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Featured Application: This review reports the current evidence available regarding the role of
radiomic features extracted from conventional imaging (MRI, CT and 18F-FDG PET scans) in as-
sessing the status of Human Papillomavirus (HPV) in Oropharyngeal Squamous Cell Carcinoma
(OPSCC) patients. The paper evaluates the possible future adoption of radiomic models in de-
termining viral status in a non-invasive manner, especially for those not tolerating biopsy, when
biopsy is not feasible or in case of discrepancies between immunohistochemistry and Polymerase
Chain Reaction. This could also lead to more tailored treatment strategies.

Abstract: Background: Oropharyngeal Squamous Cell Carcinoma (OPSCC) is rapidly increasing
due to the spread of Human Papillomavirus (HPV) infection. HPV-positive disease has unique
characteristics, with better response to treatment and consequent better prognosis. HPV status
is routinely assessed via p16 immunohistochemistry or HPV DNA Polymerase Chain Reaction.
Radiomics is a quantitative approach to medical imaging which can overcome limitations due to
its subjective interpretation and correlation with clinical data. The aim of this narrative review is
to evaluate the impact of radiomic features on assessing HPV status in OPSCC patients. Methods:
A narrative review was performed by synthesizing literature results from PUBMED. In the search
strategy, Medical Subject Headings (MeSH) terms were used. Retrospective mono- or multicentric
works assessing the correlation between radiomic features and HPV status prediction in OPSCC were
included. Selected papers were in English and included studies on humans. The range of publication
date was July 2015–April 2023. Results: Our research returned 23 published papers; the accuracy
of radiomic models was evaluated by ROC curves and AUC values. MRI- and CT-based radiomic
models proved of comparable efficacy. Also, metabolic imaging showed crucial importance in the
determination of HPV status, albeit with lower AUC values. Conclusions: Radiomic features from
conventional imaging can play a complementary role in the assessment of HPV status in OPSCC.
Both primary tumor- and nodal-related features and multisequencing-based models demonstrated
higher accuracy.

Keywords: radiomics; human papillomavirus; oropharyngeal squamous cell carcinoma

1. Introduction

Head and Neck Squamous Cell Carcinoma (HNSCC) is the seventh most common
malignancy worldwide, with 890,000 new cases and 450,000 deaths [1]. Among HNSCC,
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Oropharyngeal Squamous Cell Carcinoma (OPSCC) is a specific subtype which arises
most frequently from the tonsils, followed by the base-tongue, the soft palate and the
uvula. Human Papillomavirus (HPV) infection is strictly related to the development of
OPSCC and is responsible for its growing incidence [2], despite a reduction in tobacco
smoking and alcohol consumption in Western countries. HPV-positive (HPV+) and HPV-
negative (HPV−) OPSCC present as different entities, with peculiar clinical presentation,
pathogenetic mechanisms and prognosis. HPV+ patients are usually younger, with no
smoking history and fewer comorbidities [3]; HPV+ disease is typically related to nodal
spread with cystic neck masses at onset, whereas HPV− cancer symptoms are usually
associated with local primary growth. Hence, HPV+ OPSCC is characterized by earlier
detection, better prognosis and response rate to Chemoradiotherapy (CRT) [4], which is
classified in the 8th edition of TNM staging according to the American Joint Committee on
Cancer (AJCC).

Five-year overall survival rates account for 80% in HPV-positive patients versus 50%
in HPV-negative ones [5]. Therefore, de-escalation strategies have been investigated to
minimize treatment-related adverse events in the former group, even if any modification in
treatment regimens is not supported by current clinical data yet [6].

Regardless of HPV status, in early-stage disease, conservative surgery or radiotherapy
(either external beam or brachytherapy for selected stage I) give similar rates of locoregional
control. Post-operative (chemo-)radiation can be required to decrease the risk of local
recurrence in case of pT3-4 (UICC TNM 8th edition), positive margin (tumor at 1 mm
from the margin), close resection margin (between 1 and 5 mm), perineural infiltration,
lymphovascular spread, >1 invaded lymph node and the presence of extracapsular nodal
infiltration. For locally advanced disease (cT3–4 cN0 cM0, cT1–4 cN1–3 cM0), the standard
of care is represented by concomitant platinum-based chemoradiotherapy, whereas surgery
followed by (C)RT may be an alternative option [7].

HPV infection is most frequently assessed by p16 Immunohistochemistry (IHC) on
biopsied tissue or by testing for the presence of HPV DNA or mRNA in the tumor by
using Polymerase Chain Reaction (PCR) or in situ hybridization [8]. p16 is routinely
used as a surrogate marker; however, in approximately 17% of p16-positive patients, PCR
results are negative, with almost the same inferior survival rates of those with p16-negative
disease [9]. In addition, surgical biopsy may expose patients to complications such as
bleeding, especially in those with hemorrhagic diathesis. Also, immunostaining sensitivity
can be influenced by inflammatory changes in the specimen [10]. Moreover, IHC and PCR
are time-consuming, expensive and not always available [11].

