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Abstract: This paper presents a model that establishes a relationship between the financial resources
allocated to maintain and replace railway station infrastructure assets and the resulting infrastructure
quality. Until now, there has been no known relationship between quality and financial resources,
making targeted planning for railway stations and the control of financial resources challenging. This
model aims to predict infrastructure quality by analyzing the age-related degradation of infrastructure
assets using historical data. The effects of maintenance and replacement measures are implemented
in the model to map quality-improving measures. This allows for the comparison and analysis of
different budget allocation scenarios on different assets, with different approaches for prioritizing
replacement and maintenance measures. In this paper, the influence of budget allocation and
prioritization strategies on station infrastructure quality is quantified by comparing different scenarios.
Based on the results of the analysis, a quality assessment method can be evaluated, and disincentives
can be identified. The analyses in this paper are carried out for quality measurement defined in
Germany and the German railway station infrastructure.

Keywords: infrastructure; degradation; railway stations; maintenance; quality measurement

1. Introduction

The quality of the railway infrastructure is fundamentally important for infrastructure
companies as well as the customers and passengers. Infrastructure companies are respon-
sible for keeping their infrastructure assets in good, reliable, and serviceable condition.
For this purpose, German infrastructure companies receive funding for the replacement
of infrastructure from the German federal government. This funding is regulated in
a contract between the government and infrastructure companies, the so-called Leistungs-
und Finanzierungsvereinbarung (LuFV) [1]. In addition to replacement, infrastructure
companies also perform maintenance to preserve and improve the condition of assets.

Most railway infrastructure companies receive financial support from public funds.
Expenditure per person is particularly high in Luxembourg [2] and Switzerland [3], for
example. In Switzerland, the financing and expansion of the railway infrastructure are
provided by the Railway Infrastructure Fund and the Strategic Railway Infrastructure
Development Program. The federal government uses the funds to finance the railway
infrastructure costs. This includes the operation, maintenance, and expansion of the
railway infrastructure [4]. The infrastructure assets of the railway stations are also part
of the railway infrastructure in Switzerland according to Article 62, Paragraph 1 of the
Railway regulations in Switzerland [5].

To be able to measure the quality of the infrastructural assets, quality indicators in
Germany are defined in the LuFV. Quality indicators are used to ensure reasonable financial
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input and good infrastructure conditions. Different quality indicators are used for various
railway infrastructure assets. For track infrastructure, several indicators are used to describe
the condition of the infrastructure [6]. In [7], the quality indicators for the assessment of
station infrastructure are described.

However, since the correlation between financial funding and infrastructure quality
was previously unknown, railway infrastructure companies were asked to scientifically
establish a cause–effect relationship in the newly adopted LuFV III [7]. This cause–effect
relationship should be bidirectional and transparent in order to determine future target
values and budgets for respective quality indicators. A bidirectional relationship means
that both the infrastructure quality expected, using a fixed financial budget for replacement
and maintenance measures, and the budget required for a specified target quality can be
calculated. To determine the expected quality for a certain budget, the overall financial
budget must be given as input. More specifically, the total budget must be distributed
among the different infrastructure assets. Various scenarios can be generated for budget
allocation to infrastructure assets. In addition to budget allocation, the prioritization of
the measures required is also an elementary part of the cause–effect relationship. The
cause–effect relationship can be used to analyze different strategies for budget allocation
and the prioritization of measures.

To establish a cause–effect relationship between financial budget and infrastructure
quality, both degradation functions and the effects of maintenance and replacement mea-
sures must be defined. In this paper, the cause–effect-relationship for the railway sta-
tion infrastructure assets of DB Station&Service AG—the German infrastructure operator
for railway stations—is discussed. Station infrastructure includes assets and facilities
at passenger stations. Track facilities that serve railway operations are not part of the
station infrastructure and will not be considered. This paper aims to describe different
budget allocation and prioritization strategies and to analyze their effect on measured
quality indicators.

An elementary component of the development of a cause–effect relationship as de-
scribed, alongside replacement and maintenance with their effects and costs, is the degra-
dation of investigated infrastructure. Models reproducing degradation have been widely
studied in different contexts. Prakash et al. [8] classify degradation models for different
kinds of civil infrastructure into four basic categories and provide a review of their partic-
ular use cases. They distinguish physics-based approaches, which rely on mathematical
models to calculate the mechanisms leading to degradation; knowledge-based models in
cases when complexity is so high that expert knowledge must be incorporated; data-driven
models; and hybrid models, as a combination of the ones previously mentioned.

