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Abstract: In today’s automation control systems, the PID controller, as a core technology, is widely
used to maintain the system output near the set value. However, in some complex control envi-
ronments, such as the application of ball screw-driven rotating motors, traditional PID parameter
adjustment methods may not meet the requirements of high precision, high performance, and fast
response time of the system, making it difficult to ensure the stability and production efficiency of
the mechanical system. Therefore, this paper proposes a cuckoo search optimisation coupled with
an improved grey wolf optimisation (CSO_IGWO) algorithm to tune PID controller parameters,
aiming at resolving the problems of the traditional grey wolf optimisation (GWO) algorithm, such as
slow optimisation speed, weak exploitation ability, and ease of falling into a locally optimal solution.
First, the tent chaotic mapping method is used to initialise the population instead of using random
initialization to enrich the diversity of individuals in the population. Second, the value of the control
parameter is adjusted by the nonlinear decline method to balance the exploration and development
capacity of the population. Finally, inspired by the cuckoo search optimisation (CSO) algorithm, the
Levy flight strategy is introduced to update the position equation so that grey wolf individuals are
enabled to make a big jump to expand the search area and not easily fall into local optimisation.
To verify the effectiveness of the algorithm, this study first verifies the superiority of the improved
algorithm with eight benchmark test functions. Then, comparing this method with the other two
improved grey wolf algorithms, it can be seen that this method increases the average and standard
deviation by an order of magnitude and effectively improves the global optimal search ability and
convergence speed. Finally, in the experimental section, three parameter tuning methods were
compared from four aspects: overshoot, steady-state time, rise time, and steady-state error, using
the ball screw motor as the control object. In terms of overall dynamic performance, the method
proposed in this article is superior to the other three parameter tuning methods.

Keywords: grey wolf optimizer; swarm intelligence; lévy flight; PID controller; tuning methods

1. Introduction

The PID control algorithm has a simple principle, flexible application, and a wide
application range. This algorithm can achieve a certain control effect without knowledge of
the specific model of the controlled system. However, the key to the effectiveness of the
PID controller is the accuracy of the parameters; hence, the tuning of the PID controller
parameters is particularly important. During nearly 100 years of research on PID controllers,
many methods for tuning and optimising PID control parameters have been proposed [1–3],
including empirical trial and error, Ziegle–Nichols, and theoretical design methods, which
are relatively old traditional parameter tuning methods; they have the disadvantages of
heavy workload and strong blindness [4]. However, in an actual industrial system, the
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controlled system generally has the characteristics of nonlinearity, time variation, and time
delay. When there are many performance objectives for the controlled object, coordinating
each performance objective with the turning parameters is difficult, and the traditional
and old parameter optimisation methods are no longer suitable for the requirements of
current control systems. Therefore, intelligent optimisation algorithms have emerged as
new parameter optimisation methods for a new generation of controllers.

For example, the genetic algorithm, a commonly used optimisation algorithm, has
been applied to the optimisation of PID control parameters. In [5], the hydraulic servo
system uses a genetic algorithm to search for the optimal PID controller gain to achieve
accurate control of the displacement of the valve-controlled hydraulic cylinder in the
system. Xiao et al. [6] proposed an improved genetic algorithm and verified it using eight
test functions. The results showed that the probability of convergence to the optimal value
was improved, and it was verified on a beer-filling machine system. In addition, the particle
swarm optimisation (PSO) algorithm, an old optimisation algorithm, was proposed by
Kennedy and Eberhart in 1995 and is also widely used for parameter tuning in its algorithm
application. Javier et al. [7] used a multi-objective particle swarm optimisation algorithm to
tune PID parameters and proposed an evaluation system in the virtual model that focused
on the evaluation of the establishment time, overshoot, steady-state error, and control
performance. Finally, it proves the superiority of the method in UAV experiments. Based
on predecessors, Ye et al. [8] proposed an improved PSO to tune the PID parameters of
the nonlinear hydraulic system, thereby improving the search efficiency and exploration
ability. However, the above controller parameter optimisation methods have problems such
as premature convergence, slow convergence speed, and cumbersome parameter setting.
In 2014, Mirjalili et al. [9] proposed the grey wolf optimisation (GWO) algorithm, which
mainly simulates the social class and hunting process of grey wolves. Compared with other
intelligent optimisation algorithms, GWO has the advantages of a simple structure, few
setting parameters, easy realisation, etc. However, similar to other algorithms based on
random populations, such as the genetic algorithm [10] and PSO [11], GWO also faces some
challenging problems with the increase in the search space dimension. To improve the
performance of the GWO algorithm, many studies have proposed ideas for improvement.
For example, Rodrigues et al. [12] and others introduced a new operator to the traditional
GWO algorithm for hierarchical transformations. The biggest change in their approach
from the original GWO is based on the use of fuzzy logic. Kumar et al. [13] proposed two
new concepts of prey weight and astrophysics to improve the position update equation of
the GWO algorithm. Haidari et al. [14] combined the Levy flight strategy with a greedy
selection strategy and hunting equation and carried out experimental verification on
29 test platforms.

