, play a significant role
in migraine, as women often report changes in their headache patterns concerning their
menstrual cycle [2,4]. Migraine is identified by additional symptoms such as phonophobia
and photophobia, episodes of vomiting, diarrhea, and nausea [5]. Moreover, approximately
15–30% of people suffering from migraine experience headaches with an aura, which is
a neurological phenomenon characterized by sensory, visual, and occasionally language
disorders [6]. This increases the risk of many conditions, such as stroke and other cardio-
vascular diseases [7]. It was also observed that people with chronic migraines complain
about insomnia and fatigue. Treatments for such symptoms include taking acute and
preventive drugs. Multiple medications are effective in the immediate management of
migraine episodes, e.g., non-steroidal anti-inflammatory drugs (NSAIDs, i.e., naproxen

Appl. Sci. 2023, 13, 12960. https://doi.org/10.3390/app132312960 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132312960
https://doi.org/10.3390/app132312960
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4202-652X
https://doi.org/10.3390/app132312960
https://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/13/23/12960?type=check_update&version=2


Appl. Sci. 2023, 13, 12960 2 of 21

sodium, ibuprofen, ketoprofen, and diclofenac sodium), analgesics (i.e., paracetamol),
triptans (sumatriptan, zolmitriptan, eletriptan, and rizatriptan), and calcitonin gene-related
peptide (CGRP) receptor antagonists [8]. Conventional drug dosage forms (tablets, cap-
sules, granules, etc.) are characterized by various limitations. The main concern is the
potential for side effects such as renal dysfunction, gastrointestinal bleeding, and cardio-
vascular events [9]. It could be problematic in the case of taking drugs over an extended
period at high doses. Many active pharmaceutical ingredients often have low solubility
as well as poor absorption ability from the site of administration [10]. When drugs are
ingested, the acidic conditions in the digestive system, along with the presence of digestive
enzymes, can lead to their degradation before they can reach the bloodstream [11]. Given
this, there is a necessity to develop an optimized drug delivery platform that will carry
and liberate the pharmaceuticals at a controlled rate and maintain the desired therapeutic
effect for a longer time [12,13]. Controlled and sustainable drug release platforms are one
of the most rapidly advancing science topics due to their influence on human health. They
can extend the pharmacological action duration of drugs, reduce the frequency of dosage,
and consequently prevent the occurrence of adverse effects [14,15]. So far, a wide variety
of ordered mesoporous silica, carbon materials, polymeric, and hybrid structures have
been designed as targeted and controlled drug delivery systems [16–19]. Among them,
metal-organic frameworks (MOFs), an interesting class of crystalline materials developed
by linking molecular building blocks into a predetermined, extended periodic structure,
found biomedical applications [20]. They have been investigated for drug delivery in recent
years due to their high adsorption capacity, biocompatibility, and biodegradation [21].
Additionally, they are able to reach precise and sustained drug release. One of the most
popular MOFs for drug delivery applications is those synthesized at the Lavoisier Institute
known as MIL (MIL—Matériaux de l’Institut Lavoisier) materials [22]. They consist of iron
nodes, naturally present in the body, which reduces their toxicity [23]. This group includes,
i.e., MIL-88A, MIL-101(Fe), MIL-100(Fe), and MIL-53(Fe). Almáši and co-workers [24]
successfully used MIL-101(Fe) functionalized with various polyamines as a naproxen
sodium carrier. They reported 91.1% of drug release from MIL-101(Fe)-NH2 at pH 7.4 after
24 h. Gordon et al. [25] incorporated acetaminophen into MIL-53(Fe), which was slowly
liberated under simulated physiological conditions. It was found that 100% of the drug
was released within 6 days. MIL-88A has been the subject of much research in the last
decade as an adsorbent, catalyst, and energy harvester [26–30]. Its biocompatibility, low
toxicity, easy synthesis via solvo/hydrothermal methods, and flexible structure render
it an ideal candidate for drug hosting [26]. It is composed of non-toxic iron ions and
fumaric acid—an endogenous linker and an important intermediate metabolite in the Krebs
cycle [31]. In the case of its degradation in the body, the linker is metabolized, which
decreases the risk of adverse effects (LD50 (Fe) = 30 g/kg, LD50 (fumaric acid) = 10.7 g/kg;
LD—lethal dose) [23,32]. The in vitro and in vivo cytotoxicity of MIL-88A was investi-
gated in several studies. In Horcajada and co-workers’ research [32], 150 mg/kg/day of
MIL-88A was injected into the rat liver and spleen for 4 days. After 10 days, there was
no result in detectable toxicity. Baati et al. [31] examined the in vivo acute toxicity of high
doses (up to 220 mg/kg) of MIL-88A nanoparticles. After intravenous administration,
the liver and spleen maintained their functionality without any indications of enduring
toxicity, displaying only temporary anomalies. Wuttke and co-workers [33] synthesized
iron(III) fumarate nanoparticles under different conditions and carried out toxicity and cell
association experiments. It was found that at concentrations up to 200 µg/mL, different
forms of MIL-88A samples did not induce distinct impacts on cell viability within 24 h of
exposure. The lack of immune or inflammatory responses following the administration
of MIL-88A materials indicates their non-toxic nature [32]. MIL-88A was used as a carrier
of different drugs and biologically active gases. McKinlay et al. [34] utilized MIL-88(Fe)
materials for nitric oxide adsorption and delivery. The results showed a substantial NO
release at the biological level for prolonged periods. Kim and co-workers [35] examined
NH2-MIL-88(Fe) as a carrier for brimonidine. The drug was encapsulated at a concentra-
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tion of 121.3 µg/mg and liberated in a controlled manner over 12 h. Darvishi et al. [36]
synthesized MIL-88(Fe) material on the surface of the carboxymethyl cellulose and used it
as a delivery platform for a widely prescribed antibiotic: tetracycline. The sustained release
of 64.3% tetracycline took place over 384 h. Wuttke and co-workers [37] coated MIL-88A
with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)-derived liposomes and applied it
as irinotecan, floxuridine, and a Suberoyl bis-hydroxamic acid delivery system. The experi-
ments demonstrated that the liposome-coated MIL-88A (Lip-MIL-88A) platform facilitated
intracellular drug release, which could improve cancer treatment. Nevertheless, there is a
lack of existing literature on the utilization of MIL-88A as a carrier of diclofenac sodium
(DS), a phenylacetic acid widely used during migraine attacks. In addition, this drug is
also employed in the management of lupus, rheumatic fever, psoriatic and rheumatoid
arthritis, and gout [38]. Table 1 outlines the physicochemical properties and structure of
DS. Diclofenac sodium is available on the market, mainly in the form of tablets, capsules,
or gels. After oral administration, the bioavailability of the drug and its plasma half-life are
approximately 50–60% and 1–2 h, respectively [39]. The necessity for multiple daily doses
of this medication can lead to adverse outcomes, including gastrointestinal upset, increased
risk of cardiovascular events, drug-induced hepatic damage, or diarrhea [40]. Hence, our
study aimed to optimize the synthesis of non-toxic Fe-based metal-organic frameworks,
MIL-88A, with divergent morphologies and their application as carriers in the diclofenac
sodium release at the medium reflecting intestinal condition (pH 6.8).

