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Abstract: Remote sensing involves actions to obtain information about an area located on Earth. In the
Amazon region, the presence of clouds is a common occurrence, and the visualization of important
terrestrial information in the image, like vegetation and temperature, can be difficult. In order to
estimate land surface temperature (LST) and the normalized difference vegetation index (NDVI) from
satellite images with cloud coverage, the inpainting approach will be applied to remove clouds and
restore the image of the removed region. This paper proposes the use of the neural network LaMa
(large mask inpainting) and the scalable model named Big LaMa for the automatic reconstruction
process in satellite images. Experiments are conducted on Landsat-8 satellite images of the Amazon
rainforest in the state of Acre, Brazil. To evaluate the architecture’s accuracy, the RMSE (root mean
squared error), SSIM (structural similarity index) and PSNR (peak signal-to-noise ratio) metrics were
used. The LST and NDVI of the reconstructed image were calculated and compared qualitatively and
quantitatively, using scatter plots and the chosen metrics, respectively. The experimental results show
that the Big LaMa architecture performs more effectively and robustly in restoring images in terms of
visual quality. And the LaMa network shows minimal superiority for the measured metrics when
addressing medium marked areas. When comparing the results achieved in NDVI and LST of the
reconstructed images with real cloud coverage, great visual results were obtained with Big LaMa.

Keywords: remote sensing; deep neural networks; inpainting; cloud removal; image reconstruction;
NDVI vegetation index; land surface temperature

1. Introduction

Optical remote sensing systems can obtain observations of the ocean, the atmosphere
and the Earth’s surface. The images available for remote sensing are mostly observed
from a distance and are affected by atmospheric conditions and climatic factors, such as
clouds [1]. Cloud cover alters the useful information in images, which is an adversity
for subsequent image interpretation, as it can weaken or even cause the loss of essential
information for analysis [2].

According to [3], depending on the application, the removal task is somewhat chal-
lenging, and there are currently some efforts to address this problem. In accordance with
the data source, image-based methods can be divided into two categories: methods based
on multiple images and methods based on a single image. When multiple images are used,
the methods correct the brightness of cloudy pixels by fusing complementary information
from other temporal images or other sensors. On the other hand, methods based on a single
image are independent of the referenced data.

Among the efforts reported in the literature, the problem is treated with four types
of methods: spectral-based, spatial-based, temporal-based and hybrid methods. In [4],
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a spectral-based method is presented for removing thin clouds in Sentinel-2A images,
instruments of the European Space Agency’s (ESA’s) Copernicus mission, in which a semi-
supervised method called CR-GAN-PM is proposed; the method combines generative
adversarial networks (GANs) and a physical model of cloud distortion. Similarly, ref. [2]
uses GANs to remove clouds from Sentinel images captured on the Google Earth platform,
employing spatial-based methods. In [5], they apply spatial-based methods using convo-
lutional neural networks (CNNs); the network is structured in two stages, one to extract
cloud transparency information and the other to retrieve information from the ground
surface. The authors use the L7Irish and L8SPARCS datasets from Sentinel-2 to perform
the cloud-removal task. In [6], temporal-based methods are used to remove clouds in radar
images from Sentinel-1 and 2. The authors create the SEN12MS-CR-TS dataset and employ
it to train a network capable of reconstructing cloud-covered pixels. They also present
a second approach that introduces a neural network that predicts data compromised by
clouds using a time series. In [7], hybrid methods are applied employing a flexible form
of spatial-based methods with deep learning structures based on GANs, allowing for the
use of three arbitrary temporal images as references for the removal of dense clouds in
Landsat-8 OLI and Sentinel-2 MSI images. The authors use FMask-based algorithms for
cloud detection.

Some cloud removal processes use segmentation algorithms for cloud detection, such
as the C Function of Mask (CFMask) algorithm [8], which is an algorithm intended to work
with Landsat 7 and 8 images and which stands out for its efficiency in detecting cloud, thin
cloud, clear, and some cloud shadows.

The Image Inpainting, approach aims to reconstruct images by removing unwanted
information, incorporating missing information or presenting them in an imperceptible
way [9]. According to [10], inpainting is a constantly evolving approach in the field of
image processing capable of reconstructing images with greater efficiency in terms of the
time spent on the process and the computational cost and has shown great promises in
the treatment of damaged images. Although initially inpainting techniques were based
on partial differential equations, their implementation with deep learning algorithms
has shown significantly better results, which has led to the development of numerous
approaches for image reconstruction, generation and compression [11].

Within the modern proposals for inpainting, applied to remote sensing, we can high-
light the work of [12], where the data in the spatial and spectral dimensions of the image are
reconstructed to minimize the reconstruction error in a prediction model, which is applied
to obtain a representation much closer to the original image. In [13], an inpainting approach
is proposed on a single contaminated remote sensing image by combining a modified GAN
to recover affected or non-existent pixels without auxiliary information. The proposed
model performed better in simple scenes compared to bilinear interpolation. Ref. [14]
made a detailed literature review on some other promising methodologies for this purpose,
and they also proposed a u-shaped AACNet which meets the essential characteristics and
models more informative dependencies on the global range (Ada-attention) while also
using gated residual blocks to restore images. In [15], a multiscale GAN-based inpainting
approach is proposed and performs a reconstruction on sea surface temperature (SST)
images. The approach contains two modules: the average estimation module (AEM) that
performs a global constraint and avoids excessive deviation and the multi-scale anomaly
decouple module (MSADM) that preserves the specificities of SST data.