With rapid technological advancements, there has been a pressing demand to fine-
tune or optimise processes, software, models, or structures to achieve the highest levels
of accuracy and efficiency. Compared to experimentation or simulation, optimization
algorithms are preferred due to their broader problem solving capabilities, reducing the
need for human intervention. In recent years, integrating natural phenomena into algorithm
design has significantly enhanced the efficiency of optimizing complex, multidimensional,
non-continuous, non-differentiable, and noisy problem search spaces [15–17]. The function
of a PID controller is to determine the system’s steady-state error based on the actual
setpoint and output values. By adjusting the values of the proportional, integral, and
derivative parameters, the PID controller’s control effect on the controlled object can be
modified. Therefore, in many cases, adjusting PID controller parameters is indispensable
in control systems as it constitutes a critical method for achieving control objectives. When
dealing with complex control objects exhibiting nonlinear and time-delay characteristics,
manual computation is laborious, time-consuming, and prone to parameter errors. Even
after fine-tuning the parameter control system, achieving the desired control effect is
nearly impossible. For such complex control objects, many scholars have applied swarm
intelligence algorithms to optimise PID parameters.
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Zhao Z.Q. et al. [18] proposed a new evolutionary algorithm based on a quasi-affine
transformation, significantly enhancing its global search capability. This quadruplet algo-
rithm was demonstrated to exhibit superior parameter tuning capabilities by comparing
simulation results with PID parameter tuning methods based on particle swarm optimisa-
tion and the standard quadruplet algorithm. However, the enhancement in the algorithm’s
global search capability is established upon reducing the initial population size. This
implies that a smaller population could result in incomplete exploration, thereby dimin-
ishing the accuracy of parameter tuning. Soleimani Amiri M. et al. [19] and colleagues
applied swarm intelligence optimisation algorithms to trajectory control in a complex
multi-joint structure. They used the gains initialised by the Ziegler–Nichols method in a
PID controller as inputs for the Adaptive Particle Swarm Optimisation (APSO) algorithm
to minimise trajectory errors in the multi-joint structure. However, this method requires
multiple repetitions of the optimisation process when facing new trajectories. Caponetto
R [20] et al. extended the conventional integer-order PID controller to a non-integer order
PID controller, and the proposal of this new type of PID controller provides a more flexible
tuning scheme for subsequent parameter tuning strategies. Altintas G. et al. [21] proposed
two methods, the Genetic Algorithm (GA) and the Big Bang Big Crunch (BBBC) algorithm,
for parameter tuning of integer-order PID and fractional-order PID and applied them to
the magnetic suspension system. The results showed that the performance of the fractional
order controller based on BBBC was better than that of the integer order controller opti-
mised by GA. To enhance the dynamic performance and robustness of micro gas turbine
control systems, Yang R [22] et al. proposed a fractional-order PID controller algorithm
based on the optimally improved Particle Swarm Optimisation (PSO) and Cuckoo Search
(CS) algorithms. Compared to traditional optimisation methods, this approach exhibits
superior convergence speed and precision, aiming to improve the control of micro gas
turbines for better dynamic performance and robustness.

The problems that the above methods can deal with are relatively limited. Therefore,
this paper proposes a cuckoo search optimisation coupled with an improved grey wolf
optimisation (CSO_IGWO) algorithm, which mainly uses tent mapping to initialise the
population and increase the diversity of the population. A nonlinear control parameter
strategy is used to enhance the ability to balance the local and global search, and finally, the
idea of the Lévy flight strategy in the CSO algorithm is introduced to improve the location
update formula of grey wolf to avoid the premature stagnation of population optimisation.

To sum up, this paper designs a CSO_IGWO algorithm and takes the servo motor
system as the controlled object to conduct PID control parameter tuning research. The rest
of this paper is arranged as follows: Section 2 outlines the basic GWO algorithm; Section 3
proposes an improved GWO algorithm; and Section 4 presents the mathematical model of
the servo motor and conducts numerical data experiments and simulation analysis to prove
the effectiveness of the proposed method. Finally, the full text of this paper is summarised
in Section 5.

2. Traditional GWO Algorithm
2.1. Social Class of the Grey Wolf

The GWO algorithm is a typical swarm intelligence algorithm inspired by the leader-
ship level and hunting mechanism of grey wolves in nature. The hierarchical distribution
structure of the individuals in the traditional GWO algorithm is shown in Figure 1. The
entire grey wolf group is divided into four different grey wolf levels. The first social level
is the alpha (α) wolf, which is the leader of the group and is mainly responsible for making
decisions on activities such as predation, roosting, and rest time. The second level of social
hierarchy is the beta (β) wolf, whose role is to help the α wolf make decisions. After the α
wolf dies or becomes old, the β wolf will become the most suitable candidate to be the α
wolf. The third level in the social hierarchy is the delta (δ) wolf, which is subordinate to
the α and β wolves. The fourth level in the social hierarchy is the omega (ω) wolf, which
usually needs to obey wolves at other social levels and ranks lowest in this hierarchy.
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Figure 1. Hierarchy of the grey wolf group.

2.2. Mathematical Model of the Traditional GWO Algorithm

The core idea of the grey wolf algorithm is to consider α, β, and δ as the leading wolves;
they will lead the rest of the wolves to hunt. The hunting steps of the grey wolf group can
be divided into three parts:
1©. Look for prey;
2©. Surround prey;
3©. Attack prey.

