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Abstract: This research focuses on enhancing neonatal care by developing a comprehensive mon-
itoring and control system and an efficient model for predicting electrical energy consumption in
incubators, aiming to mitigate potential adverse effects caused by excessive energy usage. Employing
a combination of 1-dimensional convolutional neural network (1D-CNN) and long short-term mem-
ory (LSTM) methods within the framework of the Internet of Things (IoT), the study encompasses
multiple components, including hardware, network, database, data analysis, and software. The
research outcomes encompass a real-time web application for monitoring and control, temperature
distribution visualizations within the incubator, a prototype incubator, and a predictive energy con-
sumption model. Testing the LSTM method resulted in an RMSE of 42.650 and an MAE of 33.575,
while the CNN method exhibited an RMSE of 37.675 and an MAE of 30.082. Combining CNN and
LSTM yielded an RMSE of 32.436 and an MAE of 25.382, demonstrating the potential for significantly
improving neonatal care.

Keywords: neonatal incubator; energy consumption prediction; CNN-LSTM; Internet of Things;
artificial intelligence

1. Introduction

Newborn babies are referred to as neonates, and babies born before reaching 37 weeks
of gestation are considered premature. Premature babies face higher health risks than those
born at full term, requiring intensive care. Intensive care for these infants necessitates
using a medical device known as a neonatal incubator. The incubator maintains a stable
environmental temperature and humidity using an internal heater, assisted by a fan for air
circulation. Operating the incubator requires significant knowledge, and medical personnel
must be able to monitor the conditions inside the incubator at all times.

Additionally, efficient energy management within the incubator is crucial, as exces-
sive energy usage could lead to the heater inside increasing the temperature conditions,
potentially negatively impacting infant care and raising energy consumption. Therefore,
research was conducted to develop an efficient energy-management system and enable
real-time monitoring and control of the incubator’s conditions to enhance neonatal care. In
this study, a combination of LSTM-CNN methods and the Internet of Things (IoT) concept
was utilized to create an energy prediction model and a real-time operational system for
monitoring and control.

The Internet of Things (IoT) is a technological concept that enables hardware or objects,
regardless of location, to communicate over the Internet without human intervention [1].
The IoT has been widely adopted in various aspects of life to enhance daily living, even
within the industrial sector [2]. The IoT comprises hardware, networking, and software
components [3,4]. In this research, IoT technology was applied in healthcare, specifically in
neonatal incubators. Multiple sensors, actuators, and network modules are installed in the
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incubator. All hardware sensors and actuator modules are connected to a microcontroller,
which processes the data and sends them to an IoT broker using the message queuing
telemetry transport (MQTT) communication protocol [5].

Several previous studies have explored using the Internet of Things (IoT) in baby
incubators, incorporating various sensors. Furthermore, previous research has employed
a hybrid fuzzy and PID approach in incubator control systems. Researchers have also
researched incubator monitoring and apnea detection systems for premature babies using
IoT and wearable devices [6–9]. However, no research has effectively combined artificial
intelligence (AI) with IoT within the context of baby incubators. Our study addresses
this gap by developing a system capable of understanding energy consumption, monitor-
ing temperature conditions through a web application, and comprehending temperature
distribution within the incubator.

Generally, healthcare professionals use neonatal incubators to maintain tempera-
ture and humidity conditions. Therefore, this research uses DHT11 sensors to monitor
temperature and humidity and ACS712 devices to measure energy consumption [10,11].
Additionally, this research conducted experiments to understand the temperature distribu-
tion inside the incubator. Multiple DHT11 sensors were installed at various corners within
the incubator to collect temperature data from each point in more detail and visualize.
Through visualization, temperature distribution patterns were observed, which can provide
further insights into improving temperature management efficiency and energy usage.
This, in turn, contributes to the optimization of neonatal care.

The main hardware components utilized included a microcontroller, a single-board
computer, a 1200-watt AC heater, and a 12 V DC motor with a propeller for the fan. The
microcontroller was the ATMega256, integrated into the Arduino Mega 2560 board [12].
Arduino Mega 2560 has digital input/output (I/O) and analog I/O to connect with the
DHT11 and ACS721 sensors. It also features three serial ports (Tx/Rx), with one of these
serial ports used in the research to connect the ESP8266 WiFi module [13,14]. Furthermore,
this study used the Raspberry Pi, a single-board computer capable of running Linux
or Windows-based operating systems. The Raspberry Pi has a CPU, RAM, and I/O
ports suitable for IoT-based projects [15]. Hence, in this research, Raspberry Pi was the
server running the Mosquitto IoT Broker application, an Apache Server, and the MySQL
database [16–18].

Subsequently, sensor measurements from the hardware components are sent to the IoT
broker using a WiFi module with an MQTT communication protocol. MQTT is a protocol
that offers three different quality of service (QoS) levels and employs publish/subscribe
(pub/sub) terminology for communication [19,20]. The transmitted data enter the IoT
broker and are further processed by the system, being stored in the database. The data
stored in the database are then displayed in real-time on the web application. Furthermore,
this web application is responsive and can be accessed on various screen sizes, including
mobile devices. This feature allows for flexible control and monitoring of the incubator
from anywhere and anytime over the Internet using the MQTT protocol.

The data stored in the database are then used as a dataset for creating a predictive
model for electricity consumption. The process of creating this model utilizes a combi-
nation of methods from deep learning, namely long short-term memory (LSTM) and a
1-dimensional convolutional neural network (1D-CNN) [21]. Combining these two meth-
ods aims to increase the accuracy of predicting electrical energy consumption [22]. The
choice of these two methods is based on the temporal or sequential data type. Therefore,
the decision was made to employ the LSTM method to understand the data sequence that
will occur next. The output from the 1D-CNN will be used as input for LSTM. Generally,
the analysis process begins by inputting data into the 1D-CNN. The output results from
the 1D-CNN are then used as input for LSTM. Following this, the final result of this model
will be evaluated to measure the level of prediction it produces.
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In the context of the incubator, numerous studies have been conducted previously, but
most of them utilized control methods such as PID and Fuzzy [6–9], as shown in Table 1.
Our research aims to extend the development of the incubator with artificial intelligence to
monitor energy usage based on temperature conditions inside the incubator. In this work,
our main contributions are:

• web application for real-time monitoring and control;
• visualization of the temperature data distribution inside the incubator;
• prototype of an electronic hardware incubator; and
• hybrid model utilizing 1D-CNN and LSTM methods for predicting energy consump-

tion models.