Therefore, the development of a non-invasive tool to determine HPV status could
prove useful.

For what concerns diagnostic imaging, HPV-related disease has peculiar growth
patterns and nodal involvement which differ from HPV-negative OPSCC; for example,
Cantrell et al. showed that poorly defined borders of the primary tumor and invasion of
adjacent muscles are characteristic for HPV-negative disease [12]. Other studies reported
a substantial difference in intra-tumoral heterogeneity between HPV-positive and HPV-
negative OPSCC primary sites in radiological imaging [13–15].

Unfortunately, overlapping radiological characteristics do not allow one to precisely
predict HPV status [16].

Radiomics is a non-invasive technique which implies the extraction of different quan-
titative features from routine medical images (e.g., Magnetic Resonance Imaging (MRI)
or Computed Tomography (CT) scans), their selection and subsequent analysis for cor-
relation with clinical data [17,18]. The extracted features describe characteristics such as
tumor signal intensity, shape and texture patterns and provide reader-independent data for
predictive modeling [19].

The feature-based radiomic workflow firstly relies on the determination of imaging
modality, followed by image processing, which represents the attempt at homogenizing
imaging for feature extraction according to pixel spacing or gray-level intensities, and then
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by the Region of Interest (ROI) or Volume of Interest (VOI) segmentation, for the definition
of those regions where features are calculated. Then, quantitative features can be extracted
with a possible large number (even more than 1000) from a single ROI, since the process is
based on a huge number of mathematical operations.

Features can be divided into many subgroups [20]:

- Shape features: these are related to the geometric properties of the ROI/VOI (volume,
diameter, sphericity and compacity);

- First order (histogram) features: these describe the distribution of voxel intensities within
the image region (mean, median, skewness, kurtosis);

- Second order texture features: these consider the statistical relationship between neigh-
boring voxels or groups of voxels within the segmented lesion. Many matrices, such
as the Gray-Level Co-occurrence Matrix (GLCM), Gray-Level Run Length Matrix
(GLRLM) and Neighborhood Gray-Level Different Matrix (NGLDM), can be used
for feature extraction [21]. GLCM provides information about pixel pair distribution
within the image; GLRLM identifies the length of consecutive voxels with the same
intensity in a pre-set direction in the image; NGLDM analyzes the difference between
a gray value and the average gray value of its neighbors within a certain distance [22].

- Higher-order texture features: additional mathematical transformations are used to
highlight specific aspects of the ROI. This can lead to a virtually endless number
of features among which fractals, SUV metric for PET specific applications [23,24],
Minkowski functionals, wavelet transform and Laplacian transforms of Gaussian-
filtered images are included [25,26].

After feature extraction, the most relevant features must be selected among thousands
available; redundant or non-reproducible features are generally excluded and feature
selection or dimensionality reduction algorithms are usually adopted. Common examples
involve hierarchical clustering, principal component analysis, Least Absolute Shrinkage
and Selection Operator (LASSO) regularized logistic regression and maximum relevance
minimum redundancy filtering [27]. The modeling process then follows in the radiomic
workflow. In this phase, reproducible radiomic features can be used to build radiomic
models for clinical selected endpoints.

In this context, machine learning is the most common approach to radiomic-based
prediction; it is based on training a model by showing it examples of input–output behavior
so that the system learns the desired relationship without explicit manual programming.
Numerous machine learning classifiers have therefore been developed, all utilizing many
algorithms to find the optimal performance across repeated iterations of training and
testing [27].

After model building, model independent validation is usually performed. In this
step, the radiomic-based model is applied to datasets on which it was not trained. Internal
validation refers to the performance in patients from a similar population to where the
sample originated from. Internal validation contrasts with external validation, due to
differences between the populations used to develop and test the model. Many internal
validation approaches are available: the split-sample (where training data are divided
into two parts: one to develop the model and another to measure its performance), the
cross-validation (which uses different portions of the data to test and train a model on
different iterations) and bootstrapping (it resamples a single dataset to create many simu-
lated samples, of the same size as the original dataset) [28]. If the results of internal test
performance are satisfactory, then the model is tested on an external validation dataset to
assess generalizability in routine clinical practice [29].