Grey wolves gradually approach their prey and surround them when hunting. The
mathematical model of this behaviour is as follows [9]:

⇀
D =

∣∣∣∣→C ·→XP(t)−
→
X(t)

∣∣∣∣, (1)

→
X(t + 1) =

→
XP(t)−

⇀
A ·
→
D, (2)

where
⇀
A and

→
C are coefficient vectors,

⇀
XP is the position vector of the prey,

⇀
X is the position

vector of the grey wolf, and
→
D is the distance.

The vectors
⇀
A and

→
C are calculated as follows:

⇀
A = 2

→
a ·→r 1 −

→
a

⇀
C = 2 ·⇀r 2

, (3)

⇀
a (t) = 2− 2t

Max_iter
, (4)

where r1 and r2 are random vectors in [0, 1], the value of a decreases linearly from 2 to 0
during the iteration, t represents the current number of iterations, and Max_iter represents
the maximum number of iterations.

Grey wolves surround their prey during hunting. The mathematical model [9] can be
written as

⇀
X1 =

→
Xα −

⇀
A1 ·

(→
Dα

)
⇀
X2 =

→
Xβ −

⇀
A2 ·

(→
Dβ

)
⇀
X3 =

→
Xδ −

⇀
A3 ·

(→
Dδ

) , (5)

⇀
X(t + 1) =

⇀
X1(t) +

⇀
X2(t) +

⇀
X3(t)

3
, (6)

wherein
→
Dα,

→
Dβ, and

→
Dδ represent the distance between α, β, δ, and other individuals,

respectively,
→
Xα,

→
Xβ, and

→
Xδ represent the current position of α, β, and δ, respectively, and

→
X(t + 1) represent the position of the updated grey wolf.
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3. CSO_IGWO
3.1. Tent Chaotic Map Initial Population

In the classical GWO algorithm, the initial population is usually randomly generated,
which may lead to non-uniformity. The characteristics of the initial population affect the
quality of the optimisation results of subsequent algorithms. However, chaotic motion
has the opposite effect. It has the characteristics of high ergodicity, enabling the initial
population to have high diversity; the advantages of chaotic motion can make the algo-
rithm no longer limited to locally optimal solutions when solving function optimisation
problems and strengthen the global search ability of the population. Existing chaotic maps
include tent, logistic, and Henon maps. Different chaotic maps have different effects on
the optimisation ability of the algorithm. Liang [23] proved that tent maps can produce
more uniform ergodicity than other maps and further improve the optimisation speed of
the algorithm. Therefore, in this study, the tent map was used to initialise the population.

Tent mapping has a simple structure and uniform distribution and is convenient. Its
expression is as follows:

xn+1 =

{
xn
a , 0 ≤ xn ≤ a

(1−xn)
1−a , a < xn ≤ 1

, (7)

where a ∈ (0, 1). Repeated experiments have shown that the sequence generated during
the period when a = 0.499 was the most uniform. Therefore, the tent chaotic mapping
formula quoted in this study can be expressed as

xn+1 =

{
xn

0.499 , 0 ≤ xn ≤ 0.499
(1−xn)
0.499 , 0.499 < xn ≤ 1

, (8)

here the coefficient a = 0.499 is set, and tent mapping is iterated 5000 times. The distribution
of values in the [0, 1] interval range is shown in Figure 2a. Compared with the logistic
map in Figure 2b, the tent mapping distribution is more uniform and ergodic. The non-
uniform initial population distribution under unset conditions can limit the algorithm’s
search capabilities. In other words, the diversity of population distribution needs to be
set manually. For instance, when a highly uniform initial population is required, the
population should not be densely concentrated in local areas, which the logistic distribution
fails to achieve.

Compared to pseudo-random data generation, tent chaotic mapping offers a more
flexible setup for initial population parameters. Catering to the diverse requirements for
initial population diversity does not necessarily imply that a more uniformly distributed
population is always preferable. The optimal initial population varies based on the specific
object being optimised. Although generating initial populations using pseudo-random
numbers can achieve uniform distribution, it lacks diversity. The initialization of the initial
population using the tent chaotic mapping is built upon random numbers. By adjusting the
value of a, the distribution of the diverse population varies. As depicted in Figure 2c, setting
a = 0.109 results in a distinct ‘columnar’ correlated distribution within the population.
However, when a = 0.98, as depicted in Figure 2d, the distribution of the population
within a certain range becomes extremely sparse, while other areas maintain a uniform
distribution. Despite the differences in the initial population distributions, the frequency
distribution of this initial population remains uniform.
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3.2. Nonlinear Control Parameter Strategy

Generally, when searching for the global minimum, the optimisation algorithm can
be divided into two basic stages. First, in the early stage of optimisation, individuals
should be able to search the entire space to the extent possible to find more local minimum
values. Second, in the later stage of optimisation, individuals should be encouraged to use
the information they have collected to quickly converge to the global minimum. In the
GWO algorithm, the value of a affects the search methods of individuals. A larger control
parameter a is conducive to global exploration, while a smaller control parameter a is
conducive to local development. The parameter a is adjusted to balance global exploration
ability and local development ability.