Table 1. Summary of the works related to neonatal incubator systems.

Reference Hardware Network Data Software Method

[6] Microcontroller ATMega 328 Protocol HTTP MySQL Mobile -

Microcomputer - Network GSM

Sensor

Phototherapy,
Temperature,
humidity,
Fingerprint,
Heart Rate,
Camera

Broker IoT -

[7]

Microcontroller ATMega16 Protocol - -

LCD,
Desktop

Fuzzy-PIDMicrocomputer - Network -

Sensor Temperature,
Humidity Broker IoT -

[8]
Microcontroller ESP32 Protocol MQTT Filter,

Peak
Detection, Feature

Extraction

LCD,
Desktop

-
Microcomputer Raspberry Pi Network WiFi

Sensor Respiration Broker IoT Mosquitto

[9]

Microcontroller ESP32 Protocol MQTT

MySQL Web -
Microcomputer - Network WiFi

Sensor
Temperature,
humidity,
Sound

Broker IoT Node-Red

Proposed
work

Microcontroller ATMega 2560 Protocol MQTT,
HTTP

Filter, MySQL Web,
Mobile

CNN,
LSTM,
RMSE,
MAE,

MAPE,
MSE

Microcomputer Raspberry Pi Network WiFi

Sensor
Temperature,
humidity,
Energy

Broker IoT Mosquitto

2. Related Works

Numerous prior investigations have been conducted about neonatal incubators. Kapen
et al. in 2019 [6] aimed to create an automatic neonatal incubator with various modules
such as phototherapy, fingerprint reader, and remote monitoring. The remote monitoring
module supervises the baby’s temperature, heart rate, and video surveillance. Alimuddin
et al., in 2021 [7], applied a hybrid Fuzzy-PID system to control temperature and humidity
in the incubator. Next, Cay et al., 2022 [8] developed a respiratory monitoring and Apnea
detection system for premature babies using the Internet of Things concept. This system
utilizes the ESP32 microcontroller, sensors, edge computing devices (ECD), and the MQTT
protocol. This system implements an Internet of Things architecture with the MQTT
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protocol to connect the wireless embedded system (WES) or sensors to the edge computing
device (ECD). Aya-Parra et al., 2023 [9] worked on developing an incubator system for
temperature and humidity monitoring through a web application. This system uses a WiFi
network and the MQTT communication protocol to send data to a broker service integrated
with Node-RED. In Table 1, there is a summary of research related to neonatal incubator
systems. This table summarizes research findings based on various aspects, including
hardware, network, data management, software, analysis methods, and control systems.
The last row of this table highlights the contributions of these research findings.

In Table 1, the hardware section features the adoption of the ATMega2560 microcon-
troller, chosen for its larger processing capacity. On the network side, the implementation
of MQTT and HTTP protocols stands out compared to previous research that exclusively
used MQTT. MQTT connects sensor devices within the neonatal incubator to the IoT broker,
while HTTP establishes connections between web and mobile applications and the database.
Notably, in the IoT broker section, Mosquitto is utilized, being directly installed on the Rasp-
berry Pi, a departure from previous research that relied on third-party broker providers.
Moving to the software section designed for monitoring the incubator’s condition through
web and mobile devices, it follows a web-based approach, contrasting with prior research
that predominantly focused on desktop applications and a 16 × 2 LCD module. Finally,
the data analysis and monitoring of the neonatal incubator’s condition involve utilizing
LSTM and CNN methods, a unique combination not previously explored in research.

3. Materials and Methods
3.1. System Overview

An overview of the system in this research is depicted in Figure 1. The entire developed
system is divided into five components called modules. Each module encompasses several
processes. These components include hardware, network, database, data analysis, and
outputs. The initial stages of the research start from the hardware component and continue
through the process to obtain the final results.
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In the hardware component, various electronic components are used to collect data.
These electronic components include sensors, actuators, power supply, communication
or network devices, and microcontrollers. These electronic components are connected to
the microcontroller according to their respective I/O signals. The sensors carry out the
process of reading environmental data values inside the incubator, and the microcontroller
processes the acquired values. The microcontroller can use these data to send commands
to the actuators or transmit the data to the database via the network.

An IoT Broker is used and installed on a server in the network component. The data
sent by the hardware will enter this IoT broker. Data communication in this system uses the
publish/subscribe method, where each piece of data sent has a corresponding topic [23].
Additionally, each device has a unique ID or identity for identification purposes. WiFi is
the communication medium during the data transmission from hardware to the IoT Broker.

The data collected in the IoT broker are then processed for storage in the database. The
data storage process is conducted in real-time from the broker to the database using a socket
service created with Python. However, before the data are stored in the database, they are
filtered to ensure no data loss or inappropriate data occurs during storage. Subsequently,
the data stored in the database are used as a dataset in the analysis stage to create a model
to predict energy consumption and temperature distribution patterns within the incubator.

The dataset contains features or attributes such as temperature, humidity, and electric
current values in the analysis stage. Data patterns in this dataset are recorded every
second. Therefore, energy consumption is calculated for each second in the analysis
process. Suppose you want to calculate the total energy consumption for a specific period.
In that case, you can multiply the electric current data by the electrical voltage (220 V) with
the desired duration in seconds. For example, if you want to find energy consumption per
minute, the result can be multiplied by 60 s.

The next step in the process is modeling, using deep learning methods to analyze the
sequential data from the incubator. This analysis process combines two techniques, 1D-
CNN and LSTM, to develop a predictive model for electric energy consumption [24]. Before
that, a data preprocessing process is performed, which includes steps such as calculating
the average values based on time and scaling. The purpose is to optimize and prepare the
data to create an accurate and reliable predictive model.

Furthermore, in the next phase, an analysis of the temperature distribution patterns
within the incubator is conducted, aiding in the optimization of infant care. The outcome
of this analysis will manifest as visualizations of the temperature distribution conditions
within the incubator. Additionally, a web application has been developed to be accessed
from anywhere via the Internet. This web application allows users to monitor and control
the incubator’s conditions in real-time.