In connection with railway infrastructure, there are several examples of degradation
or entire life cycle models of the different model types, which are applied in different
contexts. The German infrastructure manager DB Netz AG, which analyses the cause–effect
relationship as well, is currently considering the degradation of its infrastructure assets
via various approaches. Jacke et al. [9] use a prediction approach to describe degradation
for bridges and tracks, whereas switches, interlockings, and railway crossings are each
modelled using a risk approach. In this context, specific quality indicators of different
infrastructural assets are considered. In [10], Emunds et al. describe the prediction of
failures in interlockings in Germany using regressions.

Sadri et al. [11] use a frequency-domain approach to assess the influence of track
stiffness on their degradation. Khajehei et al. [12] implement an artificial neural network to
model track degradation and to identify the key factors that have the heaviest impact on
track degradation.

In [13], degradation models for the different infrastructure elements relevant to line
sections are developed and used to optimize maintenance strategies. However, the focus
of this paper is on station infrastructure and not on line infrastructure. Simandl [14]
investigates the parameters that influence the actual service life of railway bridges, taking
into account the varying degradation of different materials.
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Only a few publications have dealt with the degradation of station infrastructure so far.
Maus et al. [15] researched the modeling of degradation functions for station infrastructure
and described a data-based modeling approach in detail. The focus is on data evaluation to
separate aging effects from maintenance influence.

Also, concerning different prioritization approaches, there are studies in which meth-
ods for the determination of the most effective strategies are developed. In [16], factors
considered in the prioritization of maintenance measures and existing methods for the
prioritization are reviewed. The authors state that an analytical hierarchy process, the
use of priority criteria or matrices, and failure mode and effect analysis are the most com-
monly applied methods to schedule maintenance. Harnly [17], for example, describes how
equipment inspection can be integrated into a procedure with the assessment of failure con-
sequences in operation to evaluate the total risk for the equipment used. Similarly, Kumar
and Chaturvedi [18] investigate the risk associated with failure modes of equipment. They
not only use historical data but also predicted data and compare the resulting maintenance
order to the existing maintenance schedule with an example of a gearbox in a steel plant.

However, the modeling of complete life cycles for infrastructure depends on a mul-
titude of infrastructure characteristics and quality indicators. These characteristics often
strongly vary, depending on what kind of element is considered. This is why it is difficult
to find a general model that applies to a variety of different infrastructure types and to
transfer existing models to railway infrastructure assets. In addition, the assessment of
the most effective maintenance strategy is dependent on external and problem-specific
factors, such as feasible maintenance strategies in the investigated scenario or available data.
Furthermore, there are only a few applications in which degradation or life cycle models are
matched to entrepreneurial specifics, such as different prioritization and budget allocation
approaches. In most cases, only one or two of the factors mentioned are considered.

To our best knowledge, no scientific relationship between available financial funds
and expected infrastructure quality has yet been identified for station infrastructure.
This correlation is elaborated upon in this paper. To this end, this paper first describes
an approach to mapping the degradation of station infrastructure based on Maus et al. [15].
This deterministic data-driven model is then used for an in-depth analysis of the impact of
different strategies on the expected quality of infrastructure. For this purpose, the quality
measurement of station infrastructure is first described, and then different maintenance and
replacement strategies, in terms of different prioritization and budget allocation approaches,
are compared with each other.

2. Method to Measure Railway Station Infrastructure Quality

At DB Station&Service AG, and thus for the infrastructure of railway station assets,
one of the quality indicators currently used is the assessment of asset quality (“Bewertung
Anlagenqualität” (BAQ)). The BAQ is a quality indicator that describes the quality of
the infrastructure using a nationwide grade. To yield this grade, single infrastructure
assets are first graded and then are aggregated for all assets in the DB Station&Service
AG network. The scale of the grade ranges from 1 (best possible quality) to 6 (poorest
possible quality). The following section describes the basic idea of the method applied for
the determination of the BAQ grade. The details of the determination of the BAQ grade,
however, are described in the LuFV III [7].