However, in the traditional GWO algorithm, the value of the control parameter a is
linearly decreased from 2 to 0. Because the search process undertaken by the optimisation
algorithm when solving practical problems should be nonlinear and highly complex, the
strategy of linearly decreasing the parameter a in the traditional GWO algorithm cannot
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accurately reflect the actual search process. Based on the above considerations, the equation
for the control parameter a was modified as follows:

⇀
a (t) = a f inal +

(
a f inal − ainitial

)
×
(

Max_iter− t
Max_iter

)µ

, (9)

where t represents the current number of iterations, Max_iter is the total number of itera-
tions, µ is the nonlinear modulation index, ainitial and a f inal represents the initial and final
values of the control parameter a, respectively.

Figure 3 shows the values of the control parameter a under different values. Several
experiments were conducted to test the role of the nonlinear modulation index µ. The
results show that when the nonlinear modulation index is µ = 0.1, the GWO algorithm
exhibits better performance.
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3.3. CSO Algorithm Coupling for an Improved GWO Algorithm

It is well known that in swarm intelligent optimisation algorithms such as particle
swarm optimisation (PSO), ant colony optimisation (ACO), and artificial bee colony (ABC)
optimisation, the balance between exploration and development capabilities has always
been the object of research. It can be seen from the position update in Equations (5) and (6)
in the traditional GWO algorithm that the path of grey wolves to hunt their prey is de-
termined by the three optimal solutions, which means that ω individuals may not have
sufficiently explored the global value. In other words, the traditional GWO is more likely
to fall into the local optimal solution.

The core of the CSO_IGWO algorithm lies in the incorporation of the Lévy flight
strategy. Inspired by the utilisation of the Lévy flight strategy in the CSO algorithm, this
study leverages the characteristics of variable step size random walks in Lévy flights to
enhance the position updating equation of the GWO algorithm. The introduction of the
Lévy flight strategy enables individual grey wolves to undertake large leaps within their
local positions and probabilistically expand the search region. This critical step ensures
the GWO algorithm’s ability to break free from local optima. The Lévy distribution can be
expressed using a simple power-law equation [24–26]:

L(s, γ, v) =


√

γ
2π exp

[
− γ

2(s−v)

]
1

(s−v)
3
2

i f 0 < v < ∞

0 otherwise
, (10)

where s is the step size, v is the position or shift parameter, γ > 0 is the scale parameter,
and L(s) represents the distribution of s.
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The Lévy distribution can be expressed by a clear power law equation as:

L(s) ∼ |s|−1−β0 < β ≤ 2. (11)

The Mantegna strategy is also commonly used for simulations, and a normal distribu-
tion is used to solve the random step size. The method is as follows.

s =
u

|v|
1
β

, (12)

where u and v obey normal distribution.
To illustrate that the Lévy flight can achieve a high-frequency short step size and

intermittent long step size, Figure 4 shows the motion tracks of the Lévy flight 50, 100,
and 1000 times in two-dimensional space. The characteristics of the Lévy flight heavy-tail
distribution can compensate for the disadvantage of the grey wolf algorithm, wherein it
easily falls into a local optimal solution; it can also improve the ability of global optimisation.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 20 
 

The core of the CSO_IGWO algorithm lies in the incorporation of the Lévy flight 
strategy. Inspired by the utilisation of the Lévy flight strategy in the CSO algorithm, this 
study leverages the characteristics of variable step size random walks in Lévy flights to 
enhance the position updating equation of the GWO algorithm. The introduction of the 
Lévy flight strategy enables individual grey wolves to undertake large leaps within their 
local positions and probabilistically expand the search region. This critical step ensures 
the GWO algorithm’s ability to break free from local optima. The Lévy distribution can be 
expressed using a simple power-law equation [24–26]: 

( ) ( ) ( )







∞<<

−








−

−
=

otherwise

if
sssL

0

01
2

exp
2,,

2
3 ϖ

ϖϖ
γ

π
γ

ϖγ

,

 
(10)

where s  is the step size, ϖ  is the position or shift parameter, 0>γ  is the scale param-
eter, and ( )sL  represents the distribution of s . 

The Lévy distribution can be expressed by a clear power law equation as: 

( ) 20~ 1 ≤<−− ββssL .
 (11)

The Mantegna strategy is also commonly used for simulations, and a normal distri-
bution is used to solve the random step size. The method is as follows. 

β
1
v

us =
,
 (12)

where u  and v  obey normal distribution. 
To illustrate that the Lévy flight can achieve a high-frequency short step size and 

intermittent long step size, Figure 4 shows the motion tracks of the Lévy flight 50, 100, and 
1000 times in two-dimensional space. The characteristics of the Lévy flight heavy-tail dis-
tribution can compensate for the disadvantage of the grey wolf algorithm, wherein it eas-
ily falls into a local optimal solution; it can also improve the ability of global optimisation. 

 
 

(a) (b) 

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 20 
 

 
(c) 

Figure 4. Trajectories of Lévy flying 50, 100, and 1000 times in two-dimensional space. (a) Trajecto-
ries of Lévy flying 50 times in two-dimensional space, (b) Trajectories of Lévy flying 100 times in 
two-dimensional space, and (c) Trajectories of Lévy flying 1000 times in two-dimensional space. 