Recently, the application of radiomics has been investigated in OPSCC in terms of HPV
status prediction, survival prediction and risk stratification [30] to overcome limitations
due to subjective interpretation of medical imaging. Since HPV status can be relevant for
the determination of a tailored treatment strategy, radiomics might indirectly influence
clinical practice and decision-making in the near future.
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In this regard, the aim of the present narrative review is to discuss the available
evidence regarding the role of quantitative features extracted from CT, MRI or Positron-
Emission Tomography (PET) scans in assessing HPV status.

2. Materials and Methods

A narrative review was performed that synthesized literature results from PUBMED.
In the search strategy, Medical Subject Headings (MeSH) terms were used. Search terms in-
cluded in all possible combinations were Human Papillomavirus, HPV, Radiomics, Texture
Analysis, Deep Learning, Machine Learning, Oropharyngeal Squamous Cell Carcinoma,
OPSCC, Head and Neck Cancer. Identified records were first screened by title and abstract,
and those judged to be not pertinent were excluded. Then, full-text articles were assessed
for eligibility. In this step, systematic and narrative reviews and meta-analysis were ex-
cluded, as well as papers investigating the relationship between radiomic features and
other outcomes than HPV assessment (e.g., tumor staging, risk stratification, treatment
response assessment, gene expression). In the end, only retrospective mono- or multicentric
series assessing the correlation between MRI, CT and 18F-FDG PET radiomic features and
HPV status prediction in oropharyngeal cancer patients were included (Figure 1). Selected
papers were in English and included studies on humans. The range of publication date was
July 2015–April 2023. A PRISMA flow-chart illustrating the various phases of the review
search and the study selection process is reported in Figure 2.
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Figure 1. Workflow of radiomics in the assessment of HPV status. (A) Data selection process: de-
termination of imaging modalities, ROIs, target prediction (HPV status); (B) Segmentation: definition
of target area in medical images in which radiomic features are calculated; (C) Extraction: automatic
extraction of quantitative features through software package from ROIs; (D) Selection: selection of the
extracted features with exclusion of unrelated or useless ones by reducing the number of variables;
(E) Modeling and validation: modeling of the selected radiomic features by specific methods, followed
by discrimination and calibration. HPV, Human Papillomavirus; ROI, Region of Interest.
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3. Results

Our initial search returned 107 published papers; after a first screening by title and
abstract, 44 works were excluded as not relevant to our purpose. Among the 63 full
texts available for eligibility, 40 were further excluded (reviews n = 7; assessing other
outcomes than HPV n = 33). In the end, 23 works were included and their main findings
are summarized in Tables 1–3.

A total of 4778 patients (n = 2565 HPV-positive; n = 1586 HPV-negative) treated
between 2003 and 2020 were retrospectively included in the present analysis. Most radiomic
features were extracted from the primary tumor; in one work, nodes were also used for
feature extraction.

Selected papers were divided according to referred imaging technique (CT, MRI or
PET). For each paper, first author, publication year, number of enrolled patients, enrollment
period and HPV status (mostly assessed via IHC) were recorded. All included studies were
retrospective and 4/23 were multicentric. In most series, the predictive performance of
radiomic models was based on Receiver Operating Characteristics (ROC) curves and ROC
Area Under the Curve (AUC) scores (range: 0–1), with higher AUC values indicating better
performance in determining HPV status.

4. Discussion

In this narrative review, we summarize the main findings about the application of
radiomics in HPV status prediction according to different imaging techniques.

A growing body of evidence suggests that radiomics could help in the development
of tailored therapy in HPV+ OPSCC, due to its contribution in determining HPV status,
along with the standard assessment methods routinely adopted in clinical practice. The
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use of radiomic features through the analysis of conventional imaging may be helpful
in non-invasively stratifying patients according to their HPV status, thus improving the
development of more personalized therapies. In most series, the effectiveness of radiomic
models is evaluated using ROC curves and calculation of the AUC.

Our conclusions are in line with those previously published by Caprini et al. [30]. In
their review, they summarized the most recent advances in the application of radiomics in
OPSCC for assessing HPV status, predicting survival outcomes and identifying relevant
pathological features (such as lymphovascular invasion or extracapsular nodal spread or
metastatic lymph node involvement).

On the other hand, in 2022, Spadarella et al. [10] conducted a systematic literature
review with Radiomic Score Quality (RSQ) assessment focusing on the application of
radiomics in OPSCC for HPV infection prediction. They selected 19 articles with a median
RSQ of 33% and found that radiomics and machine learning studies for the assessment of
HPV have shown low overall quality. They therefore recommended higher methodological
quality, appropriate standardization and greater attention to model validation before
clinical adoption.