For BAQ grade determination, individual assets (e.g., a platform) are first assessed by
employees of DB Station&Service AG. The abrasion and damage to the individual assets
observed are converted into a score. For this purpose, different reference damages and
weights of the damages on the components of the assets are used, which are individual for
each asset. After weighting the different components of an asset, the asset receives a score.
This score can then be converted into a grade. The score ranges from 0–240 points, with
zero points representing the best possible rating. In Figure 1, the correlation between the
score and the grade of an asset is depicted. In the green area, the infrastructure assets are in
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very good to good condition. In the yellow area, the quality is still satisfactory to sufficient,
while in the red area the quality is poor to unsatisfactory.
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Figure 1. Conversion from the score to grade according to [7].

After the determination of the grade for each individual asset, a grade for the entire
station is determined from the grades of the individual assets in a station. For this purpose,
asset classes are formed. An asset class consists of all assets of the same type. The grade
for each asset class in the station is first calculated as the arithmetic mean of all individual
assets of this asset class. Some of these asset classes are further combined into asset groups.
The “station buildings” and the “platform equipment” form such asset groups and are then
divided into different asset classes, as shown in Table 1. Other asset classes form their asset
group. The process for calculating the grades is specified in LuFV III [7] and is described in
the following Equations (1)–(4).

Table 1. List of station infrastructure classes and their weightings for BAQ aggregation [7].

Asset Group Asset Class
Weighting within the

Asset Group
q [%]

Weighting within
Station p [%]

platform equipment

passenger information systems 13

10

dodgers (weather protection) 15
windbreaks 4

passenger elevators 20
escalators 18

ramps on platforms 15
staircases on platforms 15

station building

floors and staircases 10

7

entrance doors 5
flat roofs 20

steep roofs 20
facades 20

windows 15
walls 10

platforms - 30
platform roofs - 9

underground passenger stations - 9
platform halls - 15

pedestrian overpasses - 1
pedestrian underpasses - 14

lighting poles - 5

∑ 100
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The grades for the asset groups are added up to one group grade according to their
weighting (Equation (1) [7]). Here, the factor q indicates the weighting within an asset group:

BAQgroup =
num classes

∑
i=1

∅gradeclass i · qi (1)

Not every asset group includes multiple classes. Platforms, for example, form their
own asset group and are hence weighted as 100%. The grades of the asset groups are
then aggregated according to their weighting, and the grade of a station is determined.
Table 1 shows all relevant infrastructure classes, asset groups, and their weightings for the
aggregation of the BAQ grade of one station. The grade for a station is calculated according
to Equation (2) [7]. If an asset class is not present at a railway station, the remaining
weightings must each be reweighed according to their current weighting so that the sum of
the weightings still amounts to 100%. The remaining percentages are distributed among
the other classes in proportional shares according to their previous weighting. Thus, if an
asset class is missing, the platforms, for example, receive 30% of the missing shares of the
weighting. The factor p indicates this weighting within the station.

BAQstation =
num groups

∑
i=1

∅gradegroup i · pi (2)

To calculate the nationwide grade in the next step, all of the stations are assigned
to groups according to the volume of passengers using this station. For each passenger
volume group, the mean of the grades of all stations assigned to this group is formed (see
Equation (3) [7]). These mean values are weighted with a factor for the corresponding
group (see Table 2).

gradepassengergroup = ∅gradestation (3)

Table 2. Weightings of the stations according to passenger volume groups [7].

Passenger Volume Groups [Passengers per Day] Factor b

>50,000 6/27

10,001–50,000 6/27

3001–10,000 5/27

1001–3000 4/27

301–1000 3/27

100–300 2/27

<100 1/27

The sum of these weighted averages results in a nationwide BAQ grade. The equation
for calculating the nationwide BAQ grade is given in Equation (4) [7].

BAQnationwide =
num passengergroups

∑
i=1

∅gradepassengergroup i · bi (4)

The nationwide BAQ grade is determined annually and compared to the targets of the LuFV.
The BAQ grade is reported in an infrastructure asset quality report (“Infrastrukturzustands- und
-entwicklungsbericht”) [19,20]. The historical development (2016–2022) of the nationwide
BAQ grade and its corresponding target values are shown in Figure 2. There has been
a steady improvement in the nationwide grade from a grade of 2.92 in 2016 to a grade of
2.77 in 2022. The target is an annual improvement of 0.02 grade points. In 2020, there
was a change from LuFV II to LuFV III. This resulted in a one-off deviation from the
improvement rate.
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After providing a definition of the infrastructure quality of railway stations, the
following section contains a discussion of the methodology for modelling degradation
functions and the effect of the measures. These two aspects form the main elements of the
cause–effect relationship.