Therefore, in combination with the Lévy flight concept in the CSO algorithm, a new 
position update formula is obtained as follows: 

( ) ( )
( ) ( )




>
<

⊕++
+

=+Δ
1
1

1
1

1
A
A

LevytX
tX

tX
βε






,

 (13)

where ( )t
best

t XX −⋅= 01.0ε   is the step control parameter, tX   and bestX   represent the t-
generation individual and the t-generation optimal individual, respectively. When 1>A
, the grey wolf is far away from the prey, and when 1<A , the grey wolf is close to the 
prey. This study combines the Lévy flight strategy in the CSO algorithm with an improved 
GWO algorithm to develop the CS_ GWO algorithm. The CS is given in Algorithm 1, along 
with the pseudocode for GWO. 

Algorithm 1 CSO_ GWO algorithm. 
Initialising population with a chaotic tent map 
Initialise A , C , and α  
Calculate the fitness value of each individual 

αX  = Best individual 

βX  = Suboptimal individual 

δX  = Third best individual 
While (t < Max_iter) 
      For each individual in the population 
            Use Equation (13) to update the current position of the individual 
      End for 
      Update α  with Equation (9) 
      Update A and C with Equation (3) 
Calculate fitness of all individuals 
Update αX , βX  and δX  

1+= tt  
End While 

Figure 4. Trajectories of Lévy flying 50, 100, and 1000 times in two-dimensional space. (a) Trajectories
of Lévy flying 50 times in two-dimensional space, (b) Trajectories of Lévy flying 100 times in two-
dimensional space, and (c) Trajectories of Lévy flying 1000 times in two-dimensional space.



Appl. Sci. 2023, 13, 12944 9 of 19

Therefore, in combination with the Lévy flight concept in the CSO algorithm, a new
position update formula is obtained as follows:

∆
⇀
X(t + 1) =

{ ⇀
X(t + 1)

⇀
X(t + 1) + ε⊕ Levy(β)

|A| < 1
|A| > 1

, (13)

where ε = 0.01 ·
(
Xt − Xt

best
)

is the step control parameter, Xt and Xbest represent the t-
generation individual and the t-generation optimal individual, respectively. When |A| > 1,
the grey wolf is far away from the prey, and when |A| < 1, the grey wolf is close to the prey.
This study combines the Lévy flight strategy in the CSO algorithm with an improved GWO
algorithm to develop the CS_GWO algorithm. The CS is given in Algorithm 1, along with
the pseudocode for GWO.

Algorithm 1 CSO_GWO algorithm.

Initialising population with a chaotic tent map
Initialise A, C, and α

Calculate the fitness value of each individual
Xα = Best individual
Xβ = Suboptimal individual
Xδ = Third best individual
While (t < Max_iter)

For each individual in the population
Use Equation (13) to update the current position of the individual

End for
Update α with Equation (9)
Update A and C with Equation (3)

Calculate fitness of all individuals
Update Xα, Xβ and Xδ

t = t + 1
End While
Return Xα

The research on the proposed optimisation algorithm is conducted in three main
aspects. Firstly, the distribution of the population: the tent mapping initialization of
the population imparts richer distribution characteristics to the initial population. It
enables both uniform distribution across the entire region and sparse distribution in local
areas. Secondly, the introduction of a nonlinear control strategy governs the process of
searching for the optimal values within the population. It ensures that the population
conducts broad-scale searches in the initial phase, followed by localised refinement to
find the optimal solution. Lastly, the integration of the Lévy flight strategy from the CSO
algorithm empowers the first two aspects with the characteristic of significant leaps in Lévy
flights. This infusion of large-scale jumping abilities from Lévy flights allows the algorithm
proposed in this paper to achieve both a broad search scope and the ability to find optimal
values within local regions.

4. Numerical Data Experiment and Simulation Analysis
4.1. Mathematical Model of a Servo Motor System

In recent years, with the increasing industrialization levels in China, servo control
systems have been widely used in all walks of life, from industrial production of mechanical
arms to computer numerical control (CNC) machine tools, military weapon servo systems,
and even aerospace satellites. Servo control systems are ubiquitous in use. The motor
control determines the working performance of the entire system as the main component
of the servo system. Therefore, it is necessary to study the drive control part of the servo
motor in depth [27,28].



Appl. Sci. 2023, 13, 12944 10 of 19

The experiment in this section is conducted on a self-developed small CNC polishing
machine. This equipment has three linear axes (X, Y, and Z) and two rotational axes (A
and C). To validate the practicality of the optimisation algorithm proposed in this paper,
an experimental motion control of the Y-axis, whose model is Somotics s-1fk7(SIEMENS,
Munich, Germany), was performed on this machine. The physical illustration is depicted
in Figure 5.
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Figure 5. The physical illustration of the Y-axis.

The servomotor model is shown in Figure 6; it includes the motor, coupling, roller
lead screw, guide rail, and workbench. Driven by the motor, the ball screw and motor are
coaxially rotated through the coupling, so that the rotating motion of the rotating motor is
transformed into the linear motion of the workbench. The symbols in the figure are listed
in Table 1.