Table 1. Physicochemical properties of diclofenac sodium.

Drug Structure pKa
Melting

Point
(◦C)

Molecular
Weight
(g/mol)

Maximum
Wavelength

(nm)

Diclofenac
sodium
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2. Materials and Methods
2.1. Preparation of MIL-88A Drug Carriers

MIL-88A materials were prepared using the hydro-/solvothermal method [1]. A
mixture of fumaric acid (5 g, Sigma-Aldrich, Darmstadt, Germany, ≥99.0%) and iron(III)
chloride hexahydrate (3.21 g, Sigma-Aldrich, Darmstadt, Germany, 97%) was dissolved
in 300 mL of solvent (distilled water or N,N-Dimethylformamide (DMF, Sigma-Aldrich,
Darmstadt, Germany, ≥99.8%)). Then, the reaction mixture was transferred to Teflon-lined
steel autoclaves and heated at varying temperatures (70 ◦C or 120 ◦C) for 24 h. Following
cooling to room temperature, the precipitate was obtained via centrifugation at 6000 rpm
for 10 min and washed with distilled water. Finally, the materials were dried overnight at
60 ◦C. Synthesized samples were denoted as MIL-88A-1 (H2O, 70 ◦C), MIL-88A-2 (H2O,
120 ◦C), MIL-88A-3 (DMF, 70 ◦C), and MIL-88A-4 (DMF, 120 ◦C).

2.2. Characterization of MIL-88A Carriers
2.2.1. Powder X-ray Diffraction (XRD)

XRD analysis was carried out using a D8 Advance diffractometer (Bruker AXS, Karl-
sruhe, Germany) with Johansson monochromator (copper radiation Kα1 = 1.5406 Å) and
silicon strip detector LynxEye. The measurements were performed in the 2θ range of 6–40◦

at room temperature with a step size of 0.01◦ and a scan rate of 0.05◦/s in continuous mode.

2.2.2. Scanning Electron Microscopy (SEM)

The morphology of MIL-88A materials was determined using a Quanta 250 FEG
Scanning Electron Microscope (SEM) (FEI, Hillsboro, OR, USA). The analysis was carried
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out under the following conditions: a working distance of 11.6 mm and an accelerating
voltage of 10–15 kV. The samples were located on aluminum holders using carbon tape and
coated with a 50 nm electrically conductive carbon layer. The experiment was performed
in the secondary electron (SE) light.