3. Methods

The core of the cause–effect relationship is a model describing the development of
the asset quality, which is dependent on the asset age as well as on maintenance and
replacement measures. For the development of this model, quality assessments for each
asset of the railway station infrastructure, as described in Section 2, are used. In this section,
the available data basis is first described, followed by a description of the model derivation
in the Model derivation section, concluding with a description of how the model can be
used for the quality prediction of single assets in the integration of the developed model
into a cause–effect relationship.

3.1. Data Basis

Measurements are available for each of the different asset classes (Section 2) for the
period from 2009 to 2020. On the one hand, each asset is regularly evaluated in time intervals
specified for each asset class, and on the other hand, an evaluation is performed after an
asset has received a replacement or a substantial maintenance measure. Consequently, the
substantiality of a maintenance measure is defined by costs above a certain threshold. This
means that the time interval between two quality measurements differs between assets
of the same class, as well as for different classes. Furthermore, reactive and preventative
maintenance measures are distinguished. Reactive maintenance measures are used to
repair short-term failures and damage. Preventative measures, on the other hand, serve to
prevent failures or damage before they occur. Table 3 shows an example extracted from the
data records for two different assets (platform and elevator). In addition to the information
on the asset, such as the individual identifier (asset number), the corresponding asset class,
the year of construction, and the service life, information on its quality measurement is
also required for the evaluation. The reason for the quality measurement and the result of
the measurement are also relevant information, in addition to the date, which is used to
calculate the age of the asset during the measurement. A total of 321,626 measurements
from the years 2009–2020 are available for the asset classes considered.
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Table 3. Example of data record (reduced to relevant information). The score of the platform drops
by 40 points; that of the elevator drops by 17 points.

Asset
Number Asset Class Year of

Construction Service Life Date of
Measurement

Reason for
Measurement Score

10388089 platforms 1980 70 22 April 2008 regular 60

10388089 platforms 1980 70 7 April 2010 Completion of reactive
maintenance 20

10345863 elevators 2005 14 4 August 2008 regular 22

10345863 elevators 2005 14 7 March 2011 Completion of preventive
maintenance 5

For evaluating available data on quality assessments due to maintenance, replacement
measures, or routine, each class is considered separately, as the assets of different classes are
diverse in their characteristics. This analysis aims to separate the assets’ quality degradation
over time and quality improvement as an effect of maintenance measures. In this process,
the scores of the assets are analyzed before being converted into a grade.

However, data are only available for a limited time period, which does not cover
the service times of each asset class; thus, the history of the assets is partially unknown.
Therefore, the impact of maintenance measures cannot be directly separated from age-
based degradation in the data, since historical—hence, unknown—maintenance measures
influence current asset quality. Consequently, available asset scores might be biased towards
better quality than the quality that is explainable by the data.

Instead of extracting net degradation data, maintenance measures and the circum-
stances under which these are performed are analyzed in detail. As only maintenance
measures over a specific financial threshold are tracked, the scores of an asset can improve
from one quality assessment to another without this improvement being explicitly related
to a particular maintenance measure in the data.

Therefore, in the approach described here, measurements declared as maintenance in
the data are not the only ones considered maintenance measures, but all measurements
that lead to an improvement in scores are considered as such.

3.2. Model Derivation

In the setting described, the average asset quality just before and just after the assets
received a maintenance measure is determined. The values are thereby determined for
every asset age for each class, and reactive and preventative measures are considered
collectively to generate a larger database of maintenance measures.

The evaluation of the maintenance measures using the method described shows that
both the condition of an asset just before a maintenance measure and just after evolve
approximately logarithmically with their age. Therefore, for the construction of the model,
a logarithmic fit of the form

a · log ·(b · x + 1) (5)

with a, c ∈ R, and b ≥ 0 is performed on the corresponding data. Thus, these factors
differ for the conditions before and after a maintenance measure. For the fitting, particular
consideration must be given to the assets’ service life. Service life denotes the age at which
an asset is normally supposed to be replaced. However, due to limited financial resources,
a replacement cannot always be conducted in time. This means that, in all classes, there are
assets that exceed this predefined maximum age. Yet, in line with the intended replacement,
the number of data points significantly decreases after the service life, and those assets are
in relatively good condition when proportionally considered. Therefore, the assets that
survive the service life are often in a disproportionately good condition, because the limited
resources are first spent on the replacement of assets that are most in need of renewal. For
this reason, only the data of all the assets of a class up to the age of the service life that is
valid for this class are used for the logarithmic fit. The results of these fits are depicted in
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Figure 3 with the example of pedestrian underpasses. The average asset condition before
maintenance is shown in green, whereas the average condition after maintenance is shown
in red. In each case, the dots refer to the data, and the lines display the corresponding fit.
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Figure 3. Derived functions to describe the average condition before and after a maintenance measure
for an asset in the class of pedestrian underpasses.