Table 1. Symbols used for the servo motor model.

Symbol Physical Meaning Parameter

Ja Moment of inertia of the drive shaft 0.1 kg ·m2

Tm Motor output torque 50 N ·m
Kp Torsional stiffness coefficient of a driven shaft 899 Nm/rad
Tb Output torque of a ball screw driven by a driven shaft 50 N ·m
M0 Moving platform mass 38 kg
X0 Moving platform displacement 0–130 cm
Tp Coupling transmission output torque 50 N ·m
Jp Moment of inertia of a driven shaft 0.15 kg·m2

θm Motor output angle 0–360◦

Dp Driven shaft damping coefficient 3.83 Nm/rad
θb Output angle of a ball screw driven by a driven shaft 0–360◦

D0 Damping coefficient of a moving platform 10 Ns/m
f0 Load resistance of a moving platform 44 N ·m
θp Coupling transmission output angle 0–360◦
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According to the servo motor model shown in Figure 5, the dynamic differential
equation can be obtained as follows:

Tb =
J0

..
θb + D0

.
θb + f0Rb

R2
b

, (14)

Tm = Ja
..
θm + Tp, (15)

Tp = Kp
(
θp − θb

)
+ Dp

( .
θp −

.
θb

)
= Jp

..
θb + Tb. (16)

The above dynamic differential equation is further simplified into a transfer function
form by the Laplace transformation:

θb(s) ≈
R2

b
(
kp + Dps

)
θp(s)(

JpR2
b + M0

)
s2 +

(
D0 + R2

bDp
)
s + R2

bkp
. (17)

4.2. Benchmark Functions

To test the effectiveness of the improved GWO algorithm in this study, eight of the
widely used “23” benchmark functions [29] were selected to test the improved algorithm
and compare the traditional GWO with the improved GWO. The benchmark functions can
be divided into two categories: unimodal (F1–F4), as shown in Figure 7, and multimodal
(F5–F8), as shown in Figure 8. The unimodal functions are suitable for testing the ex-
ploration ability of the algorithm because they have a global optimum and no local
optimum, whereas multimodal functions have considerable local optimality, which is
helpful for testing the development ability of the algorithms. See Table 2 for the specific
benchmark functions.
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4.3. Comparison with the Traditional GWO Algorithm

To verify the superiority of the CSO_IGWO algorithm, the GWO and CSO_IGWO al-
gorithms were set with the same common control parameters. In all function optimisations,
the population size (N) was 30, and the maximum number of iterations (Max_iter) was 500.
Other specific parameters of the CGO algorithm were set as follows: nonlinear modulation
index µ = 1.5, ainitial = 0, and a f inal = 2. The CSO_IGWO and traditional GWO algorithms
were coded in MATLAB 2017b. All experiments were conducted on a computer using an
Intel (R) Core (TM) i5-8265U CPU@1.60 GHz and 8.00 GB of RAM (Intel, Shanghai, China).

In this section, to verify the superiority of the proposed CSO_IGWO algorithm, the
eight benchmark test functions shown in Table 2 were tested. Independent experiments
were used to compare the CSO_IGWO algorithm with the traditional GWO algorithm, the
GWO_a algorithm that changes the control parameter a, and the GWO_NEW algorithm,
which improves the initial population. To reduce the chance of testing, each function
was tested 30 times, and the average value and standard deviation of the functions were
obtained. The optimal results are highlighted in bold. The experimental results are listed
in Table 3.

To further illustrate the advantages of CSO_IGWO over IGWO and GWO in some
typical problems, their unimodal and multimodal convergence curves are shown in Fig-
ures 9 and 10. It can be observed from the figure that for the above eight benchmark
functions, the CSO_IGWO algorithm is faster than the classical GWO algorithm and can
jump out of the local optimum. This shows that using the cuckoo algorithm to improve the
grey wolf algorithm not only improves the search accuracy but also optimises the global
search speed.

Table 2. Benchmark functions.

Function Dim Range fmin

F1(x) =
30
∑

i=1
x2

i
30 [−100, 100] 0

F2(x) =
30
∑

i=1
|xi|+

30
ä
i=1
|xi| 30 [−10, 10] 0

F3(x) = maxi{|xi|, 1 ≤ i ≤ 30} 30 [−100, 100] 0
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Table 2. Cont.

Function Dim Range fmin

F4(x) =
30
∑
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Table 3. Experimental results.