Related Work

Despite the significant progress in modern inpainting systems, there are still difficulties
when working with high-resolution images and when large areas need to be reconstructed.
In the paper [16], the authors proposed two methods, one called LaMa (Large Mask
Inpainting) and the other Big LaMa, both based on fast Fourier convolutions (FFCs),
with a high receptive field perceptual loss and large training masks, differing only in
their dimensions and resources. These models use the fast Fourier transform to perform
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reconstructions of areas covered by masks in images. The results presented show good
performance when using inpainting with high-resolution images and robust behavior with
large masks, which represents an excellent alternative for use in the recovery of satellite
images in the presence of large areas occupied by clouds.

On the other hand, the S-NMF-EC algorithm is proposed by [1], where the information
covered with clouds, and the shadows that accompany them, is retrieved using a non-
negative matrix factorization (NMF) and error-correction method (S-NMF-EC). First, based
on the spatio-temporal fusion model STNLFFM, the temporal difference between the
cloud-free reference image and the target image contaminated with clouds is reduced.
Subsequently, the cloud-free information of the target image is kept to a minimum by
error correction, thus carrying out the reconstruction. The following indicators were used
to evaluate the method’s cloud removal performance: peak signal-to-noise ratio (PSNR),
correlation coefficient (CC), mean absolute error (MAE) and mean relative error (MRE).

Following the approach proposed in [17], with the aim of measuring the temperature
and vegetation of the Earth’s surface from multispectral images, ref. [18] uses the LST and
NDVI indices. The authors of this paper, in [19], carry out a study to determine heat islands
and their relationship with vegetation on land using satellite images as well as the LST and
NDVI indices.

Regarding the quantitative evaluation metrics, the works by [2,4,6,7,20] also adopt
the indicators structural similarity (SSIM), square root of the average relative global error
(ERGAS), root mean squares error (RMSE), normalized root mean squares error (NRMSE),
spectral angle mapper (SAM) and universal image quality index (UIQI) to evaluate the
performance of satellite image cloud removal methods. The work by [21] highlights the
usefulness of the SSIM indicator in the phenoms related to the visual quality of the object’s
structural details.

This article presents an approach that uses the LaMa method to recover lost infor-
mation in large regions due to cloud covers in satellite images of the Amazon rainforest.
As a complementary part, the Big LaMa model will also be included, as this model is a
scalable version of the original model. Reconstructed images will be used to estimate the
normalized difference vegetation index (NDVI) and the land surface temperature (LST).
Experimental results compare the calculated indices in the original images (without the
presence of masks) with those reconstructed after the introduction of synthetic clouds
(masks). For this purpose, a database called Pamazon-Cloud is generated, in which the
data are composed of satellite images of the city of Rio Branco in the Amazon rainforest of
Brazil. In order to quantitatively validate the accuracy of the approach, the PSNR, RMSE
and SSIM are used, which are metrics that can comprehensively evaluate reconstructed
results in terms of content and structure. For qualitative analysis of image reconstruction,
its LST and NDVI scatter plots were generated. Finally, experiments were carried out to
recover information in satellite images with the presence of real clouds, using the CFMask
segmentation algorithm to detect clouds in the reference images.

2. Materials and Methods

This section is divided into four subtopics that describe the methodologies used in
the research. Section 2.1 describes the inpainting approach used for the reconstruction
process. Section 2.2 conceptualizes the neural network implemented. Section 2.3 describes
the procedures for calculating NDVI and LST. Finally, Section 2.4 provides the formulations
of the evaluation metrics used.

2.1. Inpainting

The inpainting approach, proposed by [9], refers to an algorithm that performs image
inpainting, in which it seeks to replicate the techniques used by professional painting
restorers. The basic idea is to smoothly propagate information from the surrounding areas
in isophone directions. In geometry, an isophone is a curve on an illuminated surface that
connects points of equal brightness. In computer vision projects, isophones are used to
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optically verify the smoothness of surface connections. To use this approach, it is necessary
to provide the region to be painted, and the painting is automatically carried out by the
algorithm. Figure 1 shows an example of this process.

(a) (b) (c)
Figure 1. Application example of the inpainting approach. (a) Image for restoration; (b) detail of
areas (in red) for reconstruction; (c) reconstructed output image.

In the example shown in Figure 1, an input image with imperfections (damaged) is
used (Figure 1a), in which the areas of imperfection are identified as masks in red (Figure 1b)
to delimit the area where reconstruction should take place. Figure 1c is the output image
from the inpainting approach.

2.2. Large Mask Inpainting—LaMa

Large Mask Inpainting (LaMa) is a neural network proposed by [16] which takes into
account the limitations on the receptive fields in convolutional architectures; these fields
have receptor zones which, when stimulated, give rise to a response from a particular
sensory neuron. LaMa is based on the theory of fast Fourier convolutions (FFCs) proposed
in the work of [22], which allow for the receptive field to cover the entire image. LaMa
also uses a segmentation network with a high receptive field for the perceptual losses of
the image. In addition, a strategy for generating training masks is introduced in order to
unlock the potential of high receptive fields.

The purpose of the LaMa network is the reconstruction of the image’s patches x,
partially covered by a binary mask m of unknown pixels, generating the masked image
denoted by x � m. The m mask is stacked with the masked image x � m, resulting in a
four-channel input tensor x

′
= stack(x�m, m), as illustrated in Figure 2. A feed-forward

inpainting network fθ(·) is used, which is also called a generator. Taking x
′
, the inpainting

network processes the input in a fully convolutional manner and produces a three-channel
image x̂ = fθ(x

′
). Training is carried out on a set of data pairs (image, mask) obtained from

real images and synthetically generated masks.

Figure 2. Images stacking with the image x, the mask m and the resultant four-channel input tensor x′.