2.2.3. Low-Temperature Nitrogen Sorption

To evaluate the textural characteristics of the MIL-88A materials, nitrogen adsorp-
tion/desorption was conducted at a low temperature of −196 ◦C using the Quantachrome
Autosorb IQ apparatus (Anton Paar GmbH, Graz, Austria). The Autosorb iQ apparatus
allows for volumetric measurement of gas adsorption and desorption at relative pressure
ranging from 0.001 to values slightly below 1.0. Before measurements, the MIL-88A ma-
terials were outgassed 12 h under vacuum at 150 ◦C. The Brunauer–Emmett–Teller (BET)
method was used to calculate the specific surface areas of the samples, and the Barret–
Joyner–Halenda (BJH) method was applied for pore size and volume assessment. The
micropore surface area was determined using the t-plot method.

2.2.4. Thermogravimetric Analysis (TGA)

The MIL-88A samples’ thermal stability was characterized using a Thermogravimetric
Analyzer (TGA) Setsys 1200 (Setaram, Caluire, France). Measurements of the samples’
stability (approximately 10 mg) were performed in airflow from ambient to 1000 ◦C at
a constant rate of 5 ◦C/min. TGA analysis was conducted utilizing a sample pan made
of platinum.

2.2.5. Fourier-Transform Infrared Spectroscopy (FT-IR)

The functional groups on the MIL-88A samples’ surface before and after diclofenac
sodium adsorption were analyzed by FT-IR spectroscopy. The measurements were carried
out utilizing an FT-IR Bruker IFS66/S spectrometer (Bruker, Billerica, MA, USA) with the
GLOBAR light source and Michelson interferometer. MIL-88A and MIL-88A—diclofenac
sodium systems—were blended with anhydrous potassium bromide at a mass ratio of
1:200 mg and compressed to form a tablet. The analysis was conducted within a wavenum-
ber range of 4000–500 cm–1.

2.3. Diclofenac Sodium Adsorption Studies

To examine the diclofenac sodium adsorption abilities of synthesized MIL-88A sam-
ples, a sequence of adsorption experiments was performed. Portions of 25 mg of each mate-
rial were introduced into the drug solutions with a concentration range of 100–3000 mg/L.
Next, the samples were continuously agitated for 2 h in the orbital shaker (KS 4000i control,
IKA, Staufen, Germany) at a constant temperature (25 ± 1 ◦C) and shaking rate of 250 rpm.
The residual concentration of the drug solution was determined by an Agilent Cary 60 UV-
Vis spectrophotometer (Santa Clara, CA, USA) at a wavelength of 276 nm. The sorption
capacities (Qe) of the MIL-88A were calculated using the following formula:

Qe =
C0−Ce

m
· (1)

To describe the MIL-88A carrier-diclofenac sodium interactions, the adsorption data
were fitted to non-linear Langmuir and Freundlich adsorption models. The determination
of the adsorption mechanism was based on the correlation coefficients (R2) of the models.

The non-linear Langmuir isotherm is described by Equation (2):

Qe = QmKL
Ce

1 + KLCe
(2)

where Qm is the maximum adsorption capacity (mg/g), and the KL constant is associated
with the free energy of adsorption (L/mg).
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The non-linear form of Freundlich isotherm can be expressed by Equation (3):

Qe = KF · C1/n
e (3)

where n is the constant representing the degree of favorability of the adsorption process,
and KF is related to the adsorption affinity of the adsorbent.

2.4. Diclofenac Sodium Release Studies

The in vitro release of the drug from the synthesized MIL-88A materials was conducted
using cellulose dialysis tubing (Sigma-Aldrich, Darmstadt, Germany). Before the liberation
process, 25 mg of MIL-88A materials were added into the diclofenac solution (5 mg of DS in
3 mL aqueous solution) and agitated for 2 h. In the next step, the solution was evaporated
overnight in an oven set at 60 ◦C. The release studies were performed in a phosphate
buffer of pH 6.8, representing intestinal conditions and maintained at 37.0 ◦C ± 0.5 ◦C.
The system was stirred at a speed of 200 rpm. In order to prepare the dissolution medium,
100 mL of 0.1 M KH2PO4 was mixed with 44.8 mL of 0.1 M NaOH and 55.2 mL of distilled
water. At the interval of 15 min in the first 3 h and 30 min in the next 2 h, 3 mL of the
mixture was collected, and the amount of released diclofenac sodium was assessed using
a UV–Vis spectrophotometer at λ = 276 nm. Measurements were also conducted for the
interval of 24 h and 42 h. Subsequently, the cumulative percentage of the released drug was
calculated. The liberation results were correlated to five mathematical models to describe
the release mechanism: zero-order (% DS release vs. time; Equation (4)), first-order (log of
% DS release vs. time; Equation (5)), Higuchi’s model (% DS release vs. square root of time;
Equation (6)), Hixson–Crowell (cube root of % DS remaining vs. time; Equation (7)), and
Korsmeyer–Peppas model (log of % DS vs. log time; Equation (8)) [41]. Experimental data
were analyzed using OriginPro 2023 [42].