Function Dim
Mean STD Mean STD

GWO GWO_a

F1 30 8.2498 × 10−28 9.20958 × 10−28 2.69527 × 10−39 3.35115 × 10−39

F2 30 1.03689 × 10−16 6.84302 × 10−17 1.28624 × 10−23 9.90575 × 10−24

F3 30 9.80503 × 10−7 7.64443 × 10−7 3.10067 × 10−10 2.6378 × 10−10

F4 30 27.26432 0.730128317 2.68 × 10 0.577598699
F5 30 2.06 × 10−3 0.000839552 1.603 × 103 7.747 × 104

F6 30 7.38971 × 10−14 2.60506 × 10−14 0 0
F7 30 1.07 × 10−13 1.473 × 10−14 2.007 × 10−15 4.263 × 10−16

F8 30 6.70 × 10−1 1.979 × 10−1 5.495 × 10−1 1.307 × 10−1

GWO_NEW CSO_IGWO

F1 30 5.07317 × 10−39 5.45724 × 10−39 5.48004 × 10−40 5.22096 × 10−40

F2 30 6.76155 × 10−24 4.77805 × 10−24 6.434 × 10−24 3.31312 × 10−24

F3 30 3.63217 × 10−10 2.96633 × 10−10 8.10248 × 10−11 7.43226 × 10−11

F4 30 27.12109 0.549138876 2.66 × 10 0.59195957
F5 30 1.658 × 103 8.374 × 104 5.81 × 10−4 2.323 × 104

F6 30 0 0 0 0
F7 30 2.114 × 10−15 5.037 × 10−16 1.54 × 10−16 2.505 × 10−17

F8 30 7.423 × 10−1 1.451 × 10−1 3.82 × 10−1 1.299 × 10−1
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4.4. Analysis of the Parameter Setting Experiment

When adopting a swarm intelligence optimisation algorithm to adjust the controller
parameters, the frequently selected objective functions are generally divided into two types:
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integral square error (ISE) and (Integrated Time and Absolute Error) ITAE. The selection
of different objective functions directly affects controller performance [30]. In engineering
applications, most controlled systems are nonlinear, and the above three objective functions
do not consider whether the output u(t) exceeds the physical limit, which leads to controller
design failure. Therefore, the integral absolute error (IAE) was used to minimise the
objective function, and the maximum output value of the controller was used as a penalty
function to optimise the controller design and parameter tuning. Therefore, the objective
function is written as:

f (t) =
∫ ∞

0

(
ω1|e(t)|+ ω2u2(t)

)
dt + ω3tu, (18)

where e(t) is the system error; u(t) is the controller output; tu is the rise time; and ω1,ω2,
and ω3 are the weights.

The iterative steps of the controller algorithm are as follows:

Step 1: Initialise the parameters of CWO, such as population size N, maximum iterations

(Max_iter), initial value
⇀
a initial , final value

⇀
a f inal of

⇀
a , parameters A and C, and the

nonlinear modulation index µ;
Step 2: Use tent mapping to generate individual populations {Xi, i = 1, 2, 3 . . . , N} and
calculate the fitness value { fi, i = 1, 2, 3 . . . , N} of each individual;
Step 3: The fitness function value for each candidate is calculated. According to the order
of fitness values from large to small, the individuals corresponding to the first three fitness
values are taken as α, β, and δ, and their corresponding location information is respectively
Xα, Xβ, and Xδ;
Step 4: To find the best location of prey, use Equation (9) to calculate the nonlinear change

parameter
⇀
a , and then update the A and C values according to Equation (3);

Step 5: Use Equation (13) to update the position of population individuals, recalculate
fitness values, and update the α, β, and δ values;
Step 6: Determine whether t reaches the Max_iter value; if it is reached, the best so-
lution (that is, the fitness value of Xα) will be output; otherwise, return to Step 3 to
continue execution.

The motor model proposed in Section 4.1 is used as the controlled object of the
traditional GWO algorithm and the CSO_IGWO algorithm experiment, and the function
value convergence curve of the objective function is shown in Figure 11. It can be seen
from the iteration curve that the CWO algorithm improved the optimisation upper limit,
making the parameter optimisation more accurate, unlike the traditional GWO algorithm,
which has fallen into the local optimal solution early. This is because of the idea of using
the Lévy flight strategy in the CSO_IGWO algorithm to improve the GWO algorithm and
taking advantage of the Lévy flight strategy to make the GWO algorithm jump out of the
local optimisation.

To verify the superiority of the algorithm proposed in this paper and further compare
its convergence with other swarm intelligence optimisation algorithms, two more classical
and widely used swarm intelligence optimisation algorithms were selected: an improved
particle swarm optimisation algorithm and an improved genetic algorithm. The iteration
comparison curve is shown in Figure 12. It can be seen from the figure that the algorithm
proposed in this paper is not only considerably better than the other three optimisation
algorithms in terms of search breadth but also has the ability to jump out of the local
optimum.



Appl. Sci. 2023, 13, 12944 16 of 19

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 20 
 

iteration curve that the CWO algorithm improved the optimisation upper limit, making 
the parameter optimisation more accurate, unlike the traditional GWO algorithm, which 
has fallen into the local optimal solution early. This is because of the idea of using the Lévy 
flight strategy in the CSO_IGWO algorithm to improve the GWO algorithm and taking 
advantage of the Lévy flight strategy to make the GWO algorithm jump out of the local 
optimisation. 

 
Figure 11. GWO and CSO_ IGWO iteration comparison curve. 

To verify the superiority of the algorithm proposed in this paper and further compare 
its convergence with other swarm intelligence optimisation algorithms, two more classical 
and widely used swarm intelligence optimisation algorithms were selected: an improved 
particle swarm optimisation algorithm and an improved genetic algorithm. The iteration 
comparison curve is shown in Figure 12. It can be seen from the figure that the algorithm 
proposed in this paper is not only considerably better than the other three optimisation 
algorithms in terms of search breadth but also has the ability to jump out of the local op-
timum. 