3.2. Electronic Design

The hardware design in this research is illustrated in Figure 2. Figure 2a represents
the design process, while Figure 2b displays the wiring schematic. The hardware design
utilizes several DHT11 sensors [25] and a one-channel relay device as actuators. All of these
components are connected to the microcontroller through digital I/O pins. An ACS712
sensor is also employed to measure the electrical current linked to the microcontroller via
an analog I/O pin (A0) [26]. To control the speed of the DC motor, a BTS7960 device is
used, capable of controlling motors up to 48 V. The DC motor circulates the heated air
produced by the heater into the incubator. This heater device is connected to a relay module,
facilitating easy on/off control. A comprehensive list of the electronic components used
can be found in Table 2.
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Table 2. Electronic component.

Component Description Qty. Unit Price ($) Total ($)

Board Arduino Mega2560 Microcontroller 1 8.65 8.65
ESP8266 WiFi 1 0.86 0.86

DHT11 Temperature measurement range: 0 ◦C to 50 ◦C, and
Humidity measurement range: 20% to 90% [27] 4 0.60 2.4

ACS712 10 A Ampere sensor 1 0.73 0.73
Relay 1 channel Relay 1 0.30 0.3
Motor DC 12 V Motor 1 15.38 15.38
BTS7960 Driver motor 1 3.89 3.89
Heater Incubator 1200 Watt Heater 1 115.34 115.34
Power supply 12 V Power supply 1 8.78 8.78

Total 156.33

Furthermore, the placement procedure of these sensors is designed to optimize moni-
toring and measurements inside the incubator, as depicted in Figure 3. Four temperature
and humidity sensors are positioned on each side of the incubator. The distribution of
these sensors across the incubator’s sides aims to assist in monitoring even temperature
and humidity changes throughout the entire space. Meanwhile, the current sensor placed
on the AC power cable of the primary power source enables precise monitoring of the
electrical current entering the incubator.
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The next step after connecting the sensor and actuator devices to the microcontroller
involves developing the program code. The program development process employs the
Arduino IDE as the code editor [28]. The program is divided into several functions,
which include (a) connecting to the internet network, (b) communicating with the IoT
broker, (c) reading sensor values, and (d) the control system. The program begins with the
device connecting to the Internet using the SSID and password. Subsequently, the device
establishes a connection with the IoT broker by configuring several parameters such as the
host, port, username, and password. Once connected, the device starts reading sensor data
and repeatedly sends them to the IoT broker. The following complete details regarding the
program on the hardware can be seen in Algorithm 1.

Algorithm 1: Hardware system
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Subsequently, the data on the broker are subscribed to by clients and then displayed
in the web application or stored in the database. In this research, the IoT broker is installed
on a Raspberry Pi mini-computer, which also functions as an Apache server for the web
application [17]. Mosquitto is used as the MQTT broker service for the IoT broker [30].
Several configurations on the IoT broker, such as port settings, authentication, and host
settings, must be configured in advance.

3.4. Data Management
3.4.1. Database

In this study, the sensor measurement data from the incubator are sent to the broker
and then processed by the system for storage in the database. The database application used
in this research is MySQL, which is one of the relational database management systems
(DBMS) that makes it easy to manage structured data as tables which can have relationships
with each other [18,31]. In storing sensor data, the data must go through a filtering process,
which is carried out by setting upper and lower threshold values to improve the quality of
the data stored in the database.

This process is carried out with the aim of filtering out non-outlier data. The process
is controlled by the filter low and filter high parameters in Algorithm 2, at Lines 10 and
11. The values of these parameters have been determined based on the characteristics of
the DHT11 sensor device, which has a temperature measurement range of 0 ◦C to 50 ◦C
and humidity range of 20% to 90%, as presented in Table 2. The methodology used to
determine these threshold values is based on the range of sensor characteristic values [27]
and standard temperature values for the incubator range from 32 ◦C to 35 ◦C [32]. If the
measurement point of sensor data is below the filter low or filter high threshold, it will be
identified as an outlier, as in Lines 14–19 of Algorithm 2.

After going through the filtering process, the data are separated based on the data
topic and then stored in variables for storage. A description of the variable structure and
sensor data types can be seen in Table 3, and the data-management program is shown in
Algorithm 2. After that, the data stored in the database can be accessed for analysis and
monitoring purposes. The data in the database are used as a dataset in the analysis process.
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Algorithm 2: Data management
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the quality of the data stored in the database. 

This process is carried out with the aim of filtering out non-outlier data. The process 
is controlled by the filter low and filter high parameters in Algorithm 2, at Lines 10 and 
11. The values of these parameters have been determined based on the characteristics of 
the DHT11 sensor device, which has a temperature measurement range of 0 °C to 50 °C 
and humidity range of 20% to 90%, as presented in Table 2. The methodology used to 
determine these threshold values is based on the range of sensor characteristic values [27] 
and standard temperature values for the incubator range from 32 °C to 35 °C [32]. If the 
measurement point of sensor data is below the filter low or filter high threshold, it will be 
identified as an outlier, as in Lines 14–19 of Algorithm 2. 

Algorithm 2: Data management 
1. INPUT: Sensor data 
2. OUTPUT: Data stored in the database 
3. DESCRIPTION: 

4. 
db = connect to a database and set parameters (host, username, password, 
db_name) 

5. IF db error: 
6.  PRINT database error 
7. END 
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Table 3. Database structure for electronic sensors.