2.2.1. Fast Fourier Convolution

FCCs are fully differentiable and are an excellent alternative to conventional con-
volutions due to their easy use. In addition, FCCs have receptive fields that cover the
entire image, which allows the generator to notice the global context from the initial layers
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of the network, which is crucial for high-resolution images treated with the inpainting
approach [22].

According to [16], FCC works by dividing the channels into two parallel branches.
The first is the local branch, which uses conventional convolutions, and the second is the
global branch, which uses the fast Fourier transform (FFT) to take into account the global
context. The real FFT is applied to real-value signals, while the inverse real FFT ensures that
the output is a real value. Finally, the results of the local and global branches are merged
and the process is repeated until all the residual FFC blocks are completed and the image is
reconstructed. The process of applying the FFC can be seen in Figure 3, where the lower
output arrow of the FFC block in the flowchart refers to the result of merging the local and
global branches.

Figure 3. The scheme of the method for large-mask inpainting (LaMa).

The LaMa network architecture has a ResNet-Like proceeding [16]. It uses three
down-sampling blocks, 6–18 residual blocks and three up-sampling blocks. The residual
blocks use FFC, while the discriminator architecture uses pix2pixHD, which incorporates
segmentation information in object instances and allows for manipulations. They also
use the Adam optimization algorithm [23], with a learning rate of 0.001 for the inpainting
network and 0.0001 for the discriminator. All models are trained for 1M iterations, with
a batch size between 2 and 30. The hyper-parameters were selected using the coordinate
beam search strategy, resulting in κ = 10, α = 30, β = 100 and γ = 0.001.

In order to obtain a better reconstruction, ref. [16] also proposed Big LaMa, a scalable
LaMa model that treats real high-resolution images with large dimensions and more
resources. The model differs from LaMa in three respects: the depth of the generator, the
training dataset and the batch size. This model has 18 residual blocks, all based on FFC,
resulting in 51 million parameters.

2.2.2. Loss Function

Loss functions are a solution to image transformation problems, where the input image
is transformed into an output image from a pre-trained base network φ(·). LaMa focuses
on understanding the global structure of the network layers and using a base network with
rapidly growing receptive fields. Thus, the receptive field perceptual loss (HRF PL) uses a
high receptive field base model φHRF(·) given by Equation (1).

LaMa focus is shifted toward the understanding of the global structure, and it also uses
a base network with rapidly growing receptive fields. This high receptive field perceptual
loss (HRF PL) operates with a high receptive field base model φHRF(·) given by Equation (1).

LHRFPL(x, x̂) =M([φHRF(x)− φHRF(x̂)]2) (1)

where [· − ·]2 is an operation that uses elements continuously, and M is the average
sequential operation of two phases (average between layers of the inner layers). Therefore,
φHRF(x) is implemented using Fourier.
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In search of as much detail as possible, in order to have a natural effect when recon-
structing images using the Inpainting fθ(x

′
) model, these networks use adversarial loss,

i.e., they not only learn the mapping from an input image to an output image, but also
learn a loss function to train this mapping. A discriminator Dε(·) operates on local levels
of the patches of the images, and determines the patches that are real and false, where the
patches considered false are those that have an intersection with a masked area. Due to the
supervised perceptual loss of the HRF, the generator rapidly learns to copy the known parts
of the input image, which are labeled as “real” parts. Thus, the non-saturating adversarial
loss is measured by Equations (2)–(4)

LD = −Ex[logDε(x)]− Ex,m[logDε(x̂)�m]− Ex,m[log(1− Dε(x̂))� (1−m)] (2)

LG = −Ex,m[logDε(x̂)] (3)

LAdv = sgθ(LD) + sgε(LG)→ minθ,ε (4)

where x is a sample from the dataset, m is a synthetically generated mask, x̂ = fθ(x
′
) is the

inpainting consequence for the x
′
= stack(x�m, m), sgvar stops the gradients and LAdv is

the joint loss to optimize.
The LaMa network uses differentiable training models that penalize the degree of

infinitesimal change effects in the predictions. For the final loss, R1 = Ex‖ODε(x)‖2 is
used as a perceptual loss based on the discriminator; there is a perceptual loss in the
characteristics of the discriminating network LDiscPL, which is known to stabilize the
training. The final loss function for the inpainting system is the weighted sum of the losses
discussed, given by Equation (5).

L f inal = κLAdv + αLHRFPL + βLDiscPL + γR1 (5)

where LAdv and LDiscPL are responsible for generating local details with natural aspects,
while LDiscPL is responsible for the supervised signal and the consistency of the
global structure.

2.2.3. Masks

In LaMa, the masks play the role of clouds that result in the difficult information
visualization in satellite images. Each x

′
training example is a real product of a training

dataset overlaid by a synthetically generated mask.
Based on [16], the used masks represent synthetic clouds and were generated in large

sizes with uniform characteristics in polygonal chains and dilated by random widths,
rectangles of arbitrary proportions and thin shapes, as shown in Figure 4. The set of masks
belongs to three categories: random medium masks, random thick masks and random
thin masks.

2.3. NDVI and LST

According to [17–19], the SEBAL (Surface Energy Balance Algorithms for Land) model
is used to measure the components in the energy balance instantaneously, in order to
measure the flow of evapotranspiration for each pixel.

Figure 5 shows the steps taken in this analysis. From the digital satellite images,
radiometric calibration is carried out to generate the reflectance for each image band, and
the vegetation index and surface temperature are calculated from this reflectance.
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Figure 4. Sample of masks generated to represent synthetic clouds.

Figure 5. SEBAL model steps used in the image processing.