 
Figure 12. Iteration comparison curve of four optimisation algorithms. 

The open-loop response of the motor model is shown in Figure 13 It can be observed 
that the dynamic response performance under the open-loop is not ideal; the overshoot is 
too large, and the adjustment time is too long. 

Figure 11. GWO and CSO_IGWO iteration comparison curve.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 20 
 

iteration curve that the CWO algorithm improved the optimisation upper limit, making 
the parameter optimisation more accurate, unlike the traditional GWO algorithm, which 
has fallen into the local optimal solution early. This is because of the idea of using the Lévy 
flight strategy in the CSO_IGWO algorithm to improve the GWO algorithm and taking 
advantage of the Lévy flight strategy to make the GWO algorithm jump out of the local 
optimisation. 

 
Figure 11. GWO and CSO_ IGWO iteration comparison curve. 

To verify the superiority of the algorithm proposed in this paper and further compare 
its convergence with other swarm intelligence optimisation algorithms, two more classical 
and widely used swarm intelligence optimisation algorithms were selected: an improved 
particle swarm optimisation algorithm and an improved genetic algorithm. The iteration 
comparison curve is shown in Figure 12. It can be seen from the figure that the algorithm 
proposed in this paper is not only considerably better than the other three optimisation 
algorithms in terms of search breadth but also has the ability to jump out of the local op-
timum. 

 
Figure 12. Iteration comparison curve of four optimisation algorithms. 

The open-loop response of the motor model is shown in Figure 13 It can be observed 
that the dynamic response performance under the open-loop is not ideal; the overshoot is 
too large, and the adjustment time is too long. 

Figure 12. Iteration comparison curve of four optimisation algorithms.

The open-loop response of the motor model is shown in Figure 13 It can be observed
that the dynamic response performance under the open-loop is not ideal; the overshoot is
too large, and the adjustment time is too long.
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Figure 14 shows the four parameter-tuning methods and open-loop Bode diagram
of the system. It can be seen from the figure that for the servomotor model selected in
this study, the phase margin under the four controllers is positive, and the phase near the
cut-off frequency (10 rad/s) is smooth, indicating that the system is robust when the control
gain fluctuates within a certain range.
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To reflect the superiority of the CSO_IGWO algorithm in tuning PID control parame-
ters, the parameter tuning method proposed in this paper is compared with the traditional
Z–N method, the improved particle swarm optimisation algorithm, and the improved
genetic optimisation algorithm, as shown in Figure 15.
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The performance indicators are presented in Table 4. It can be seen from the table that
the traditional Ziegler–Nichols (Z–N) method for tuning the PID controller parameters
can improve the dynamic performance of the controlled system, but compared with the
CSO_IGWO algorithm for optimising PID control parameters, the CSO_IGWO algorithm
for optimising dynamic performance is more obvious. However, the improved particle
swarm optimisation (IPSO) algorithm and the improved genetic optimisation (IGA) algo-
rithm clearly show their defects and easily fall into local optima. These fall into different
local optimum solutions. The PID parameter overshoot under the improved genetic algo-
rithm is large, whereas the PID parameter overshoot under the improved particle swarm
optimisation algorithm is small but very slow. Through comparison, the parameter tuning
method proposed in this study can help the system achieve satisfactory performance.

Table 4. Comparison of experimental results.

Tuning Method Tr/s Mp/% Ts/s Ess/%

None 1.75 52.451 30.67 2
Z–N method 2.0724 25.374 8.289 0
IPSO method 1.381 14.1 7.726 0
IGA method 4.483 4.6 7.291 0

CSO_IGWO method 2.1316 4.5911 4.021 0
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5. Conclusions

The cuckoo search optimisation coupled with the improved grey wolf optimisation
algorithm for tuning the PID parameters proposed in this study is improved in three
aspects: initial population, control parameters, and position equations. The improved
algorithm can effectively avoid premature convergence, accelerate the iteration time, and
improve parameter accuracy. Two simulation experiments are conducted. First, eight
benchmark functions were used to verify the superiority of the improved algorithm. The
experimental results show that the overall iteration speed is accelerated, and it is not easy
to fall into the local optimal solution for multimodal benchmark function problems.

By comparing the PID parameter tuning method proposed in this paper with other
parameter tuning methods, it can be concluded that the proposed CSO_GWO method sig-
nificantly enhances the dynamic performance of motors under PID control. The method’s
efficiency in tuning PID parameters allows swift computations, facilitating its applica-
tion in practical motion control scenarios. Even in the presence of external influences,
this approach substantially improves motor control performance, preventing the pa-
rameter tuning process from converging to a suboptimal region due to external distur-
bances. Fine-tuning the three key parameters of the PID algorithm achieves optimal motor
dynamic performance.

However, certain limitations persist. The computational complexity of this algorithm
and its extensive calculation procedures render it unsuitable for real-time online adjustment
of controller parameters. Moreover, when applied to more complex advanced control algo-
rithms, the cumulative computational load of tuning parameters and the intricate advanced
control algorithm significantly increase the overall process time. Consequently, future
research needs to focus on further optimising the algorithmic procedures and evolving the
proposed method to be compatible with a broader array of advanced algorithms.
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