Although no direct comparison was made, MRI-based predictive radiomic models
showed similar performance when compared to CT-based ones [11]. This suggests that
Contrast-Enhanced (CE) T1-weighted MRI and CT might reveal similar textural properties
relevant for the discrimination of HPV-positive and HPV-negative disease, even if which
technique is the most appropriate is still under investigation. MRI could outperform CT
imaging for staging and radiomic analysis due to its better soft tissue contrast; however,
the choice will depend on the confidence and experience of the radiologists within the
center. On the other hand, the 18F-FDG PET-based radiomic model slightly underperforms
compared to MRI and CT. This can be attributed to the non-morphological nature of this
imaging technique, which is less able to provide textural detail of tumor tissue.

4.1. MRI-Based Radiomic Features (Table 1)

MRI features have been widely investigated in many retrospective clinical studies with
good performance results in assessing HPV+ status [31–33]. In this context Li et al. [34]
recently analyzed 141 patients and 2092 radiomic features extracted from both Primary
Tumor (PT) and Largest Pathological Nodes (LN) on Contrast-Enhanced (CE) T1-weighted
and T2-weighted MRI. They found that a model built upon PT and LN-fused imaging
features outperformed the sole use of PT or LN features in the prediction of p16 status
and that a fusion model based on multisequencing yielded better performance than single-
sequence models, with an AUC of 0.91. In the same year, a Dutch study [35] supported
the role of MRI-radiomics as a potential imaging biomarker with an AUC of 0.79 in a
population of 249 patients. Among selected features (n = 498) in pre-treatment T1-weighted
MRI scans were tumor intensity variation, sphericity, diameter and compactness. The
combination of clinical and radiomic models provided an even higher performance, with
an AUC value of 0.89. The combined model also outperformed the only radiomic one
(AUC 0.871 vs. AUC 0.764) in Bos et al. [11] in a population of 153 patients whose features
were extracted from pre-treatment T1-weighted MRI scans. Clinical variables included
gender, age, tobacco and alcohol exposure.

Suh et al. [36] investigated three machine-learning classifiers when using multisequenc-
ing features (Apparent Diffusion Coefficient (ADC), T1-weighted imaging, fat-suppressed
T2-weighted imaging, fat-suppressed CE T1-weighted imaging). Logistic regression and
random forest classifier yielded higher accuracy than XG boost classifier for the determina-
tion of HPV infection status (AUC 0.77 and 0.76 vs. 0.71).

In Ravanelli et al.’s work [37], texture analysis was performed on T2-weighted,
contrast-enhanced T1-weighted and ADC maps obtained from Diffusion-Weighted Imaging
(DWI) series. They found that ADC was significantly lower in HPV-positive oropharyngeal
squamous cell carcinoma compared with HPV-oropharyngeal squamous cell carcinoma.
The reason for this finding remains unknown, but some hypotheses may be conceived. The
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first one is the small stromal volume found in HPV-positive disease [38]; also, the nests of
lymphoid cells surrounding cancer cells in HPV+ disease could explain the increased tissue
density and the consequent lower ADC [39].

Despite the favorable data in this context, clinical application of radiomics is hampered
by laborious and time-consuming tumor segmentation. Alternative delineation strategies
could overcome these obstacles. As a matter of fact, Bos et al. [40] in 2022, investigated
different delineation methods for detecting HPV status in OPSCC with the result that
2D simple delineation of the largest tumor axial diameter outperformed 3D delineation
(AUC 0.84 vs. AUC 0.76). Faster delineation could improve adoption of radiomics in
clinical practice.

Table 1. Retrospective studies of HPV status prediction according to MRI-radiomic features.

Study Year Imaging
Modality

No. of
Patients

HPV
Status

Enrollment
Period Prospective Multicenter Predictive

Performances Main Findings

Giannitto C et al.
[31] 2020 MRI 32

HPV+: 20
HPV−: 9

NA: 3
2008–2016 No No

Higher values of
GOH/10Percentile
(p = 0.03) and lower

values of
GOH/90Percentile
(p = 0.03) for HPV+

MRI-based radiomics is
a feasible and

promising approach for
the prediction of tumor

phenotype

Park YM et al.
[32] 2022 MRI 155 HPV+: 136

HPV−: 19

November
2005–

December
2015

No No AUC 0.792

MRI radiomics showed
satisfactory

performance in
predicting HPV status

Sohn B et al.
[33] 2021 MRI 62 HPV+: 52

HPV−: 10

July
2012–June

2018
No No

AUC 0.982 (training
set); AUC 0.744

(test set)