Ft= k0te (4)

Ft = 1− e−kt (5)

Ft = kH
√

t (6)

3
√

F0− 3
√

Ft = kHCt (7)

Ft = ktn (8)

Ft is the fraction of diclofenac sodium release in time; F0 represents the initial quantity of
diclofenac sodium incorporated into the nanocarrier k0, kt, kH, kHC and k are the release
constants of particular kinetic models; and n is the diffusion exponent.

3. Results and Discussion
3.1. Physicochemical Characterization of MIL-88A Carriers

The XRD patterns of the synthesized materials are shown in Figure 1. They confirmed
obtaining crystalline phases specific to MIL-88A metal-organic frameworks. Depending
on the synthesis temperature and solvent used, the characteristic reflections registered
for all materials have slightly different positions, widths, and intensities in comparison to
simulated patterns. This is consistent with previous literature reports [26,43]. Additionally,
changes could be attributed to the presence of free fumaric acid or water molecules in the
material pores [26]. In the case of MIL-88A-1 and MIL-88A-2 samples, prepared in distilled
water, the most intensive reflections located at 2θ~10.8◦, 11.8◦ and 10.1◦, 10.8◦, respectively,
can be assigned to the (100) and (101) planes. When DMF was used as a solvent during
synthesis, there was a transition in the crystal orientation of MIL-88A from (101) to (100).
The XRD patterns of MIL-88A-3 and MIL-88A-4 contain distinct reflections at 2θ~10.1◦,
10.8◦ and 10.8◦, 11.8◦, respectively. Slight shifts of diffraction peaks indicate the flexibility
of the MIL-88A structure [44].
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Physisorption of nitrogen was conducted for all the iron-based MOF carriers, and
the resulting isotherms are illustrated in Figure 2. The nitrogen adsorption/desorption
isotherm of MIL-88A-1, prepared in distilled water at 70 ◦C, has a shape comparable to
type IV in line with the IUPAC (International Union of Pure and Applied Chemistry) classi-
fication, specific to mesoporous materials [26]. In turn, the MIL-88A-2 sample synthesized
at a higher temperature (120 ◦C) exhibits a type I nitrogen adsorption/desorption curve,
indicating the presence of micropores in its structure. For this isotherm, a stage of rapid
growth is observed at low relative pressure values, followed by saturation [45]. The nitro-
gen adsorption/desorption curves of the MIL-88A-3 and MIL-88A-4 materials obtained
in N,N-Dimethylformamide correspond to the combination of I and II types [26]. They
have a microporous structure with a small amount of macropores. The textural parameters
of MIL-88A materials are summarized in Table 2. MIL-88A-1 was characterized by the
lowest specific surface area and total pore volume—10 m2/g and 0.05 cm3/g, respectively.
These values correspond to the results reported in the literature for MIL-88A synthesized
under similar conditions [43,46,47]. Synthesis of MIL-88A-2 material at a higher tempera-
ture leads to the generation of higher porosity. It shows a higher specific surface area of
292 m2/g, a pore volume of 0.21 cm3/g, and an average pore diameter of 2.83 nm. MIL-
88A-2 micropore surface area represents 89% of the total surface area, confirming mainly
the microporous character of this material. The best-developed specific surface areas were
obtained for MIL-88A-3 and MIL-88A-4 materials synthesized in N,N-Dimethylformamide,
326 and 307 m2/g, respectively, with the micropore surface areas of 279 and 122 m2/g.
The difference between the specific surface area and pore volume of MIL-88A-1 and other
samples could be ascribed to the framework opening and closing [48]. This phenomenon is
characterized by a reversible cell volume doubling during the conversion of topology from
closed to open [49].

Table 2. Textural parameters of MIL-88A carriers.