Variable Electronic Data Type Unit Variable Electronic Data Type Unit

temperature_1 DHT11 Float ◦C humidity_1 DHT11 Float %
temperature_2 DHT11 Float ◦C humidity_2 DHT11 Float %
temperature_3 DHT11 Float ◦C humidity_3 DHT11 Float %
temperature_4 DHT11 Float ◦C humidity_4 DHT11 Float %

electricity ACS712 Float A date DS1307 DateTime yy:mm:dd
hh:mm:ss

3.4.2. Dataset Description

This research uses the sensor data stored in the database as the dataset. Based on
the variable data in the database, this dataset consists of 10 attributes corresponding to
the sensor data. The attributes of this dataset are T_1, T_2, T_3, T_4, Electricity, RH_1,
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RH_2, RH_3, RH_4, and date. The attributes T_1, T_2, T_3, T_4 are obtained from the
temperature variables (temperature_1, temperature_2, temperature_3, temperature_4),
and RH_1, RH_2, RH_3, RH_4 are obtained from the humidity variables (humidity_1,
humidity_2, humidity_3, humidity_4). Additionally, the electricity attribute is obtained
from the electricity variable. Detailed information about the dataset attributes is shown in
Table 4.

r =
n ∑n

i=1 xi yi −∑n
i=1 xi ∑n

i=1 yi√
n ∑n

i=1 x2
i − (∑n

i=1 xi)
2
√

n ∑n
i=1 y2

i − (∑n
i=1 yi)

2
(1)

Table 4. Dataset attribute.

Variable Attribute Unit Descriptions Variable Attribute Unit Descriptions

temperature_1 T_1 ◦C Temperature on the
right rear side humidity_1 RH_1 % Humidity on the

right rear side

temperature_2 T_2 ◦C Temperature on the
right front side humidity_2 RH_2 % Humidity on the

right front side

temperature_3 T_3 ◦C Temperature on the
left front side humidity_3 RH_3 % Humidity on the left

front side

temperature_4 T_4 ◦C Temperature on the
left rear side humidity_4 RH_4 % Humidity on the left

rear side

electricity Electricity A Electrical energy usage date Date yy:mm:dd
hh:mm:ss Date and time

Next, after obtaining the dataset, an analysis is conducted to determine the correlation
coefficient (r) between attributes using Equation (1) [33]. Data correlation analysis is essen-
tial to understand the relationship between the target attribute, in this case, the electricity
attribute, and other attributes [34]. Knowing the correlation coefficient values between
the target and other attributes makes model development or training easier. Attributes
positively correlate if the correlation value approaches 1 or 0 < r < 1. Conversely, attributes
have a negative correlation if the correlation value falls within the range −1 < r < 0, and if
the correlation value approaches 0, it indicates no correlation between the attributes.

3.5. Software Design

The software design is illustrated in Figure 5. The software architecture design process
involves several components: the database, gateway service, an application programming
interface (API), and web application. MySQL version 8.0.30 is utilized as the database to
store sensor data, falling under the category of relational databases [35]. Clients requesting
data from the database must go through the gateway service system. Therefore, the gateway
service is responsible for interacting with clients and managing all client data requests via
the API [2]. The generated data will be in JavaScript Object Notation (JSON) format to
facilitate communication with the web. The JSON format is favored for its lightweight and
structured nature [36].
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Furthermore, the web application design is implemented with a responsive interface,
meaning it can be accessed on various screen types. The web interface also includes charts
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and tables to visually represent data from the database. The development of this web
application involves several programming languages, including CSS version 3, JavaScript
version ES13, PHP version 7.2.27, and Python version 3.10.6 [37]. The software program-
ming process is illustrated in Algorithm 3.

Algorithm 3: Web application
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3.6. Model Design
3.6.1. Preprocessing

Figure 6 depicts the dataset preprocessing process performed in this study. Dataset
preprocessing comprises a series of steps on raw data to ensure their quality and suitability
before they can be used for analysis or modeling. In this research, the dataset includes
temperature, humidity, and electric current data, with attributes as shown in Table 4.
Subsequently, this dataset is processed by calculating the average values of temperature
and humidity attributes over time (T). Meanwhile, the electric current attribute (I) is
calculated to obtain its energy value (W) by multiplying voltage (V) with electric current
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and time, as indicated in Equation (2) [38]. As a result, a new attribute called energy is
added to the dataset, rendering the electric current attribute obsolete. Unlike temperature
and humidity attributes with averaged values, the energy attribute is summed according
to periods (T).

W = V × I × T (2)
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After obtaining the new dataset, the next step is to scale the training and testing
data. The fitting process is carried out in the training data by applying the MinMaxScaler
method [39]. This method helps to transform the data range to distribute it on a scale
between 0 and 1 [40]. The use of MinMaxScaler on the training data is intended to balance
the influence of each variable on the model. Additionally, the testing data are scaled to
adapt the testing data to the same transformation as the training data, and this is performed
to maintain a balance between the training and testing data.

3.6.2. Long Short-Term Memory (LSTM)

LSTM [41] is used in this research to address short-term and long-term dependency
issues in sequential data. As a recurrent neural network (RNN) type, the LSTM workflow
uses gates and memory cells to retain information over extended periods. There are three
types of gates in LSTM: the input gate, the forget gate, and the output gate. In the context
of this research, the LSTM method is employed to create a model based on the dataset
obtained from sensor data.

The modeling process to recognize data patterns begins by determining the appro-
priate number of layers, neurons, and activation functions. The model’s performance is
evaluated using test data to measure its effectiveness. The mathematical calculations depict
the operations within LSTM that enable it to recognize patterns in sequential data and
maintain and manipulate information over extended periods through Equations (3)–(10).
The architectural design of the LSTM is illustrated in Figure 7 [33].

Ft = σ
(
([Ht−1, Xt] . W f ) + b f

)
(3)
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It = σ(([Ht−1, Xt] . Wi) + bi) (4)

C̃t = tanh(([Ht−1, Xt] . Wc) + bc) (5)

Ct = (Ft . Ct−1) + (It . C̃t

)
(6)

Ot = σ((Wo . [Ht−1, Xt]) + bo) (7)

Ht = Ot . tanh(Ct) (8)

σ(x) =
1

1 + e−x (9)

tanh(x) =
ex − e−x

ex + e−x (10)
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Based on the structure and equations, LSTM explains that the input values of weights
are represented by W f , Wi, Wc, and Wo. The variable t indicates the current time, while
t− 1 represents the previous time. Furthermore, b f , bi, bc, and bo are biases. The symbol
X refers to the input, H to the output, and C to the cell state. The notation σ describes the
sigmoid function, producing inputs between 0 and 1. A value of 0 indicates that no values
are allowed to pass to the next stage, while a value of 1 signifies that the output can fully
enter the next stage. Additionally, the hyperbolic tangent function (tan h) is used to address
gradient loss during the training process.