Radiomics-based MRI
regarded as a potential
imaging biomarker for
the assessment of HPV

status

Li Q et al.
[34] 2023 MRI 141 HPV+: 78

HPV−: 63

January
2011–

December
2020

No Yes AUC 0.91

PT-LN fusion model
based on

multisequence MRI
could serve as a

noninvasive method
for assessing HPV
status in OPSCC

Boot PA et al.
[35] 2023 MRI 249 HPV+: 91

HPV−: 158 2008–2018 No No

AUC 0.79 (radiomic
model only); AUC
0.89 (radiomic and

clinical model
combination)

MR-radiomic features
can predict HPV status
with sufficient accuracy,
supporting the role of
MRI-based radiomics
as a potential imaging

biomarker

Bos P et al.
[11] 2021 MRI 153 HPV+: 76

HPV−: 77

January
2010–

December
2015

No No

AUC 0.764 (radiomic
only); AUC 0.871

(radiomic and clinical
model combination)

Models based on
clinical variables

and/or radiomic tumor
features can predict

HPV status in OPSCC
patients

Suh CH et al.
[36] 2020 MRI 60 HPV+: 48

HPV−: 12

April 2012–
November

2017
No No

AUC 0.77 (logistic
regression); AUC 0.76
(random forest); AUC

0.71 (XG boost)

MRI radiomic
signature can guide
classification of HPV

status

Ravanelli M et al.
[37] 2018 MRI 59 HPV+: 28

HPV−: 31

March
2010–April

2017
No No

Sensitivity of
83.3% and specificity

of 92.6%

ADC is significantly
lower in OPSCC HPV+
compared with HPV−

OPC

Bos P et al.
[40] 2022 MRI 153 HPV+: 76

HPV−: 77

January
2010–

December
2015

No No AUC 0.84

Labor- and
time-consuming full
tumor delineations
may be substituted

from alternative
delineations in a model

that predicts HPV
status in OPSCC

MRI, Magnetic Resonance Imaging; HPV, Human Papillomavirus; NA, Not Assessed; GOH, Gradient Orient
Histogram; AUC, Area Under the Curve; OPSCC, Oropharyngeal Squamous Cell Carcinoma; ADC, Apparent
Diffusion Coefficient.
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4.2. CT-Based Radiomic Features (Table 2)

Radiomic features primarily associated with the spatial arrangement and morpho-
logical appearance of the tumor on Contrast-Enhanced (CE) diagnostic CT datasets may
be potentially used for prediction of HPV status, beyond what is simply apparent to the
trained human eye [15,16,41]. Much evidence has shown that pre-treatment CT-based ra-
diomics could potentially also aid prognostication for patients with OPSCC. Choi et al. [34]
retrospectively evaluated 86 OPSCC patients and provided preliminary evidence that CT-
based radiomics could aid in HPV status assessment (with an AUC of 0.834 in the external
validation cohort) and in survival prediction (with shape feature being the most significant).
Data of Ou et al. [35] provided the same correlation between radiomic signature and sur-
vival with a better prognostic performance when p16 status was combined with radiomic
features. The main differences are represented by the fact that Ou et al. analyzed a treated
population of locally advanced head and neck cancer patients, whereas Choi et al.’s target
population consisted of pre-treated OPSCC patients.

Peritumoral features were also evaluated in CT scans for the same prognostications
with good performance results. Song et al. [42] firstly applied CT-based radiomics to the
area around the tumor, which proved able to suggest discriminable differences between
HPV+ and HPV− disease. The former is indeed characterized by less overall stroma,
smoother borders to the nests and leading edges and by more homogeneous cellularity
usually without keratin production, which suggests less intensity disorder and microscale
heterogeneity in gradient orientation outside the tumor.

In 2020, Bagher-Ebadian [43] analyzed 187 OPSCC patients and 172 radiomic features
extracted from pre-treatment CE-CT of the Gross Tumor Volume (GTV) with the result that
HPV+ disease correlates with smaller lesion size, higher intensities, higher heterogeneity
and greater sphericity/roundness. In 2022, the same author [44] investigated both clinical
(T status, smoking habit, age) and radiomic (tumor morphology and intensity contrast)
features for the prediction of HPV status. This pilot study on 128 OPSCC patients showed
encouraging results in the characterization of HPV-positive disease, with an AUC of
0.895 for combined clinical and radiomic models.

In 2017, CT radiomic features were evaluated after radical chemoradiation in HNSCC
patients for the assessment of HPV status, along with Local Control (LC). Extracted features
were based on intensity, shape, texture and wavelet transform; the results show that more
heterogeneous tumor density was associated with better LC and HPV prediction (AUC of
0.85 in the training set and AUC of 0.78 in the validation set) [45].

In 2018, Leijenaar et al. [46] investigated a radiomic approach for HPV status prediction
in 778 OPSCC patients randomly assigned to the training (n = 628) and validation (n = 150)
sets. In total, 902 radiomic features were extracted on CT scans from the GTV and used to
build a multivariable logistic regression model. The AUC was between 0.70 and 0.80 for all
training sets and for a subset of artefact-free training data and did not differ significantly
for the validation datasets.