2.3.1. Radiometric Calibration and Spectral Reflectance

Radiance determination begins with the generation of Level 1 (L1) products, in which
the calculation of pixels with Level 0 (L0) product value, the raw value, has data converted
into absolute radiance units using 32 (thirty-two) bit floating points. Subsequently, the
absolute radiance values are scaled to 8-bit data and thus become calibrated digital numbers
before the output to media distribution [24].

To calculate the spectral radiance of each band, the digital number (DN) of each pixel
in the image is converted into monochromatic spectral radiance. This radiance represents
the solar energy reflected by each pixel, per unit area, time, solid angle and wavelength,
measured at Landsat satellite level. Landsat-8 satellite images only require the radiometric
calibration of band 10 (thermal infrared) using Equation (6) [25].

Lλ = ML × ND + AL (6)

where
Lλ = Spectral radiance in (watts/m2 × sr× µm);
ML = Band-specific resizing multiplicative factor;
ND = Quantized value calibrated by the pixel in DN;
AL = Band-specific additive scaling factor.
The resizing factor variables to calculate the radiance of Landsat-8 images are available

in the image metadata and were applied automatically using .xml files.
The monochromatic reflectance of each band represents the ratio between the radi-

ation flux, reflected by each band, and the incident radiation flux and is determined by
Equation (7) [26].

ρλi =
Mρ × ND + AL

cos(Z)× 1
d2

(7)
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where
ρλi = Monochromatic reflectance of each band;
Z = Sun elevation angle (degrees);
ND = Quantized value calibrated by the pixel in DN;
d = Inverse of the square of the relative Earth–Sun distance and the Earth–Sun distance,

on a given day of the year (astronomical units);
Mρ = Multiplicative reflectance scale factor for each band.
By applying the reflectance values, it is possible to obtain the NDVI and the LST.

2.3.2. NDVI

The NDVI is an indicator that highlights vegetation and determines the relationship
between the absorption of spectral radiation; in the red band, by the chlorophyll is present
in plant cells, and the reflectance of leaves is found in the near infrared region. Equation (8)
shows the calculation of the NDVI [27].

NDVI =
ρλIV − ρλV
ρλIV + ρλV

(8)

where
ρIV = Reflectance of the near infrared band;
ρV = Red band reflectance.
For the Landsat-8 images, the reflectance of band 5, in the near infrared, and the

reflectance of band 4, in the red, were used. We adopted five thematic classes that stipulate
different types of soil situation. The NDVI intervals are identified as shown in Table 1 [28].

Table 1. NDVI classes for land use and occupation.

Thematic Classes NDVI Intervals

Water <0
Exposed soil 0–0.2

Low vegetation 0.2–0.4
Medium vegetation 0.4–0.6

Dense vegetation 0.6–0.8

2.3.3. LST

In [29], the LST calculation was defined by the ratio between the operated satellite
spectral radiance in the thermal band and the emissivity, given by Equation (9).

LST =
K2

ln( εNB×K1
Lλ

+ 1)
(9)

where
TS = Earth’s surface temperature;
K1 and K2 = Calibration constants for the thermal band;
εNB = Emissivity;
Lλ = Spectral radiance in watts/m2 × sr× µm.
The used thermal band calibration constants are available in the metadata of the

captured images.
For [17], emissivity is obtained from the ratio between the energy emitted by the

surface of a given material, and the energy emitted by a mass of the same temperature.
Therefore, determining the emissivity of each pixel in the spectral domain in thermal band
is given by Equation (10).

εNB = 0.97 + 0.0033× LAI (10)

where
εNB = Emissivity;
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LAI = Leaf area index.
The leaf area index is an indicator of the biomass in each image pixel; it is defined

by the ratio between the leaf area of all the vegetation per unit and the area used by that
vegetation. The LAI is obtained from Equation (11) [17].

LAI =
ln( 0.69−SAVI

0.59 )

0.91
(11)

where
LAI = Leaf area index;
SAVI = Soil-adjusted vegetation index.
The SAVI is an index used to smooth out the “background” effects of the soil. It is

calculated according to soil type and given by Equation (12) [30].

SAVI =
(1 + L)× (ρλIV − ρλV)

(L + ρλIV + ρλV)
(12)

where
SAVI = Soil-adjusted vegetation index;
L = Adjustment factor depending on soil type.
The constant soil type (L) in the region is 0.5, because it is Latin-American soil [31].

2.4. Evaluation Metrics

PSNR is commonly used as a quality measure in the reconstruction of code with losses.
Generally, the higher it is, the better its quality. For a double precision image, which has
pixel values between zero and one, the PSNR is calculated according to Equation (13) [20].

PSNR(x, y) = 20 · log10(
1√

MSE
) (13)

The RMSE is a reference metric with clear physical meaning and easy implementation,
obtained according to Equation (14) [7]:

RMSE =

√√√√ 1
n

n

∑
j=1

[u− v(xj)]2 (14)

SSIM measures the similarity between two images and assesses visual quality based
on the degradation of structural information. It is calculated between two images, x and y,
and given by Equation (15) [20].

SSIM(x, y) =
(2µxµy + ε1)(2σxy + ε2)

(µx + µx + ε1)(σx + σy + ε2)
(15)

3. Experiments and Results
3.1. Study Area

The Acre state, localized in the northern region of Brazil, was chosen as the study
area for this research. According to the Brazilian Institute of Geography and Statistics
(IBGE (https://cidades.ibge.gov.br/brasil/ac/panorama, accessed on 13 October 2023)),
Acre has 830,026 inhabitants, with a population density of 5.06 inhabitants per km2, with a
human development index (HDI) of 0.71, an urbanized area of 216.14 km2 and a land area
of 164,173.429 km2. Figure 6 shows the study area.

https://cidades.ibge.gov.br/brasil/ac/panorama
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Figure 6. Study area.