3.6.3. Convolutional Neural Network (CNN)

The one-dimensional convolutional neural network (1D-CNN) [42,43] is an artificial
neural network architecture used for processing one-dimensional data, such as time-series
data. This research applied a 1D-CNN architecture consisting of several key layers, as
shown in Figure 8. These layers consist of an input layer, which functions to receive input
data consisting of nine fields, namely T_1, H_1, T-2, T_3, H_3, T_4, H_4, and electricity.
Five timesteps (lookback) are used in the input to predict future energy usage. Next,
the convolutional layer is the main layer used to extract features from the data. In this
study, we set several values for neurons in each of Convolutional Layer 1 and 2 and
use ReLU activation. This is followed by the flattening layer process, which is used to
transform the data into a one-dimensional vector. Finally, the dense layer process with
10 neurons is responsible for processing data representations and producing the output of
the modeling process. In Table 5, information about the parameters or properties of each
layer is displayed. Mathematically, the 1D-CNN method can be expressed in Equation (11).
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In Equation (11), the input vector x with length n is convolved with the filter vector ω with
length l, resulting in the one-dimensional output layer c [44,45].

c(n) = f (
l

∑
i=−l

ω(i)∑ x(n− i) + b) (11)
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Table 5. CNN properties of the proposed model.

Layer Properties

1st Convolutional filter = 55, kernel size = 3, activation = ReLU
2nd Convolutional filter = 55, kernel size = 2, activation = ReLU

Flattening -
Dense unit = 10

3.6.4. CNN-LSTM

Figure 9 shows the architecture of the method used in creating a predictive model
for energy consumption by combining two techniques: 1D-CNN and LSTM [46–48]. The
modeling process consists of three main stages: input, processing, and output. In the input
stage, the process begins by using the CNN method, which consists of several conventional
layers with 50 neurons each. The input data consist of the fields: T_1, H_1, T-2, T_3, H_3,
T_4, H_4, and electricity. The CNN is used to extract features from the input data. Next,
the results from the CNN are used as input for the LSTM method, which consists of two
layers with 50 neurons each. LSTM is used to understand the sequential patterns of the
data in the future period. Each layer uses the ReLU activation function. Furthermore,
before generating the output, the flattening process is performed, followed by the dense
layer stage with 10 neurons. This dense layer is responsible for processing the previously
extracted data representations and generating energy usage predictions. Furthermore,
during the model training process, optimization is performed using the Adam algorithm.
A summary of the properties of each layer can be seen in Table 6.
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Table 6. CNN-LSTM properties of the proposed model.

Layer Properties

1st Convolutional filter = 50, kernel size = 3, activation = ReLU
2nd Convolutional filter = 50, kernel size = 2, activation = ReLU

1st LSTM unit = 50, activation = ReLU
2nd LSTM unit = 50, activation = ReLU
Flattening -

Dense unit = 10

3.6.5. Activation Function

Activation functions transform inputs into outputs that are then passed to the next
layer of neurons. One of the activation functions in deep learning is the rectified linear unit
(ReLU) [49]. The working process of the ReLU activation is as follows: if the input value
is positive (α > 0), then the output value is equal to the input value, which is expressed
as f (α) = α. Conversely, if the input value is negative (α ≤ 0), the output value is always
0, expressed as f (α) = 0. ReLU activation is highly computationally efficient and does not
suffer from the vanishing gradient problem. In general, the equation for ReLU activation is
as shown in Equation (12) [50]:

f (α) = max(0, α) (12)

3.6.6. Evaluation Performance Model

The evaluation process is carried out to determine the extent to which the model
matches the data used and how well the model produces predictions. This research used
four evaluation techniques for the model evaluation process, each with its function. The
methods used are the root mean squared error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), and mean squared error (MSE) [42].

The RMSE technique, as shown in Equation (13), measures the error between predicted
and actual values. Meanwhile, MAPE, as shown in Equation (14), is used to calculate
prediction errors as a percentage. As Equation (15) indicates, MAE measures the error
between predicted and actual values, considering tolerance for outliers. Additionally, MSE
is used to measure the difference between predicted values and actual values. The MSE
equation is presented in Equation (16) [51,52].
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In this research, the symbols in the evaluation equation can be explained as follows:

RMSE =

√
∑n

i=1(yi − ỹi)
2

n
(13)

MAPE =
1
n

n

∑
i=1

|yi − ỹi|
yi

× 100% (14)

MAE =
∑n

i=1|yi − ỹi|
n

(15)

MSE =
∑n

i=1|y(i)− ỹi |2

n
(16)

n = Number of data points;
yi = Actual values;
ỹi = Predicted values;
Σ = Summation of all data.

3.6.7. Data Visualization

Data visualization is transforming data into visual information or other graphical
forms. This research transforms the temperature data inside the incubator into visualiza-
tions to understand temperature patterns and distributions, making the information more
easily understandable [53]. During this process, data from four temperature sensors on
each side of the incubator are visualized in three dimensions (3D) with coordinates (x, y,
z). The creation of 3D graphs is aided by the Matplotlib library, one of the libraries in the
Python programming language. The type of visualization used in this research is surface
visualization, which helps to create a three-dimensional representation corresponding to
the temperature data. Furthermore, adjustments are made to set the color scale, axis labels,
and titles in the visualization graph.

3.7. Output Design

In the research output design shown in Figure 10, there are several types of
outputs, including:

• A web application for real-time monitoring and control: the first output is a web
application designed for monitoring real-time data from sensors inside the incubator,
such as temperature, humidity, electrical current, and heater status. This application
provides real-time information to medical staff or the patient’s family.

• Visualization of the temperature data distribution inside the incubator: the second out-
put is the visualization of the temperature data distribution within the incubator. This
visualization provides insights into temperature fluctuations in different areas within
the incubator, enabling the identification of areas that may require further attention.

• A prototype of an electronic hardware incubator: the third output is a prototype
product of an incubator equipped with several hardware modules such as sensors,
actuators, and microcontrollers. This prototype is a tangible representation of the
designed incubator by integrating various hardware components and technologies.