In this regard, radiomics could prove to be a cost-effective and complementary method
for HPV screening, as well as in other non-oropharyngeal squamous cell carcinomas. A
radiomic biomarker could also play an important role in retrospective HPV analyses when
no tissue samples are available or in countries where it is not routinely performed.

Table 2. Retrospective studies of HPV status prediction according to CT-radiomic features.

Study Year Imaging
Modality

No. of
Patients

HPV
Status

Enrollment
Period Prospective Multicenter Predictive

Performances Main Findings

Buch K et al.
[15] 2015 CT 40 HPV+: 29

HPV−: 11

December
2009–

October
2013

No No

Statistically
significant differences
between HPV-positive

and HPV-negative
tumors (p = 0.006)

Texture analysis may
be considered for the

evaluation of HPV
status
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Table 2. Cont.

Study Year Imaging
Modality

No. of
Patients

HPV
Status

Enrollment
Period Prospective Multicenter Predictive

Performances Main Findings

Mungai F et al.
[16] 2019 CT 50 HPV+: 35

HPV−: 15

October
2014–

October
2017

No No

Decrease in NGLDM
contrast and busyness

associated with
increased likelihood

of HPV+ status

Texture analysis of CT
images of the primary

OPSCC can distinguish
between HPV-related

and HPV-negative
lesions and predict the

HPV status of the
tumor

Ranjbar S et al.
[41] 2018 CT 107 HPV+: 92

HPV−: 15

01 January
2010–31

December
2014

No No Accuracy of 75.7%

HPV infection can be
inferred from the CT

appearance of OPSCC
beyond what is

apparent to the trained
human eye

Choi Y et al.
[47] 2020 CT 86 HPV+: 53

HPV−: 33

January
2009–

September
2019

No No
AUC 0.865 (training

set); AUC 0.747
(test set)

CT-based radiomics
may be useful in

predicting HPV status
in OPSCC

Ou D et al. [48] 2017 CT 120
HPV+: 27
HPV−: 74

NA: 19

June 2006–
October

2012
No No AUC 0.78 (radiomics)

vs. AUC 0.64 (p16)

Radiomics signature
provides additional

information to
HPV/p16 status

Song B et al.
[42] 2021 CT 582 HPV+: 457

HPV−: 125 2005–2010 No No
AUC 0.70 (validation

cohort); AUC 0.89
(training cohort)

Intratumoral and
peritumoral radiomic
features can predict

HPV status of OPSCC
patients

Bagher-Ebadian
H et al.

[43]
2020 CT 187 HPV+: 116

HPV−: 71 NA No No AUC 0.878

Radiomic features
associated with spatial

arrangement and
morphological

appearance of the
tumor CT datasets may

be exploited for
classification of HPV

status

Bagher-Ebadian
H et al.

[44]
2022 CT 128 HPV+: 60

HPV−: 68 NA No No

AUC 0.789 (radiomic
model); AUC 0.895

(radiomic and clinical
model combination)

Radiomics-based
classifier enables better
prediction of HPV than

clinical factors; the
combination of both
yields even higher

accuracy

Bogowicz M et al.
[45] 2017 CT 149 HPV+: 62

HPV−: 87 2003–2013 No No
AUC 0.85 (training

set); AUC 0.78
(validation set)

Heterogeneity of
HNSCC tumor density
is associated with HPV
status and local control

after radical
chemoradiation

Leijenar RT et al.
[46] 2018 CT 778 HPV+: 426

HPV−: 352 NA No Yes

AUC 0.76 (all training
data); AUC 0.73

(training pts without
artifacts)

Standard medical
images can provide

molecular information;
radiomics can serve as
an imaging biomarker

of HPV status

CT, Computed Tomography; HPV, Human Papillomavirus; NGLDM, Neighborhood Gray-Level Different
Matrix; NA, Not Assessed; OPSCC, Oropharyngeal Squamous Cell Carcinoma; AUC, Area Under the Curve.

4.3. 18F-Fluorodeoxyglucose Positron-Emission Tomography (18F-FDG PET)-Based Radiomic
Features (Table 3)

18F-FDG PET/CT has a high tumor detection rate and can better define a tumor’s
outline from the background. It also has a higher performance in detecting nodal and
distant metastases, if compared to single-modality MRI or CT, and it allows direct imaging
of metabolism. 18F-FDG PET/CT metabolic parameters can differ between HPV-positive
and HPV-negative disease, possibly due to the different distribution of hypoxic areas within
the primary tumor [49].