Sample BET Surface Area
(m2/g)

Total Pore Volume
(cm3/g)

Average Pore
Diameter

(nm)

Micropore Area
(m2/g)

MIL-88A-1 10 0.05 20.30 -
MIL-88A-2 292 0.21 2.83 261
MIL-88A-3 326 0.47 5.74 279
MIL-88A-4 307 0.33 4.27 122
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Scanning electron microscopy (SEM) images demonstrate that the MIL-88A materials
with different morphologies were successfully prepared using the hydro-/solvothermal
method. The particle size is strongly influenced by the value of the dipole moment of
solvents due to the changes in linker solubility, solvent–nanoparticle interface, and su-
perficial tension [50]. It is observed that after synthesis in distilled water at 70 ◦C, the
MIL-88A-1 sample presents a hexagonal rod-like morphology with an average length of
7.5 µm (Figure 3A) [51]. Upon increasing the synthesis temperature, the mean particle
size of MIL-88A-2 decreases to approximately 5.5 µm, but also the surface roughness is
visible (Figure 3B). The morphology of MIL-88A-3 prepared in DMF at 70 ◦C changed to a
spherical (Figure 3C). DMF retards the crystallization rate of MOF by effectively solvating
Fe(III) ions in the organic medium, which could result in lower particle agglomeration
and stop rod-like crystallite formation [45,52]. The particle size of this sample is much
smaller compared to the materials prepared in distilled water: about 500 nm. These size
differences are associated with higher dipole moment of DMF than water (3.86 D and
1.856 D, respectively) and greater linker solubility in DMF than in water [53]. It could result
in faster nucleation rates, leading to smaller crystal sizes [54]. The converse phenomenon
is evident in the case of the MIL-88A-4 sample (Figure 3D). Implementation of the same
solvent (DMF) but a higher temperature (120 ◦C) caused the formation of crystals with two
different shapes—rods and diamonds, the most common for materials synthesized in DMF.
It was observed that the size of diamond-like particles was about 13 µm and rod-like—2 µm
in length.

The thermal stability of the MIL-88A samples was evaluated via TG analysis (Figure 4).
The initial weight loss, occurring below 100 ◦C, is associated with the evaporation of
moisture [55]. For MIL-88A-1 and MIL-88A-2, the further mass loss observed at 300 and
298 ◦C, respectively, is attributed to fumaric acid degradation, which proves that it is
inherent in the MIL-88A structure [56]. The mass loss noted in the temperature range
of 360–440 ◦C is related to the collapse of the metal-organic skeleton [57,58]. The third
stage visible on the TG curve of MIL-88A-1 at 646 ◦C can be associated with the iron
oxide conformation or the conversion between iron oxides [59]. Weight loss of MIL-88A-1
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and MIL-88A-2 was 69 and 55%, respectively. In turn, for MIL-88A-3 and MIL-88A-4,
weight loss associated with linker decomposition occurred to a greater extent at lower
temperatures: 283 and 287 ◦C. After this step, the weight of MIL-88A-3 and MIL-88A-4
samples is almost unchanged until 1000 ◦C. The samples synthesized in distilled water
(MIL-88A-1 and MIL-88A-2) are slightly more thermally stable than materials synthesized
in DMF.
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3.2. Adsorption and Release of Diclofenac Sodium