3.2. Data Acquisition

The database consists of images captured by the Landsat-8 satellite and acquired from
the US Geological Survey’s online server—EarthExplorer. According to the information de-
scribed in [32], Landsat products (data) are divided into UTM (Universal Transverse Meca-
tor), WGS (World Geodetic System), OLI (Operational Land Imager) and TIRS (Thermal
Infrared Sensor), wherein the size of the area pixels corresponds to 15 m in panchromatic
products, 30 m in multispectral and 100 m in thermal. The data captured belong to Landsat
8—UTM and was grouped into scenes and divided into regions.

Landsat 8 sends 400 scenes per day to the USGS data archive, but is capable of
regularly acquiring 725 scenes per day. The size of the Landsat 8 scene is 185 km by
180 km. The spacecraft’s nominal altitude is 705 km with an inclination of 98.2◦ ± 0.15◦. For
Landsat 8 data products, a cartographic accuracy of 12 m or more is required (including
compensation for terrain effects). The region analyzed belongs to the territory of the Acre
state in Brazil. Figure 7 shows the scenes, in red, that mark the territory. Of all the scenes
present in the study area, those with low cloud coverage were acquired and 1/67, 2/66,
2/67, 3/66, 3/67, 4/66, 4/65 and 5/66 were selected.

Figure 7. Study area with Landsat-8 scenes highlighted.
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Table 2 shows more detailed information on the number of images acquired for each
scene and their respective year of capture.

Table 2. Detailed information on the images acquired per scene.

Scenes Number of Acquired Images Number of Images/Year

1/67 7 2(2021), 2(2022), 3(2023)
2/66 3 1(2021), 1(2022), 1(2023)
2/67 5 3(2021), 2(2023)
3/66 3 2(2022), 1(2023)
3/67 5 3(2022), 2(2023)
4/66 1 1(2022)
4/65 1 1(2022)
5/66 1 1(2022)

Total: 8 Total: 26 Total: 26

The database was generated from 26 images with 7800 × 7600 pixels of resolution,
covering the period between 2021 and 2023. These 26 images were selected due to the
non-existence of cloud coverage. For the real data experiments, it was necessary to add a
scene with cloud cover to the database.

3.3. Data Pre-Processing and Dataset Creation

Four pre-processing steps were required on the dataset in order to optimize image
processing. The first stage consisted of merging the bands needed to measure LST and
NDVI. The second stage involved aligning and cutting out the areas with no data. In the
third stage, the image was cut into smaller patches. Finally, in the fourth and last stage,
data augmentation was carried out.

In the first stage, the bands used to calculate NDVI and LST were stacked, i.e., the B4
(Red), B5 (Near Infrared—NIR) and B10 (Thermal Infrared—TIRS) bands became a single
image with three channels. Figure 8 illustrates this process.

Figure 8. Process of stacking the B4, B5 and B10 bands to generate a single image.

In the second stage, four steps were carried out to deskew the satellite images.
(i) The Hough transform was used to locate the θ tilt angle of the images. The Hough
transform [33] is a practical method for linking pixels globally and detecting curves where,
from a binarization of the image, subdivisions of the ρθ plane are specified; then, the count
of accumulator cells is examined for high concentrations of pixels and finally the continuity
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relationship between the pixels of the chosen cell is examined, thus making it possible to
determine the θ tilt angle of the images. (ii) The image was rotated according to the angle
found. (iii) The edge of the image was detected using the Canny function. The Canny
approach [34] is based on three basic objectives: 1. Low error rate. All edges should be
found as close as possible to the true edges; 2. The edge points should be well located. That
is, the distance between a point marked as an edge by the detector and the center of the
true edge must be minimal; 3. Response from a single edge point. The number of local
maxima around the true edge must be minimal. This means that the detector should not
identify multiple-edge pixels where only a single edge point exists. (iv) The spare region of
the image was removed using the detected edge. This process is illustrated in Figure 9.

Figure 9. Deskew applied to generate the resulting image.

In the third stage, the images were patched in order to reduce the computational cost
and enable the network to learn on the available hardware. The patches were set to a size
of 256 × 256 pixels, so for a captured image of 7800 × 7600 pixels, the standard size for
Landsat 8 scenes, 573 patches were obtained. Thus, from the 26 images acquired, a total
of 14,898 image patches were obtained. Also, 573 patches were generated from the only
image with clouds for further experiments. Figure 10 illustrates this process.

Figure 10. Cropping applied in the images to generate patches.

The fourth and final stage consist of data augmentation, in which horizontal and verti-
cal mirroring was performed on the patches made in stage tree, resulting in 44,646 patches,
generating the dataset called PAmazon-Cloud.

The PAmazon-Cloud images were divided into three sets, one with 80% (40,646), and the
other two with 10% (2000), forming the training, validation and test datasets, respectively.

3.4. Experimental Settings

The reconstructed image is used to analyze and calculate NDVI [27] and LST [29]. The
approach was applied to a single reference image, and for the reconstruction of satellite
images with the presence of clouds, the images are prepared with areas covered by synthetic
clouds and presented as inputs. Since LaMa is based on a generator architecture Res-Net,
the network selects a single reference image.

As described in Section 2.2.3, the LaMa approach uses masks to reconstruct the region
of interest, and the data for training, as described in Section 2.3, are given in pairs (image,
mask). For training, the masks were randomly selected to form the input pairs. The LaMa
network is trained with forty epochs with a batch size of two and inputs set at 256 × 256.
In addition, the Big LaMa model is trained, also with forty epochs, a batch size of two and
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18 residual blocks. The hardware configuration and software environment are listed in
Table 3.