With the fitted curves describing the average condition before and after an asset
receives a maintenance measure, the effect of a maintenance measure can be approximated
as the difference between these two conditions for a specific age in each case.

In addition to the condition at which a maintenance measure is performed on average
and the corresponding effect on the asset score, it is necessary to know with which frequency
maintenance measures are normally performed. To determine these frequencies, the share
of assets that have received a maintenance measure at a certain age is first calculated.

As a reference for this share, the number of all assets that reached the age considered
at some point within the investigation period are included, since not every asset is assessed
every year. Finally, these shares are cumulated, and the cumulative values are used to
determine the ages at which an asset receives a maintenance measure on average [15].
These intervals are determined using the fits along the cumulative maintenance frequencies.
This analysis shows that, in some asset classes, the maintenance frequency increases with
growing age. In this way, the time intervals between maintenance measures are directly
deducible (see vertical light grey lines in Figure 4).

With the points in time at which a maintenance measure is usually performed, as
well as the effect of such a measure given, the model still lacks a representation of the
score development between two maintenance measures. To find an appropriate model
for the deterioration process between two maintenance measures, the data of assets up to
12 years are analyzed. Since data are complete for these assets (year of construction≥ 2009),
the maintenance influence can be completely eliminated from this data set by deleting
maintenance measures and data following a measure. Upon investigating the development
of the asset condition averaged over age in the data, a linear trend emerges. Therefore,
intervals between the two maintenance measures are linearly interpolated.

The current model is now able to describe the average asset condition development
over time for each class. To check the model’s plausibility, it is compared to the average
development of the complete data set in each class. It becomes apparent that the average
degradation follows the trend of the modeled function resulting from the maintenance
measures and the degradation in between them (see the blue dashed curve and grey saw
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tooth curve in Figure 4). Hence, it can be assumed that the model provides an adequate
description of average asset development. A separate consideration of replacement mea-
sures is not necessary, since each replacement leads to a new asset with age zero and the
best possible score by definition.
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3.3. Integration of the Developed Model into a Cause–Effect Relationship

To integrate the developed model into a cause–effect relationship between asset condi-
tion and financial resources, it must still be linked to the costs that are incurred for single
measures. For replacement measures, DB Station&Service AG directly provides these costs.
The costs depend on asset size, resulting in larger assets requiring more financial resources
than smaller ones of the same asset class. The development of the costs for maintenance
measures in collaboration with DB Station&Service AG is described as follows:

The costs for maintenance measures in the last years were analyzed based on data to
obtain an average cost per size of the asset. In this analysis, a distinction is made between
preventative and reactive maintenance measures, since costs vary significantly for the
two types of maintenance. On average, the cost for reactive maintenance measures in the
data analyzed is 46% less compared to the costs for preventative measures.

To connect developed costs to the model, it is still necessary to relate them to the
effect of a maintenance measure. However, the maintenance costs calculated to this point
do not yet include a quality assessment. To establish a correlation, the average quality
improvements of an asset up to service life are formed as indicated by the sum of all
the improvements in the model and are used to calculate the cost per size of an asset for
a maintenance measure.

Since improvement is the same for reactive and preventative maintenance measures
in the model, but their costs differ, the result is that reactive maintenance measures are
the most effective measures. Since they are normally applied to old assets in bad con-
dition, replacement measures tend to be highly effective in terms of score improvement
as well, but their cost is of a completely different order of magnitude than those in the
maintenance measures. Therefore, the cost-improvement effect is not as high as in reactive
maintenance measures.