• Energy consumption prediction models: the final output is an energy consumption
prediction model. This model can assist in optimizing resource usage by making
predictions for more efficient energy consumption. The research’s outcomes are
expected to improve neonatal management and care.
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4. Results and Discussion

Figure 11 presents an overview of the hardware implementation used in the incubator
system. Figure 11a displays the main incubator box, which includes temperature and
humidity sensors on each side. Subsequently, in Figure 11b, the implementation of the
heater device is shown. This device generates heat and distributes it throughout the
incubator using a blower fan. Finally, Figure 11c illustrates the hardware implementation
for the electronic components that control the incubator. These electronic components
include a microcontroller, current sensor, WiFi module, and power supply.
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Figure 12 shows the results of the responsive web application implementation, making
it accessible on various screen sizes, including mobile phones. In the application, the main
page is a dashboard, as seen in Figure 12a. This dashboard page displays data from the
incubator in real-time as graphs. Figure 12b also indicates the stored data from the database
in a tabular format. This page provides various features for users, including the ability to
sort data, perform searches, and download data in Excel, CSV, PDF, and JSON formats.
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Figure 12. Web application: (a) dashboard page; (b) data record page.

Based on the data stored in the database, which have been converted into a dataset and
displayed in Figure 13, there are several primary attributes. These attributes include T_1 (as
shown in Figure 13a), T_2 (Figure 13b), T_3 (Figure 13c), T_4 (Figure 13d), H_1 (Figure 13e),
H_2 (Figure 13f), H_3 (Figure 13g), H_4 (Figure 13h), and Ampere (Figure 13i). New data
based on the Ampere data were also generated to measure energy consumption. The
energy (W) calculation process follows Equation (2). The results of these energy data are
displayed in Figure 13j. There is a significant drop in temperature in the data T_1, T_2, T_3,
and T_4 (Figure 13a–d). This was caused by the incubator’s box being opened, allowing
hot air to escape. The box was intentionally opened to observe the data pattern, and once
the incubator box was closed again, the temperature returned to normal. Meanwhile, there
is an increase in humidity in the data H_1, H_2, H_3, and H_4 (Figure 13e–h).

Table 7 presents statistical information from the dataset. The statistical results are
categorized into variables: count, mean, std, min, and max. The total number of data
entries for each attribute is 65.535. The average temperature value in the dataset ranges
from 31 ◦C to 39 ◦C. The average energy consumption is 161.47 Joule, with a minimum
value of 99 Joule and a maximum of 202.40 Joule.

Furthermore, Table 8 displays the correlation coefficient values from the dataset. No-
ticeably, the correlation coefficient values for the Joule and Ampere attributes are identical.
This is because the Joule value is calculated based on the Ampere attribute. Some attributes
show negative values in the correlation coefficient to the Joule attribute. The correlation
between the T_1 and T_3 data attributes is 0.69, indicating a strong relationship. Similarly,
the correlation between T_2 and T_3 is 0.35, suggesting that the temperature flows from T_1
and T_2 to T_3, as observed in Figure 14. Furthermore, the humidity data attributes H_1
and H_2 and H_3 and H_4 have correlations exceeding 0.79. Additionally, the H_4 attribute
exhibits a significant correlation with the target attribute Joule, with a value of 0.91.



Appl. Sci. 2023, 13, 12953 19 of 27

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 27 
 

  
(a) (b) 

Figure 12. Web application: (a) dashboard page; (b) data record page. 

Based on the data stored in the database, which have been converted into a dataset 
and displayed in Figure 13, there are several primary attributes. These attributes include 
T_1 (as shown in Figure 13a), T_2 (Figure 13b), T_3 (Figure 13c), T_4 (Figure 13d), H_1 
(Figure 13e), H_2 (Figure 13f), H_3 (Figure 13g), H_4 (Figure 13h), and Ampere (Figure 13i). 
New data based on the Ampere data were also generated to measure energy consumption. 
The energy (W) calculation process follows Equation (2). The results of these energy data 
are displayed in Figure 13j. There is a significant drop in temperature in the data T_1, T_2, 
T_3, and T_4 (Figure 13a–d). This was caused by the incubator’s box being opened, allow-
ing hot air to escape. The box was intentionally opened to observe the data pattern, and 
once the incubator box was closed again, the temperature returned to normal. Meanwhile, 
there is an increase in humidity in the data H_1, H_2, H_3, and H_4 (Figure 13e–h). 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 27 
 

  
(i) (j) 

Figure 13. Data sensor: (a) Temperature 1 (T_1); (b) Temperature 2 (T_2); (c) Temperature 3 (T_3; (d) 
Temperature 4 (T_4); (e) Humidity 1 (H_1); (f) Humidity 2 (H_2); (g) Humidity 3 (H_3); (h) Humid-
ity 4 (H_4); (i) electric current (Ampere); and (j) energy (Joule). 

Table 7 presents statistical information from the dataset. The statistical results are 
categorized into variables: count, mean, std, min, and max. The total number of data en-
tries for each attribute is 65.535. The average temperature value in the dataset ranges from 
31 °C to 39 °C. The average energy consumption is 161,47 Joule, with a minimum value of 
99 Joule and a maximum of 202,40 Joule. 

Table 7. Statistical information of the dataset. 

Variable T_1 T_2 T_3 T_4 H_1 H_2 H_3 H_4 Ampere Joule 
count 65,535 65,535 65,535 65,535 65,535 65,535 65,535 65,535 65,535 65,535 
mean 34.22 39.02 31.76 31.77 34.03 34.22 43.76 36.45 0.73 161.47 

std 0.48 1.14 0.27 1.02 2.62 1.51 2.47 2.60 0.09 21.63 
min 28.90 31.10 27.90 27.10 29.00 32.40 38.80 31.00 0.45 99.00 
max 35.20 45.30 32.60 33.80 46.00 46.40 51.40 45.00 0.92 202.40 

Furthermore, Table 8 displays the correlation coefficient values from the dataset. No-
ticeably, the correlation coefficient values for the Joule and Ampere attributes are identi-
cal. This is because the Joule value is calculated based on the Ampere attribute. Some at-
tributes show negative values in the correlation coefficient to the Joule attribute. The cor-
relation between the T_1 and T_3 data attributes is 0.69, indicating a strong relationship. 
Similarly, the correlation between T_2 and T_3 is 0.35, suggesting that the temperature 
flows from T_1 and T_2 to T_3, as observed in Figure 14. Furthermore, the humidity data 
attributes H_1 and H_2 and H_3 and H_4 have correlations exceeding 0.79. Additionally, 
the H_4 attribute exhibits a significant correlation with the target attribute Joule, with a 
value of 0.91. 