Radiomic models based on features extracted from 18F-FDG PET/CT scans proved
useful in the determination of HPV status in many series.
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Fujima et al. [14] retrospectively analyzed 171 OPSCC patients who underwent pre-
treatment 18F-FDG PET and who were divided into a training (n = 90) and a validation
(n = 30) cohort. In the training session, 2160 18F-FDG-PET images were analyzed to cre-
ate a diagnostic model to distinguish between HPV-positive and HPV-negative OPSCC.
Confirmation of diagnostic accuracy was reached through the analysis of validation cohort
data, with a sensitivity of 0.83, specificity of 0.83, positive predictive value of 0.88, negative
predictive value of 0.77 and diagnostic accuracy of 0.83; the results of visual evaluation of
images by two independent radiologists were 0.78, 0.5, 0.7, 0.6 and 0.67 (reader 1) and 0.56,
0.67, 0.71, 0.5 and 0.6 (reader 2), respectively. A significant difference was then outlined
between deep-learning- and radiologist-based diagnostic accuracy.

Haider et al. [50] explored PET and non-contrast-enhanced CT radiomic features
both in primary tumors and in metastatic cervical lymph nodes from OPSCC. In total,
435 primary tumors and 741 metastatic adenopathies were analyzed and divided into
training and validation cohorts. Single-modality PET and CT final models had similar
classification performance in independent validation; nonetheless, PET and CT combined
models outperformed single-modality PET- or CT-based models, with AUC of 0.78 and
0.77 for prediction of HPV in cross-validation and independent validation, respectively.
For all lymph nodes, AUC was 0.73, whereas final models achieved an AUC of 0.83 for a
virtual VOI combining primary tumor and lymph nodes.

Context-aware saliency-guided radiomics was also applied for prediction of survival
outcomes and HPV status in a retrospective multicenter study from Lv et al. [51]. Six
models were constructed after feature extraction; in the OPC HPV testing cohort, the
model FusedImg (fused PET/CT imaging) showed higher AUC for HPV status prediction
compared with the Origin model (0.653 vs. 0.484). In the OPC testing cohort, also, radiomic
score for the prediction of both survival outcomes and HPV (Rad_Ocm_HPV) performed
the best for OS and DFS predictions, compared with radiomic score for outcome prediction
(Rad_Ocm) or HPV detection (Rad_HPV) alone.

Radiomics is time-consuming because of the need for Region-Of-Interest (ROI) map-
ping, complex preprocessing and feature extraction. This extensive process can represent
a disadvantage for its clinical application. Therefore, a recent Korean study [52] tried to
develop an HPV status classifier model based on metabolic parameters that were simple
and easy to measure. Indeed, only the maximum standard uptake volume (SUVmax) and
SUVmax- tumor-to-liver ratio (TLR) were required.

It found that the model based on metabolic parameters and clinical data showed
higher performance than models using either PET or clinical parameters alone.

Table 3. Retrospective studies of HPV status prediction according to 18F-FDG PET/CT-radiomic features.

Study Year Imaging
Modality

No. of
Patients

HPV
Status

Enrollment
Period Prospective Multicenter Predictive

Performances Main Findings

Fujima N et al.
[14] 2020 18F-FDG

PET/CT 120 HPV+: 70
HPV−: 50

January
2010–June

2019
No No

AUC 0.83 (deep
learning diagnostic

model)

Deep learning diagnostic
model with FDG-PET
imaging data can be

useful for determining
the HPV status in

patients with OPSCC

Haider SP et al.
[50] 2020 18F-FDG

PET/CT 435 HPV+: 315
HPV−: 120 2009–2019 No No

AUC 0.78
(cross-validation);

AUC 0.77
(independent

validation)

Potential added value
from combining PET- and

CT-based radiomics for
prediction of HPV status

Lv W et al.
[51] 2022 18F-FDG

PET/CT 806 HPV+: 115
HPV−: 86 NA No Yes AUC 0.653 (FusedImg

model)

Radiomics score can be
used as a surrogate for

HPV status
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Table 3. Cont.

Study Year Imaging
Modality

No. of
Patients

HPV
Status

Enrollment
Period Prospective Multicenter Predictive

Performances Main Findings

Woo C et al.
[52] 2023 18F-FDG

PET/CT 126 HPV+: 103
HPV−: 23

January
2012–

February
2020

No Yes AUC (PET+ clinical)
0.78

An HPV status classifier
was developed by

combining metabolic
parameters derived from

18F-FDG PET/CT and
clinical parameters in

OPSCC

18F-FDG PET/CT, 18F-Fluorodeoxyglucose Positron-Emission Tomography; HPV, Human Papillomavirus; AUC,
Area Under the Curve; OPSCC, Oropharyngeal Squamous Cell Carcinoma; NA, Not Assessed.