The intended use of the model is not only to describe the score development of
average assets but to also estimate the score development of any asset currently in use.
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The procedure of how the score development of assets can be mapped with the developed
model is depicted in Figure 5: first, an adequate degradation slope for the age interval the
asset considered is situated in is mapped to the asset. This degradation slope is then used
to predict the assets’ score development for the next years. As soon as the slope reaches the
“intervention threshold”, which is defined by the dashed blue line indicating the overall
average condition of assets, a maintenance measure should be scheduled. This intervention
threshold ensures that, in any year, assets are above this threshold so that an improvement
is possible. If the financial resources do not allow for the implementation of a maintenance
measure in this model at this time, it is assumed that the asset will further degrade with
the same degradation slope as before. This is indicated by arrow 1 in Figure 5. In case the
maintenance measure can be conducted, the asset condition is improved by the effect of
an average maintenance measure at this age; in other words, the difference indicated by
the curves, which models the average condition before and after a maintenance measure,
is performed (see arrow 2 in Figure 5). Improvement can reach a maximum of the best
possible condition, i.e., score 0. If the asset has already exceeded the service life, and its
condition is poorer than the one indicated by the intervention threshold, it is listed as
a replacement measure.
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Furthermore, for stand-alone prediction by the model, a concept must be designed
with consideration to the question of how an available budget should be distributed among
different asset classes, as well as a policy of how to proceed in case the financial resources
do not suffice for the performance of all theoretically scheduled maintenance measures.
The handling of the issues of budget allocation and measure prioritization are described in
the following section.

4. Prioritization and Budget Distribution

As is usual at DB Station&Service AG, the budget available for the maintenance and
replacement of the infrastructure is divided according to different types of measures. Thus,
there are three different budgets: the replacement budget, the budget for preventative
maintenance, and the budget for reactive maintenance. As a first step, these available
budgets are distributed among infrastructure assets. For this purpose, one option is to
allocate the budget via asset classes and assign a corresponding amount to each asset class.
Another option is not to take the subdivision into asset classes into account but to spend
the budget directly on individual assets without a prior distribution of the budget to asset
classes. Once the budget has been allocated, the next step is to prioritize required measures.
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As described, the life cycle model can be used to detect the need for maintenance measures
and replacement investments for each asset class. Since needs usually include many assets,
the need for measures cannot be completely processed; therefore, the need for measures
must be prioritized.

In real planning—and therefore also in the model—the planning of financial resources
for replacement and maintenance measures is carried out at different time levels. On the
one hand, there is medium-term planning, and, on the other hand, there is long-term
planning. Medium-term planning covers a period encompassing the next five years. The
planning of this period at DB Station&Service AG is already at an advanced stage. The
long-term period begins after medium-term planning, i.e., after the first five years, and is
not limited. Budget allocations and prioritization strategies can be tested and analyzed for
both time frames with the model described in this study.

In the following sub-sections, different options for budget allocation are described,
followed by different approaches that prioritization can take.

4.1. Budget Allocation

In medium-term planning, fixed budgets are estimated for the next five years for each
type of measure in each asset class. In the case of replacement measures, the budget is also
allocated to specific assets. These data contain the assets to be replaced for the next five
years, as well as the year of the planned replacement. For maintenance measures, however,
the specific measures to be implemented are not specified, but budgets for asset classes are
given. Therefore, budget allocation can be specified in medium-term planning for each
asset class. The budgets provided by DB Station&Service AG are used here.

In long-term planning, budgets must be planned and allocated for maintenance and
replacement measures beyond the next five years. No specific budget allocation plans are
available for this period. Therefore, total budgets are to be defined and are subsequently
distributed by the model. For this purpose, an inflation rate is added to the overall budgets
of the medium-term planning and applied in the model. Within the framework of the
model, it is possible to test and simulate different budget allocations. The following
strategies are available within the model for the allocation of a budget to asset classes for
a long-term period.

4.1.1. Long-Term Budget Allocation According to Averaged Medium-Term Percentages

One way of allocating the available budget to the different asset classes in the long
term is to use respective specifications from the medium-term period. For the next five
years, the share of replacement investments and maintenance measures in the total budget
is calculated for each asset class. The value of this share, averaged over the five years, is
then estimated for the long term and allocated to the available budget or planned for the
respective year. This variant, therefore, provides an allocation of the budget to various
asset classes. For each asset class, prioritization is set after budget allocation.

4.1.2. Long-Term Budget Allocation According to Prioritization Weights

This budget distribution option allows the budget to be distributed to asset classes,
depending on the prioritization selected. Here, the needs detected for measures are sorted
across asset classes based on the prioritization defined. The budget is then distributed to
various assets so that the sorted list of measures is processed from the top to the bottom of
the list, until there is no more budget available. In this variant, there is no budget allocation
in the true sense of the term. Different asset classes are no longer considered, but the overall
budget remains and is distributed to individual assets.