 
Figure 14. Temperature distribution. 

 

Figure 13. Data sensor: (a) Temperature 1 (T_1); (b) Temperature 2 (T_2); (c) Temperature 3
(T_3; (d) Temperature 4 (T_4); (e) Humidity 1 (H_1); (f) Humidity 2 (H_2); (g) Humidity 3 (H_3);
(h) Humidity 4 (H_4); (i) electric current (Ampere); and (j) energy (Joule).

Table 7. Statistical information of the dataset.

Variable T_1 T_2 T_3 T_4 H_1 H_2 H_3 H_4 Ampere Joule

count 65,535 65,535 65,535 65,535 65,535 65,535 65,535 65,535 65,535 65,535
mean 34.22 39.02 31.76 31.77 34.03 34.22 43.76 36.45 0.73 161.47

std 0.48 1.14 0.27 1.02 2.62 1.51 2.47 2.60 0.09 21.63
min 28.90 31.10 27.90 27.10 29.00 32.40 38.80 31.00 0.45 99.00
max 35.20 45.30 32.60 33.80 46.00 46.40 51.40 45.00 0.92 202.40

Figure 14 depicts the temperature distribution pattern in the incubator. From the
image, it is evident that the section of the incubator occupied by Sensor 1 and Sensor 2 has
a higher temperature than the section occupied by Sensor 3 and Sensor 4. This temperature
difference can be attributed to two primary factors. First, the proximity of Sensor 1 and
Sensor 2 to the heat source results in higher temperatures in their vicinity due to the direct
influence of the heat source. The second factor is the blower fan’s lack of even hot air
distribution, so there are hot areas in the incubator.
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Table 8. Correlation coefficient values of attributes in the dataset.

T_1 H_1 T_2 H_2 T_3 H_3 T_4 H_4 Ampere Joule

T_1 1 −0.43 0.1 −0.31 0.69 −0.27 −0.034 −0.22 −0.2 −0.2
H_1 −0.43 1 0.11 0.79 −0.22 0.94 −0.008 0.87 −0.003 −0.003
T_2 0.1 0.11 1 −0.37 0.35 0.015 −0.58 0.36 −0.63 −0.63
H_2 −0.31 0.79 −0.73 1 −0.22 0.8 0.3 0.57 0.29 0.29
T_3 0.69 −0.22 0.35 −0.22 1 −0.21 0.13 −0.16 −0.11 −0.11
H_3 −0.27 0.94 0.015 0.8 −0.21 1 0.018 0.86 0.022 0.022
T_4 −0.034 −0.008 −0.58 0.3 0.13 0.018 1 −0.43 0.91 0.91
H_4 −0.22 0.87 0.36 0.57 −0.16 0.86 −0.43 1 −0.42 −0.42

Ampere −0.2 −0.003 −0.63 0.29 −0.11 0.022 0.91 −0.42 1 1
Joule −0.2 −0.003 −0.63 0.29 −0.11 0.022 0.91 −0.42 1 1
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Next, the dataset undergoes preprocessing in training and testing the model for
predicting electricity usage. This involves calculating the total energy consumption (Joules)
and computing the average values for the temperature attributes (T_1, T_2, T_3, T_4)
and humidity (H_1, H_2, H_3, H_4) for each minute (60 s). As a result, a new dataset is
obtained with energy values ranging from 7.000 to 11.000 Joules, as depicted in Figure 15.
Subsequently, the data are preprocessed to scale for the training dataset.
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In this research, the testing of the model is divided into three parts. First, the initial
model is created using the LSTM method. Second, the model is created using the CNN
method. Third, a model is developed by combining the CNN and LSTM methods. The
best RMSE and MAE results for the LSTM method are 42.650 and 33.575, respectively. The
LSTM layer consists of 35 neurons, the dense layer contains 10 neurons, and the lookback
value is set to 5. The complete testing results are presented in Table 9. The comparison
between the predicted and actual values is shown in Figure 16a (with five neurons-1 and
five neurons-2) and Figure 16b (with thirty-five neurons-1 and thirty-five neurons-2).

Table 9. The result of LSTM testing.

Neurons
LSTM-1

Neurons
LSTM-2 Dense Lookbacks RMSE

(Joule) MAE (Joule) MSE (Joule) MAPE (%)

5 5 10 5 47.824 37.945 0.004 0.4
10 10 10 5 53.587 42.816 0.004 0.4
15 15 10 5 60.238 51.231 0.005 0.5
20 20 10 5 95.778 87.149 0.008 0.8
25 25 10 5 83.127 75.284 0.007 0.7
30 30 10 5 64.154 52.420 0.005 0.5
35 35 10 5 42.650 33.574 0.003 0.3
40 40 10 5 72.566 57.842 0.006 0.6
45 45 10 5 64.616 54.205 0.005 0.5
50 50 10 5 60.420 49.234 0.005 0.5
55 55 10 5 67.376 55.351 0.005 0.5
60 60 10 5 53.054 42.452 0.004 0.4
65 65 10 5 47.793 38.947 0.004 0.4
70 70 10 5 68.445 54.603 0.005 0.5
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In the second test using the CNN method, the best results for RMSE and MAE were
37.675 and 30.082, respectively. The optimal model for this test was achieved using
55 neurons-1 and 55 neurons-2. The comprehensive results can be found in Table 10,
and the comparison between the predicted and actual values is illustrated in Figure 17a
(with 30 neurons-1 and 30 neurons-2) and Figure 17b (with 55 neurons-1 and 55 neurons-2).

In the third test using the combination of CNN and LSTM, the best results were
achieved with RMSE values of 32.436 and MAE values of 25.382. Furthermore, compared
to the previous methods’ results, the combination of CNN and LSTM outperformed them,
indicating an improvement in the model’s performance using this combination. Detailed
results can be found in Table 11, and the comparison between the predicted and actual
values using the CNN-LSTM method is illustrated in Figure 18a,b.
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Table 10. The result of CNN testing.