Table 3. Hardware configuration and the software environment.

Hardware
RAM CPU GPU
32 GB Intel Xeon W-2123 NVIDIA Quadro P2000

Software
Python CUDA PyTorch
3.6.13 10.2 1.10.2

In addition to visual interpretation for the qualitative evaluation analysis, three evalu-
ation metrics were used for the quantitative analysis: root mean square error (RMSE), struc-
tural similarity (SSIM) and peak signal-to-noise ratio (PSNR), as described in Section 2.4.

3.5. Simulated Data Experiments

The PAmazon-Cloud database, described in Section 3.3, is used to carry out the
approach experiments. The dataset consists of images captured by Landsat-8, duly pre-
processed. The training run was limited to forty epochs and took a total of 12 days on a
personal computer with characteristics detailed in Table 3. Specifically, the training process
used the SSIM as an error metric to conduct the iterative adjustment to obtain the image
reconstruction; the results achieved for LaMa and Big LaMa are shown in Table 4. In regard
to reconstruction, it can be seen that the LaMa network and the Big LaMa model obtained
their best results at epoch thirty-five, with values of 0.9802 and 0.9799, respectively.

Table 4. Metrics achieved during training.

Method Epochs SSIM

LaMA

19 0.9780
32 0.9793
35 0.9802
39 0.9788

Big LaMA

19 0.9776
32 0.9791
35 0.9799
39 0.9767

The best results are in bold.

During the experiments, the algorithm was subjected to three types of metrics in order
to evaluate performance and measure the visual quality of the image reconstruction. In the
training process, the metrics were calculated for the LST due to its greater representative-
ness, the values of which are shown in Tables 5 and 6. It can be seen that the LaMa network
achieved the best results at epoch thirty-five, with PSNR values of 55.9807, SSIM of 0.7728
and RMSE of 0.4253. For the Big LaMa model, with thirty-eight epochs, the best PSNR,
SSIM and RMSE values were 58.8912, 0.7725 and 0.1920, respectively.

Table 5. Metrics achieved for the LST during training using the LaMa network.

Method Epochs PSNR SSIM RMSE

LaMA

19 53.9527 0.7406 0.7347
32 54.0851 0.7561 0.7658
35 55.9807 0.7728 0.6521
39 53.9075 0.7401 0.7850

The best results are in bold.
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Table 6. Metrics achieved for the LST during training using the Big LaMA model.

Method Epochs PSNR SSIM RMSE

Big LaMA

32 58.2209 0.7647 0.4593
35 58.7348 0.7702 0.4474
38 58.8912 0.7725 0.4381
39 51.5999 0.7479 0.8512

The best results are in bold.

The applicability of the approach is under in three scenarios:

• Scenario 1: The image x is contaminated with a random thick mask m and fixes
multiple thick areas to be reconstructed.

• Scenario 2: In this scenario, the input image x is subjected to a random medium mask
m that covers multiple medium-sized areas of reconstruction.

• Scenario 3: For this scenario, the input image x is subjected to a random thin mask m
that covers multiple thin areas of reconstruction.

Figure 11 shows an image without cloud cover, which is considered the original
reference image for the experiments. In the same figure, one can see their respective
calculated LST and NDVI, which represent the temperature and vegetation characteristics
present in the reference image. For comparison purposes, the ground truth image was
considered throughout the image reconstruction process presented in this paper.

Figure 11. The ground truth image and its respective LST and NDVI.

In order to carry out the experiments within scenarios 1 to 3 in a clear and cohe-
sive manner, the respective mask was added to an example patch for reconstruction.
Figures 12 and 13 show the visual results of recovery using LaMa and Big LaMa, respec-
tively, for each case described by the scenarios.

The first line of Figure 12 shows the result of the reconstruction in the missing areas
delimited by the thick mask, characterizing scenario 1. The LST and NDVI were calculated
from the reconstructed image. The second line shows the reconstruction from medium
masks, scenario 2, and their respective LST and NDVI indices. The third and final line
shows the reconstruction with thin masks in addition to the calculated LST and NDVI. The
entire process here described was carried out using the LaMa network.

Figure 13 shows results from the Big LaMa model. Line 1, 2 and 3 of the figure show
reconstructions corresponding to scenarios 1, 2 and 3, respectively. The figure also shows
LST and NDVI results calculated from the reconstructed image.
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Figure 12. Reconstruction of satellite images contaminated by synthetic clouds using the LaMa
network. Each row shows images corresponding to a specific scenario and each column shows
images with synthetic clouds, the reconstructed image and its LST and NDVI, respectively.
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Figure 13. Reconstruction of satellite images contaminated by synthetic clouds with the Big LaMa
model. Each row shows images corresponding to a specific scenario and each column shows images
with synthetic clouds, the reconstructed image and its LST and NDVI, respectively.

Scatter plots were used to demonstrate the performance, compare and analyze the
visual quality of the reconstruction with the applied approach. Representative images
from scenarios 1, 2 and 3 are used to represent the scatter plots and analyze the dispersion
of the reconstructed regions. Figures 14 and 15 show the scatter plots for scenarios 1, 2
and 3 using LaMa and the Big LaMa model. Corresponding to scenario 1, the first lines
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of each figure show the behavior of the reconstructed image and its LST and NDVI. The
second and third lines correspond to the results of scenarios 2 and 3, respectively. The
plots consider the comparison between two variables, the average of the three bands that
make up the original image without synthetic clouds and the average of the three bands
that make up the reconstructed images. The resulting regions of dispersion show that the
recovery carried out by the Big Lama model is clearly more concentrated, which means
a higher level of consistency and precision in the reconstruction of missing areas, further
highlighting its superior performance. Also, with Big Lama there is a greater strength of
relationship between the variables and a higher coefficient of determination for scenario 1,
representing the greater accuracy of the regression equation.