In the context of metabolic imaging, 18F-FDG PET/MRI scan is a new hybrid technol-
ogy that combines functional uptake information from PET and anatomical and soft tissue
details provided by MRI with the advantages of more accurate diagnosis and therefore
treatment options, reduced radiation exposure and convenience of two scans in one. In
terms of head and neck cancer, 18F-FDG PET/MRI could be useful for evaluating cancer
stages in OPSCC patients based on the new American Joint Committee on Cancer (AJCC)
staging system due to the fusion of high-resolution and multiplanar MRI images with 18F-
FDG avidity [53]. In regard to the prediction of HPV status, Freihat et al. [54] retrospectively
analyzed the feasibility of PET/MRI parameters in assessing HPV status in OPSCC patients
and found that primary tumor pre-treatment ADC could discriminate HPV status with
76.9% sensitivity and 72.2% specificity. Both ADC and metabolic PET parameters could
predict tumor response to treatment. In Samolyk-Kogaczewska’s work [55] investigating
the role of PET/MRI in pre-operative stages of head and neck cancer, a correlation could
not be demonstrated between maximal SUV and HPV status, and maximal tumor diameter
determined with CT or PET/MRI did not correlate with the presence of p16 or HPV.

Combined PET/MRI parameters (metabolo-volumetric parameters corrected by tumor
cellularity on simultaneous 18F-FDG PET/MRI) have shown the capability of predicting
treatment failure in surgically resected head and neck cancer [56]. Combined PET/MRI
parameters could then be exploited as a prognostic imaging modality for the assessment of
HPV status as well. Further studies are warranted in this regard.

5. Major Limitations of Radiomic Analysis in Clinical Practice and New Future Perspectives

Our search is limited by the small number of retrospective evidence available regarding
only the relationship between radiomic features and the assessment of HPV infection
status in selected oropharyngeal squamous cell carcinoma patients. Radiomics’ impact
on survival outcomes or on response prediction to treatment has not been assessed in the
present analysis.

Radiomics has shown promising results when used to assess HPV status in OPSCC
patients; however, its practical application in daily routine still presents some critical issues,
mainly represented by lack of validation. As a matter of fact, lack of image and feature
extraction standardization, data sharing-related problems and clinicians’ lack of confidence
in the radiomic setting are the major current pitfalls. Furthermore, tumor segmentation
and features extraction raise concerns regarding the reproducibility and the repeatability
of this procedure [20]. Also, the “black-box” nature of deep-learning may raise concerns.
Generated models are indeed not (or barely) interpretable and this is currently one of the
major ethical challenges of the application of artificial intelligence (AI) in medical image
analysis [57].

Further cooperation is then required from radiomics and other disciplines; in this
regard, radio-genomics, which relates to imaging features and gene signatures, has recently
achieved good results [19].

Finally, an increasing number of prospective, multicenter, large-sample studies with
external validation should be encouraged. Most reported studies are indeed limited by
their retrospective nature, which inevitably lead to biases, and by monocentric design.
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Song et al. conducted interesting research focusing on characteristics and trends
in the emerging field of radiomics. They found that studies related to lung, breast and
prostate cancers are more developed than studies on head and neck disease, which showed
lower inter-class and intra-class correlation and a consequent need of integration and
fusion of methods and topics from other fields [58]. Head and neck tumors represent a
real challenge for both clinicians and radiologists due to their complex anatomy, often
small size, microenvironment variability and changes after treatment. Feature-based and
deep-learning-based radiomics may overcome current pitfalls in imaging in head and neck
cancers, and further efforts must be directed to standardize, refine and finally implement
software in current clinical practice [59].

6. Conclusions

Our descriptive analysis of the available literature demonstrated that radiomic features
extracted from conventional imaging can be complementary to Immunohistochemistry
and PCR in the prediction of HPV status in OPSCC patients, with the result that molecular
information can be inferred from standard medical imaging. The prospect of determining
this information non-invasively is enticing both for patients and clinicians. Some patients
can simply not tolerate a biopsy, whereas others present with tumors that cannot be reached
with conventional surgical techniques. A radiomic model should consider both the primary
tumor and pathologic lymph nodes (especially in HPV-positive disease) and should be
integrated with clinical evaluation to provide additional details. Also, multisequencing
radiomic models, MRI- or CT-based, can achieve higher prognostic accuracy compared with
single-sequence-based models. These achievements can prove useful in those situations
of inconsistency between p16 and HPV DNA status or whenever a tissue sample is not
available, thus leading to the best tailored treatment strategy. New prospective studies and
larger population samples are needed to validate current results.
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