Neurons
CNN-1

Neurons
CNN-2 Dense Lookbacks RMSE

(Joule) MAE (Joule) MSE (Joule) MAPE (%)

5 5 10 5 85.404 67.058 0.007 0.7
10 10 10 5 41.459 33.377 0.003 0.3
15 15 10 5 38.380 30.588 0.003 0.3
20 20 10 5 45.492 36.244 0.004 0.4
25 25 10 5 41.660 33.074 0.003 0.3
30 30 10 5 37.873 30.209 0.003 0.3
35 35 10 5 47.039 37.867 0.004 0.4
40 40 10 5 59.837 48.592 0.005 0.5
45 45 10 5 61.525 51.413 0.005 0.5
50 50 10 5 45.261 35.964 0.003 0.3
55 55 10 5 37.675 30.082 0.003 0.3
60 60 10 5 70.768 62.246 0.006 0.6
65 65 10 5 46.593 37.493 0.004 0.4
70 70 10 5 50.010 40.676 0.004 0.4
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Table 11. The result of CNN–LSTM testing.

Neurons
CNN-1

Neurons
CNN-2

Neurons
LSTM-1

Neurons
LSTM-2 Lookbacks RMSE

(Joule)
MAE

(Joule)
MSE

(Joule) MAPE (%)

5 5 5 5 5 53.678 43.037 0.004 0.4
10 10 10 10 5 38.052 30.266 0.003 0.3
15 15 15 15 5 53.819 43.775 0.004 0.4
20 20 20 20 5 56.922 46.486 0.005 0.5
25 25 25 25 5 55.123 43.133 0.004 0.4
30 30 30 30 5 51.156 40.531 0.004 0.4
35 35 35 35 5 52.600 44.532 0.004 0.4
40 40 40 40 5 43.773 35.523 0.003 0.3
45 45 45 45 5 64.274 51.416 0.005 0.5
50 50 50 50 5 32.436 25.382 0.002 0.2
55 55 55 55 5 44.562 36.165 0.004 0.4
60 60 60 60 5 40.758 32.583 0.003 0.3
65 65 65 65 5 46.439 37.802 0.004 0.4
70 70 70 70 5 115.992 96.323 0.009 0.9

In Figure 19, a graph or visualization of the loss values computed during the model
training process is presented. These results measure how much the predicted values differ
from the actual values. In Figure 19a, the loss results for Model 1 are shown, utilizing
the CNN-LSTM method, where each CNN and LSTM layer has 10 neurons, resulting
in an RMSE of 38.052. Meanwhile, in Figure 19b, the loss results for Model 2 using the
CNN-LSTM method are displayed, with each CNN and LSTM layer having 50 neurons
and an RMSE of 32.436, as indicated in Table 11. Each model in the training process
utilized 240 epochs and the observed spikes in the early stages of the training loss. This
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phenomenon can be attributed to the occurrence of vanishing gradients, particularly when
the ReLU activation function is employed during the training process.
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In this section, we also compare the results of the energy consumption prediction
model with similar methods. We have compared the results of several methods, namely
elastic net (ELNET) regression, support vector regression (SVR), gradient boosting regres-
sion (GBR), linear regression (LR), ridge regression (RR), and kernel ridge regression (KRR).
Based on the test results, the model evaluations for each method are as follows: ELNET
has an RMSE of 274.217 Joule, SVR has an RMSE of 82.572 Joule, GBR has an RMSE of
51.213 Joule, LR has an RMSE of 43.438 Joule, RR has an RMSE of 41.258 Joule, and KRR
has an RMSE of 38.758 Joule. These comparison results are also presented in Table 12,
with the last row mentioning the results of the model with the combination of CNN-LSTM.
Additionally, for the comparison between the actual and predicted values for each method,
refer to Figure 20a for ELNET, Figure 20b for SVR, Figure 20c for GBR, Figure 20d for LR,
Figure 20e for RR, and Figure 20f for KRR.

Table 12. The result of comparison with other methods.

Method RMSE
(Joule)

MAE
(Joule)

MSE
(Joule)

MAPE
(%)

Elastic Net Regression 274.217 272.205 0.026 2.6

Support Vector Regression 82.572 69.823 0.007 0.7

Gradient Boosting Regression 51.213 41.882 0.004 0.4

Linear Regression 43.438 34.700 0.003 0.3

Ridge Regression 41.258 32.404 0.003 0.3

Kernel Ridge Regression 38.758 29.841 0.003 0.3

CNN-LSTM 32.436 25.382 0.002 0.2
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5. Conclusions

In summary, this study has effectively devised a comprehensive framework for the real-
time control of energy and monitoring of incubator conditions in neonatal care facilities.
The system effectively integrates various hardware components and a highly efficient
database management system by utilizing the Internet of Things (IoT) architecture in
combination with the MQTT communication protocol. A rigorous and validated predictive
energy consumption model was developed, integrating convolutional neural networks
(CNN) and long short-term memory (LSTM) techniques. The temperature distribution
within the incubator exhibits variation throughout its sides, as indicated by the results
of the tests. The measurements obtained from the incubator’s sensors can be recorded
within a database system. These stored data may be accessible in real-time using a web
application, facilitating the monitoring and control functions. During the experimental
phase, the long short-term memory (LSTM) approach produced root mean square error
(RMSE) and mean absolute error (MAE) values of 42.650 and 33.575, respectively.

On the other hand, the convolutional neural network (CNN) technique gave RMSE
and MAE values of 37.675 and 30.082, respectively. The integration of both convolutional
neural network (CNN) and long short-term memory (LSTM) techniques resulted in notable
enhancements in the root mean square error (RMSE) and mean absolute error (MAE)
values, which reached 32.436 and 25.382, respectively. This exemplifies the integrated
methodology’s efficacy in augmenting the model’s prediction precision. The results indicate
that the model successfully enhanced predicted accuracy to a significant degree. Moreover,
the technology facilitates the visualization of temperature distribution within the incubator,
augmenting the standard of care provided to infants. This study significantly contributes
to the progression of neonatal incubator technology, facilitating the development of more
efficient and data-informed newborn care solutions in healthcare settings.
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