All synthesized under different conditions, MIL-88A materials were applied as di-
clofenac sodium carriers. To evaluate the efficacy of the drug adsorption process on the
sample surfaces, the FT-IR spectra were recorded (Figure 5A–D). Regarding the pristine
MIL-88A samples, the absorption band in the wavenumber range of 3200–3600 cm−1 is
associated with hydroxyl groups in the structure or adsorbed moisture. The bands at ~1604
and ~1400 cm−1 could be attributed to the symmetric and asymmetric vibrations of the
fumarate ligand C=O groups [60,61]. In turn, at around 1215 and 983 cm−1, the absorption
bands originating from the vibration mode of C-O in carboxylic groups and C-H were
detected. The band at 640 cm−1 could be associated with the presence of the carbonyl
group. In addition, the absorption band at ~556 cm−1 can be ascribed to the Fe–O stretching
vibrations [61–63]. The presence of the mentioned absorption bands signifies the successful
coordination of fumaric acid and iron ions in the MIL-88A structure [64–66]. The FT-IR
spectrum of diclofenac sodium contains distinct bands at 3390 cm−1, 1574 cm−1, 1289 cm−1,
and 746 cm−1 related to the N-H groups of the secondary amine, C=O from carboxyl ions,
and C-CO-C, as well as C-Cl vibrations, respectively (Figure 5E) [67]. The drug-loaded
MIL-88A samples spectra revealed the band at approximately 3320 cm−1 which could be as-
sociated with the N-H stretching vibrations of the secondary amine from diclofenac sodium.
Moreover, the bands at wavenumbers around 1580 cm−1 and 1450 cm−1, attributed in the
literature to C=O and C=C stretching vibrations, are noted [67–69]. The materials show a
new band at 1290 cm−1 from the C-CO-C bond, confirming the presence of the drug on the
sample surfaces [70]. The band at 766 cm−1 can be related to the stretching vibrations of
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C-Cl. The existence of these absorption bands validated the successful adsorption of the
drug on the surface of all MIL-88A materials.
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Figure 6 depicts the equilibrium adsorption isotherms of diclofenac sodium onto
metal-organic frameworks. It was noted that the quantity of adsorbed drug significantly
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increased with increasing initial concentration of its solution until reaching the saturation
point of adsorption. At low initial drug concentrations, the active sites of samples were
highly accessible for diclofenac sodium, and its adsorption was random. At the higher
drug solution concentrations, the sorption capacity was constant because all available
active sites were occupied by either drug or water molecules [71]. The lowest sorption
capacity toward diclofenac sodium exhibits samples synthesized in DMF: MIL-88A-3 and
MIL-88A-4 (833 mg/g and 1244 mg/g, respectively). The most effective adsorbents of
the drug are MIL-88A-1 (2021 mg/g) and MIL-88A-2 (1500 mg/g) prepared in distilled
water, although they have a smaller specific surface area and pore volume than samples
synthesized in DMF. This phenomenon could be associated with the structural flexibility of
MIL-88A affected by the adsorption of polar solvent molecules [72]. Materials synthesized
in distilled water are more flexible owing to the presence of hydrogen bonds between
water (guest molecules) and the framework [73–75]. The structural flexibility of these
MOFs allows them to accommodate drug molecules of different sizes [76]. Based on
the aforementioned results, the drug adsorption process engaged structural parameters
and interactions between the samples and drug molecules. One of the primary factors
influencing adsorption is the pore size of porous adsorbents. The average pore diameters
of the MIL-88A materials, in the range of 2.83–20.3 nm, were higher than the molecular
dimensions of the diclofenac sodium (0.97 nm × 0.71 nm × 0.47 nm). The adsorption
process was enhanced by allowing unrestricted drug transport within the pores, as steric
obstacles do not impose limitations [77]. Taking into account the morphology of the
synthesized materials, it can be observed that rod-like particles significantly increase the
amount of adsorbed drug. High MIL-88A/drug affinity was also the result of unique
interactions between diclofenac sodium and samples. The adsorption of drugs onto the
surface of MIL-88A samples is primarily based on hydrogen bonding, facilitated by the
presence of proton donors and acceptors in both the drug and the samples. The amine
groups in diclofenac sodium could act as proton donors, and the electronegative parts of
materials as proton acceptors. On the other side, the formation of hydrogen bonds may
occur between µ3-OH([Fe(OH)]) in MIL-88A and functional groups containing oxygen or
nitrogen in the diclofenac sodium molecules [26,78]. Secondly, the metal coordination effect
enhances the effective adsorption of drug molecules via the interaction between the MIL-
88A central iron trimers and the nitrogen and oxygen functional groups of the drug [57,76].
Finally, in addition to these two types of interplays, electrostatic interactions may affect the
adsorption of diclofenac onto the MIL-88A samples. The isoelectric point of MIL-88A is 6.0,
and the pKa value for diclofenac sodium is 4.0 [79,80]. This means that the samples maintain
a positive surface charge until the pH reaches 6, while diclofenac sodium takes on an anionic
form when the pH exceeds 4 (Figure 7). The pH of the drug solution was 5.5; hence, the drug
adsorption at this pH value can be based on the electrostatic interactions occurring between
the anions of diclofenac sodium and the positively charged surface of MIL-88A [57]. The
possible mechanism of drug adsorption onto MIL-88A materials is depicted in Figure 8.
Table 3 compares the maximum sorption capacity of the MIL-88A-1 sample synthesized
in distilled water at lower temperatures with other adsorbents described in the literature.
The MIL-88A-1 material adsorbed the highest amount of diclofenac sodium. In contrast to
other MOF materials prepared in DMF (i.e., UIO-66, MOR-1, MIL-100, [Cu(BTTA)]n·2DMF),
synthesis of MIL-88A-1 conducted in distilled water under mild conditions makes it more
environmentally friendly. The high adsorption ability of MIL-88A-1 can be attributed to
its flexible structure and breathing effect, as well as different types of interactions with
diclofenac sodium: hydrogen bonding, metal coordination, and electrostatic interactions.
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Table 3. Comparison of the performance of various materials in diclofenac sodium adsorption.

Material Material Type Specific Surface Area
(m2/g)

Maximum Sorption
Capacities

(mg/g)
Ref.