Figure 14. LaMa network scatter plots. The black straight line represents the original image, while
the red line represents the analysis of the reconstructed image versus the original image for three
different scenarios. Each row corresponds to a specific scenario and each column corresponds to the
reconstructed image and its LST and NDVI, respectively.

For the quantitative analysis in the reconstruction of the example patch, PSNR, SSIM
and RMSE metrics were calculated with a normalization of the reconstructed image’s
data and its LST and NDVI. Tables 7 and 8 show the results obtained by the LaMa net-
work and the Big LaMa model in the cloud-removal task, for the Landsat data shown in
Figures 12 and 13.
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Figure 15. Scatter plots of the image reconstruction using the Big LaMa model. The black straight line
represents the original image, while the red line represents the analysis of the reconstructed image
versus the original image for three different scenarios. Each row corresponds to a specific scenario
and each column corresponds to the reconstructed image, its LST and NDVI, respectively.

From the quantitative results shown in the tables, it can be seen that, when it comes to
image reconstruction and considering its visual quality as measured by the SSIM metric,
the LaMa and Big Lama networks obtained better results in scenario 2, which considers
medium-sized synthetic cloud cover. When it came to measuring the reconstruction of
content losses, PSNR and RMSE indicators, the obtained values generally indicated a better
behavior of the reconstructed image in scenario 3, which considers the coverage of synthetic
clouds with thin areas. It can also be seen that there are some cases wherein better behavior
is observed in scenario 2. In the reconstructed image, the best PSNR value is achieved in
scenario 2 with a value of 57.1982, the best SSIM with a value of 0.9181 also for scenario
2, while the RMSE reaches 0.0075 as the best result in scenario 3. All the metrics were
achieved using the LaMa network reconstruction. When the LST was analyzed, the best
PSNR value was achieved in scenario 3 with a value of 48.5236 using the Big LaMa model.
The best SSIM result was 0.7994 for scenario 2 using the LaMa network. The RMSE reached
0.9135 as the best result for scenario 3 using the Big LaMa model. In relation to NDVI, the
best PSNR value was achieved in scenario 3 with a value of 74.3175, the SSIM with the best
result of 0.8622 for scenario 2 and the RMSE reached 0.0489 as the best result for scenario 3,
all of these best results using the LaMa network.
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Table 7. LaMa implementation metrics.

Method Image Scenarios PSNR SSIM RMSE

LaMa

Reconstructed image
Thick 55.0078 0.8627 0.0118

Medium 57.1982 0.9181 0.0089
Thin 56.4336 0.9056 0.0075

LST
Thick 43.6098 0.6677 1.6828

Medium 47.0711 0.7994 1.1297
Thin 47.5728 0.7261 1.0663

NDVI
Thick 69.0568 0.7661 0.0900

Medium 73.1989 0.8622 0.0556
Thin 74.3175 0.8454 0.0489

The best results are in bold.

Table 8. Big LaMa implementation metrics.

Method Image Scenarios PSNR SSIM RMSE

Big LaMa

Reconstructed image
Thick 55.0588 0.8561 0.0121

Medium 57.1681 0.9124 0.0079
Thin 56.3385 0.8986 0.0076

LST
Thick 43.6097 0.6677 2.8321

Medium 48.5236 0.7729 0.9135
Thin 47.7238 0.7062 1.0982

NDVI
Thick 68.8271 0.7613 0.0921

Medium 72.6396 0.8564 0.0591
Thin 73.8074 0.8414 0.0519

The best results are in bold.

3.6. Real-Data Experiments

In order to evaluate the reconstruction from satellite images with information hidden
by real clouds, new data captured by Landsat 8 were added and pre-processed (according
to the steps in Section 3.3). The new data are part of scene 2/67 from September 2023
of the study area (Figure 7). This was chosen due to it being the beginning of spring
and the transition from the dry season to the rainy season in the region, according to the
National Institute of Meteorology (INMET (https://portal.inmet.gov.br/paginas/estacoes,
accessed on 13 October 2023)). To delimit the areas with clouds and their shadows, before
the reconstruction process, the clouds were segmented using the CFMask algorithm [8].
As a result of the segmentation, the m mask was generated, which will be considered as
one of the inputs for the reconstruction approach, as shown in Figure 2. Figure 16 shows
the original image with the presence of real clouds x, the image x

′
= stack(x�m, m) that

results from the image with the mask from the segmentation process stacked with the
masked image, the reconstructed image x̂ by LaMa and the Big LaMa model and its LST
and NDVI indices, respectively.

In order to justify the importance of the reconstruction process for LST and NDVI
analysis, the indices were calculated for the image with real cloud coverage shown in the
first column of Figure 16. The index values for temperature and vegetation are shown in
Figure 17.

https://portal.inmet.gov.br/paginas/estacoes
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Figure 16. Reconstruction of satellite images with cloud coverage, using LaMa and Big Lama.

0 100 200

0

50

100

150

200

250

G
ro

un
d 

Tr
ut

h

Original Image

0 100 200

0

50

100

150

200

250

LST

0 100 200

0

50

100

150

200

250

NDVI

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 17. The original image with clouds and their respective LST and NDVI.