4.2. Prioritization

To apply the model developed in Section 3, the need for measures must be prioritized
so that, in the case of an insufficient budget, sensible measures can be implemented first.
This prioritization, i.e., sorting the measures, can be defined according to different criteria,
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which are listed below. As with the allocation of the budget, different prioritization
types are applicable for replacement investments, as well as for preventative and reactive
maintenance measures. Depending on the selected budget allocation, the measures are
sorted as a whole or within the asset class.

4.2.1. Condition-Based Prioritization

With this type of prioritization, the pending assets for a measure are sorted according
to their score. Depending on the selected budget allocation, this sorting is carried out
either individually for each asset class or across all assets. Starting with the worst grade, as
many assets as possible are selected among those that can be maintained with the available
budget. This prioritization strategy ensures that assets in poor condition are maintained or
replaced first.

4.2.2. Prioritization According to the Effect of a Measure on the BAQ Grade

In this prioritization variant, the assets are sorted in such a way that the improvement
in the overall BAQ grade is maximized per monetary unit (Euro €) invested. For this
purpose, the influence of an individual measure on the overall BAQ score is calculated
using the product of the BAQ grade-improvement of the measure, and the weighting of the
asset, and this is then divided by the costs of the measure. With this prioritization strategy,
the BAQ grade is optimized with the available budget.

In summary, the correlation between budget allocation and prioritization, as well as
an overview of the options considered, can be seen in Figure 6.
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5. Results

In this section, the budget allocations and prioritization strategies presented in
Section 4 are analyzed regarding their impact on infrastructure quality.

Four comparative calculations are performed in order to calculate this. In each of the
four scenarios considered, budget allocations that are already available are assumed for
medium-term planning, and the exact planning of the assets to be replaced is considered.
Therefore, budget allocation only has an impact on the prognosis of the BAQ grade from the
sixth year onward (long-term period). However, prioritization differs from the reference
scenario from the beginning so that an influence is directly recognizable.

In the first scenario, which is used as a reference scenario, the budgets for both the
replacement and the preventative/reactive maintenance resources in the long-term period
are determined based on the medium-term planning already available. Thus, the budget
allocation “According to averaged medium-term percentages” is used. In this scenario, the
prioritization of replacement and maintenance measures is condition based.
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In the second scenario, the prioritization is also condition based, but in this case,
long-term planning budgets are distributed according to prioritization weights. This
means that money is allocated to measures regarding the assets that are in the worst
condition. These budget allocations and prioritizations are used for both maintenance and
replacement investments.

In the third scenario considered, budgets in the long-term period for replacement and
maintenance measures are allocated to asset classes based on their shares from medium-
term planning (“According to averaged medium-term percentages”). Prioritization, on
the other hand, is based on the effect a measure has on the BAQ grade. In this way,
an optimized result is achieved within each asset class regarding the grade.

The fourth scenario considered also prioritizes the effect a replacement or maintenance
measure has on the BAQ grade. In comparison to the third scenario, however, the budget is
not distributed among asset classes but according to prioritization, which here means that
the budget is distributed as optimized for the BAQ grade. Consequently, the best possible
nationwide grade is achieved for the available budget. Table 4 lists the analyzed scenarios
considered in terms of budget allocation and prioritization strategy.

Table 4. The analyzed scenarios compared.

Scenario Budget Allocation Prioritization

1 averaged medium-term percentages condition-based prioritization
2 prioritization weights condition-based prioritization
3 averaged medium-term percentages effect of a measure on the BAQ grade
4 prioritization weights effect of a measure on the BAQ grade

BAQ grades are predicted for the four scenarios described. The first scenario is used as
a reference scenario so that the results of this evaluation can be compared to the reference
scenario. The comparison of the results is shown in Figure 7. Budget allocations and
prioritization strategies are shown to have a significant impact on the BAQ grade. While
the strategies prioritizing the effect of a measure on the BAQ grade have an improved
BAQ grade compared to the reference scenario (scenario 1), the BAQ trajectory worsens
for the strategy that prioritizes and allocates the budget according to the worst condi-
tion (scenario 2). A total of around 5400 stations and 700 station buildings are included
in the prediction. This corresponds to the number of stations and station buildings in
Germany [21,22].
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6. Discussion

Since the budget allocation only has an effect from the sixth year onward due to
existing medium-term planning, the trends only diverge from the sixth year onward if the
prioritization strategy is the same, but the budget allocation differs (scenario 2). When
considering the two scenarios with prioritization according to the effect on the BAQ grade,
budget allocation according to prioritization has a positive effect on the BAQ grade. Long-
term behavior shows an improvement of about 40%-points compared to the reference
scenario. If the budgets are allocated based on existing medium-term planning, the BAQ
grade still improves by about 35%-points compared with the reference scenario.