Pyridine functionalized
mesoporous silica silica 322 352

[81]
Thiol functionalized

mesoporous silica silica 493 48

Amine functionalized
mesoporous silica silica 358 328

Al2O3/La2O3 aluminum oxide 156 82 [82]

F-300 carbon 847 108 [83]

PC-1000 carbon 1236 392 [84]

Alginate/carbon films carbon composite 35 30 [85]

UiO-66-(COOFe)2 Zr-based MOF 684 860 [86]

MOF-525 Zr-based MOF 1955 792 [87]

MOF-808 Zr-based MOF 1517 830 [88]

UiO-66/MWCNT Zr-based MOF
composite - 256 [89]

MOR-1 Zr-based MOF 1097 315 [90]

RT-iCOF ionic covalent
organic framework 69 875 [91]

MCOF-2 magnetic covalent
organic frameworks 335 565 [92]

[Cu(BTTA)]n·2DMF Cu-based MOF - 650 [93]

ZIF-8-NPs Zn-based MOF 1568 843 [94]

Fe3O4@MIL-100(Fe) Fe-based MOF 1245 400 [95]

MIL-100 Fe-based MOF 1235 773 [96]

12%PTA@MIL101(Cr) Cr-based
MOF composite 1909 413 [97]

MIL-88A-1 Fe-based MOF 10 2021 this work

To understand the adsorption mechanism, diclofenac sodium adsorption isotherms
were fitted to the non-linear form of Langmuir and Freundlich models (Figure 9). It was
found that the correlation coefficients R2 for the Freundlich model are higher than for
Langmuir in the case of drug adsorption onto MIL-88A-1 (distilled water, 70 ◦C) and
MIL-88A-4 (DMF, 120 ◦C) (Table 4). It implies multilayer adsorption, which assumes the
interaction between adsorbed molecules on a non-uniform surface [26]. The calculations
indicate that the Langmuir model can best represent the adsorption of diclofenac sodium
onto MIL-88A-2 (distilled water, 120 ◦C) and MIL-88A-3 (DMF, 70 ◦C) (Table 4). It suggests
that drug molecules form a monolayer on the surface of the MIL-88A materials, and the
adsorption process is mainly controlled by host−guest interactions [93,98]. There is no
lateral interaction between the adsorbed drug molecules [99]. The KL constant values for
all samples indicate that the bonding between diclofenac sodium and MIL-88A-4 is the
strongest [100]. The value of 1/n determined from the Freundlich isotherm was less than 1
for all samples, confirming that the adsorption of diclofenac sodium is thermodynamically
favorable [18]. The maximum theoretical values (Qmax) of materials’ adsorption capacities
toward diclofenac sodium are comparable to those obtained experimentally.
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Table 4. The parameters of non-linear Langmuir and Freundlich isotherm models fitted to equilibrium
data of diclofenac sodium adsorption on the surface of MIL-88A samples.

Material
Langmuir Freundlich

Qmax KL R2 KF 1/n R2

MIL-88A-1 2070 0.049 0.793 1523 0.04 0.798
MIL-88A-2 1502 0.058 0.995 349 0.22 0.867
MIL-88A-3 905 0.027 0.967 162 0.25 0.758
MIL-88A-4 1255 0.075 0.773 728 0.08 0.951

The release studies of diclofenac sodium from MIL-88A materials were performed in a
phosphate buffer of pH 6.8, simulating intestinal fluid. The release profiles of the drug from
MIL-88A carriers are shown in Figure 10. The percentage of the drug desorbed from the
metal-organic frameworks ranges from 58 to 97%, depending on their synthesis conditions.
Considering that the molecular size of diclofenac sodium is 0.97 nm × 0.71 nm × 0.47 nm,
it should be assumed that the drug diffusion rate is affected by samples’ textural parameters
and functional groups present on the surface [77,101]. The drug release profiles obtained
for MIL-88A-1, MIL-88A-2, and MIL-88A-3 materials showed a two-stage diffusion process.
It indicates diclofenac sodium rapid release during the initial stage of the experiment
due to the presence of its molecules mainly on the carriers’ external surface, followed
by a subsequent stage of slower release of the drug from the pores over an extended
period [102]. At pH 6.8, which simulated intestinal condition, the highest drug amount
was liberated from rod-like MIL-88A-1, synthesized in water at 70 ◦C. The release profile
of the diclofenac sodium from the sample presented a high burst liberation of the drug
(70%) during the first six hours and then slower desorption of 27% after 30 h. This material
was characterized by the largest pore diameter, which resulted in weaker interactions
between material pore walls and diclofenac sodium molecules. The extended drug release
from the MIL-88A-2 sample in simulated intestinal fluid finished within 32 h. Regarding
MIL-88A-2, MIL-88A-3, and MIL-88A-4 materials, larger specific surface area and porosity
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promote higher accessibility of adsorption sites, leading to stronger interactions between
the drug molecules and the materials’ surface [103]. Drug desorption from MIL-88A-3 and
MIL-88A-4 reached about 58% after 30 h, extending the therapeutic effect of this drug in
the human body. The high percentage of drug release (from 58% for samples synthesized
in DMF to 97% for material obtained in water at 70 ◦C) at pH 6.8 could be associated
with the repulsion between the drug’s anionic form and the negatively charged surface of
carriers [104–106].
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Various materials have been presented in the literature as advanced diclofenac sodium
delivery systems. Zauska and co-workers [107] utilized SBA-15 silica functionalized with
polyethyleneimine polymers as a drug carrier. Experimental results showed that at pH 7.4
and 37 ◦C, simulating the small intestine environment, the SBA-15(C) sample released
89.4% of diclofenac sodium. Nikolova et al. [108] applied chitosan and sodium alginate
polyelectrolyte complexes for controlled DS liberation at pH 6.8. They reported a linear drug
release profile in the first 6 h. Vargas and co-workers [109] evaluated surfactant-modified
clinoptilolite and chabazite as platforms for diclofenac sodium delivery. It was shown
that clinoptilolite causes an immediate liberation of the drug within 1 h (57%) followed
by incremental release during the next 5 h (about 85%) at pH 7.4. Lucena et al. [110]
synthesized BioMOF-Zn (Zn(II) coordination polymer with 4,4′-biphenyl-dicarboxylic acid
(BPDC) and adenine linker) as a diclofenac sodium delivery platform. Approximately
56% of the drug was desorbed from the sample at pH 7.4. The results obtained in the case
of functionalized SBA-15 silica, as well as chitosan and sodium alginate polyelectrolyte
complexes, are comparable to the release of diclofenac sodium from MIL-88A-1 and MIL-
88A-2 materials. In turn, MIL-88A-3 and Zn-based BioMOF were characterized by similar
release capabilities. The components of MIL-88A (iron ions and fumaric acid) render it a
biocompatible and non-toxic drug carrier.