4. Discussion

In the experiments carried out, satellite images captured by Landsat 8 were considered,
and these images had to undergo pre-processing as described in Section 3. To simulate
the presence of clouds, synthetic masks were added to the original images in order to
evaluate the performance of the image reconstruction. The size of the masks characterized
the scenarios for evaluating applicability: scenario 1 with thick masks, scenario 2 with
medium masks and scenario 3 with thin masks.

When comparing the data from the original reference image of Figure 11 with
Figures 12 and 13, the results visually prove that the reconstruction carried out by the
networks is adequate, as the ground truth image and those recovered by LaMa and Big
LaMa have similar temperature (LST) and vegetation (NDVI) values.

In the qualitative analysis, the scatter plots shown in Figures 14 and 15 describe
that the recovery carried out by the Big Lama model is more concentrated, which means
a higher level of consistency and precision in the reconstruction of the missing areas,
highlighting its superior performance. Also, with Big Lama there is a greater strength of
relationship between the variables and a higher coefficient of determination for scenario
1, representing the greater accuracy of the regression equation. This behavior may be
due to its structure having more residual blocks, which may imply better efficiency in
reconstructing missing areas.

Analyzing the quantitative results for the reconstructed image, shown in Tables 7 and 8,
the best performance was obtained in scenario 2, which is composed of medium-sized
reconstruction areas. The PSNR and SSIM metrics indicate that the LaMa and Big LaMA
approaches work well for treating satellite images with medium cloud cover. The RMSEs
achieved for scenario 2 and 3 differ marginally. In relation to LST, when analyzing the SSIM
metric, the LaMa network performed better for scenario 3, which corresponds to areas of
thin cloud cover. Big LaMA performed better in scenario 2 when evaluating the PSNR
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and RMSE metrics. For NDVI, when analyzing PSNR and RMSE, the results are better for
scenario 3 in both approaches. SSIM was again better for scenario 2. As a result, the visual
quality of the reconstruction of images with a medium cloud cover size is higher than that
of the others, which may be due to the greater preservation of contour information. As is to
be expected, in scenario 3 the reconstructions were less penalized, with lower errors, due to
the smaller number of pixels to be reconstructed.

It is clear that are differences between the synthetic clouds and the real clouds, so
experiments were carried out on images with cloud coverage. Figure 16 shows the image
reconstruction results and their respective LST and NDVI. It was found that the two
algorithms achieved visually adequate results for the reconstructed image and its LST, but
we can see from the NDVI in the region where the largest cloud was located that there is a
difference between the results from the LaMa and Big LaMa network. According to Table 1,
when the intervals in NDVI are between 0.4 and 0.6, this indicates a medium vegetation,
and between 0.6 and 0.8 this indicates a dense vegetation; therefore, while examining the
cloud region, the NDVI can indicate a dense vegetation for LaMa and a medium vegetation
for Big LaMa. This can be harmful to remote sensing analysis.

Using the image with cloud coverage, without the reconstruction process, calculating
the LST and NDVI indices can lead to an erroneous analysis. The differences in the LST and
NDVI of Figure 17, compared to those of Figure 16, highlight the unrealistic information. In
the LST of Figure 17, the region corresponding to the location of the cloud can be interpreted
as an area with a low temperature (18 °C), an unusual characteristic for the Amazon region.
This characteristic is also observed in the NDVI of Figure 17, where the cloud region can be
interpreted as the existence of a flooded area, which is non-existent.

During the segmentation process, it can be seen in Figure 16 that a few cloud shadows
were not properly marked, which can generate erroneous information in the LST and
NDVI and lead to an inadequate analysis. As future work, the aim is to improve the cloud
segmentation process in order to achieve a more detailed reconstruction of clouds and their
shadows over land. Also, the authors are currently researching the use of the DM (diffusion
probabilistic models) network to be used in inpainting.

5. Conclusions

Applications that analyze satellite images of indices such as NDVI and LST depend
fundamentally on the seasons, i.e., they are limited to carrying out investigations in specific
periods due to the presence of cloud cover blocking substantial information that can cause
inconsistencies in the analysis. The innovation in the approach presented in this work is
that only a single image is needed to reconstruct the areas covered by clouds in the image. It
also contributes to future research into satellite image analysis that faces the same problem,
since when using the proposed approach it may be possible to carry out evaluations in any
season of the year.

This paper presents the reconstruction of missing parts of the Earth’s surface in satellite
images with cloud cover, for the subsequent determination of the region’s vegetation and
temperature levels (NDVI and LST). As a result, a dataset was created containing images
of the study area, selected with as few clouds as possible. The dataset was used to train
and test the LaMa and Big LaMa networks, with artificial masks representing the clouds
and specifying the areas to be reconstructed. The masks represent three aspects of clouds,
characterizing three scenarios: synthetic clouds covering thick, medium and thin areas. For
the images that underwent the reconstruction process, the metrics PSNR, SSIM and RMSE
were calculated in order to analyze whether the reconstruction was successful.

From the qualitative analysis carried out, it can be concluded that the Big LaMa model
shows superior performance when compared to the results obtained by the LaMa network
in the reconstruction task. On the other hand, a quantitative analysis shows minimal
superiority for the metrics achieved by LaMa. From the analysis carried out, it can be seen
that the reconstruction, and its respective LST and NDVI calculations, show an advantage
in the values achieved in scenario 2.
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Due to the differences between synthetic and real clouds, experiments with real cloud
coverage were carried out, and excellent visual results were obtained, even more when
compared to the alternative without the use of the implemented approach. This highlights
the importance of using the image reconstruction process to analyze terrestrial features
for remote sensing. When comparing the results achieved in terms of NDVI and LST for
the reconstructed images, with real cloud coverage, the visual quality with Big LaMa is
visibly better.
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