Different kinetic models (zero-order, first-order, Korsmeyer–Peppas, Hixson–Crowell,
and Higuchi) were fitted to the experimental data to determine the diclofenac sodium
release rate and mechanism. To assess the diffusion kinetics, kinetic values of release
constants (k), release exponent (n), and correlation coefficient (R2) were estimated and
summarized in Table 5. The release profile of the drug from MIL-88A-1 prepared in distilled
water at a lower temperature is best fitted to the first-order kinetic model, which is common
for a drug release from porous carriers. It is a concentration-dependent drug release
mechanism [111]. It implies that the diclofenac sodium release rate diminishes as the
concentration gradient of the drug decreases over time [112]. The highest values of R2 were
noted for the Higuchi model in the case of MIL-88A-2, MIL-88A-3, and MIL-88A-4, which
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describes the amount of drug liberated as a function of the square root of time [113]. It is
characteristic of the drug release from an insoluble matrix [114].

Table 5. Kinetic release parameters describing the mechanism of diclofenac sodium diffusion from
MIL-88A materials.

Sample
Zero-Order First-Order Higuchi Hixson–Crowell Korsmeyer–Peppas

k0 R2 k1 R2 kH R2 kHC R2 kKP n R2

MIL-88A-1 7.077 0.973 0.154 0.992 24.778 0.990 0.183 0.988 33.787 0.403 0.984
MIL-88A-2 8.372 0.952 0.127 0.982 25.649 0.993 0.171 0.974 19.458 0.637 0.984
MIL-88A-3 6.647 0.954 0.087 0.974 18.307 0.996 0.123 0.968 16.592 0.540 0.995
MIL-88A-4 13.035 0.940 0.185 0.964 30.678 0.986 0.254 0.957 23.319 0.66 0.976

4. Conclusions

In summary, the series of MIL-88A metal-organic frameworks were prepared under
different conditions: temperature (70 and 120 ◦C) and solvent (distilled water and DMF). It
was found that synthesis factors strongly influence materials’ physicochemical properties
and sorption abilities. The highest surface area and pore volume exhibited MIL-88A-3
synthesized in DMF at a lower temperature, while the smallest textural parameters, MIL-
88A-1, prepared in distilled water at 70 ◦C. The materials synthesized in water (MIL-88A-1
and MIL-88A-2) were more thermally stable than samples obtained in DMF. MIL-88A-1
and MIL-88A-2 samples indicated rod-like morphology, while MIL-88A-3 and MIL-88A-4
particles were characterized by spherical or diamond shapes, respectively. Diclofenac
sodium adsorption onto metal-organic framework surfaces occurred mainly via hydrogen
bonding and metal coordination, as well as electrostatic interactions. The highest amount
of drug was adsorbed onto MIL-88A-1 (2021 mg/g) with the smallest specific surface area
and pore volume, which implies, that the adsorption course is mainly influenced by the
surface moieties. The drug was desorbed from the MIL-88A carriers to a phosphate buffer
of pH 6.8 in two stages. At first, the drug was released quickly from the outer surface of
MIL-88A materials, followed by a gradual and controlled diffusion of its molecules from
inside the pores. The outcomes of this study confirm the potential of MIL-88A carriers to
be used as drug delivery platforms in anti-migraine therapy.
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