However, it is too simplified to only demand a BAQ-optimizing business strategy,
and therefore an adjustment of the investment and maintenance regime from the station
infrastructure company, to significantly improve the BAQ grade. Prioritizing only based
on the BAQ score may neglect factors and constraints that must be considered in business
reality. These include, for example, measures in assets with a small effect on the BAQ score
or measures that serve to maintain safety. Therefore, it is important to note how the BAQ
grade is determined. Here, whether financial resources should be exclusively spent on the
basis of this quality indicator must be critically questioned. In the BAQ methodology, which
is described in Section 2, different assets are weighted differently. Platforms, which account
for 30% (see Table 1) of the BAQ grade, have the highest weighting. In reality, this weight
is even higher in many cases, since not all asset classes listed in the BAQ methodology are
present at every station, and the weightings are redistributed. In addition to the platforms,
platform halls and passenger underpasses have a significant impact on the overall grade.
Passenger overpasses, windbreaks, floors and staircases, entrance doors, and walls, on the
other hand, only have a weighting of 1% or less to the overall grade. This means that assets
of this type have hardly any influence on the overall grade.

To significantly improve the BAQ grade, the BAQ-optimized control model prioritizes
the maintenance or replacement of assets with those having a high impact on the BAQ
grade. Accordingly, a significant part of the available budget is allocated to the asset classes
with a high weighting for the BAQ grade. Thus, in scenario 4, up to 80% of the budget of
a year is only spent on platforms. Other asset classes, such as passenger overpasses, receive
a very small part, or even no budget at all, in this scenario due to their low weighting.
Consequently, quality strongly diverges between different asset classes. While asset classes
with a high weighting are in very good condition, asset classes with a low weighting are in
poor condition. Hence, if the exclusive attempt is to optimize the BAQ grade, not all of the
assets will be in a good or serviceable condition. Thus, the exclusive consideration of the
BAQ grade methodology sets disincentives for control and planning.

The divergence of quality conditions in different asset classes can be countered by
budget allocation to asset classes and subsequent prioritization within those asset classes,
such as in scenario 3. Here, a fixed budget is assigned to each asset class before prioritization
so that a specified budget is available for each asset class. BAQ-optimized measures are
then selected in the model within the asset class. In this scenario, the BAQ grade also
improves compared to the reference scenario.

However, all BAQ-optimizing measures can be detected and executed in the model.
In reality, this is not necessarily possible due to restrictions such as possible closures,
construction capacities, and the bundling of measures. These restrictions are not given in
the model; therefore, an exact implementation of the measures from the model cannot be
necessarily conducted in reality. Nevertheless, it should be possible to further improve the
BAQ grade with the available budget.

From an entrepreneurial point of view, it is worth examining the first two scenarios.
In these scenarios, assets of poor quality are prioritized for maintenance or replacement.
The focus here is not on optimizing the BAQ grade but on maintaining each infrastructure
asset. However, this approach leads to a deterioration of the BAQ grades compared to the
BAQ-optimizing scenarios, both in budget allocation to asset classes (scenario 1) and in
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the overall consideration of the assets (scenario 2). These two strategies are nevertheless
a desired strategy, as all assets here are in a serviceable condition.

However, since the BAQ grade is a penalized quality metric, and target agreements
have been made with the federal government, the aim must be to meet those target
agreements. Whether this is possible with the condition-based scenarios must be critically
questioned. To this purpose, it is necessary to partly operate in a more BAQ-optimized
approach or to increase the financial budgets.

Furthermore, it would be advisable to adjust the method for determining the BAQ
grade by, for example, adjusting the weightings of the asset classes to avoid misalignments
in the BAQ grade. To this end, it is important to find a weighting that does not encourage
false incentives but still takes into account the importance of the infrastructure assets for
the overall quality of the stations. The need to revise the quality indicators has already
been questioned by the Bundesrechnungshof, which monitors the federal government’s
financial flows [23].

7. Conclusions

DB Station&Service AG is the infrastructure operator responsible for station assets in
Germany. These infrastructure assets are to be kept in an acceptable and serviceable con-
dition through maintenance and replacement measures. DB Station&Service AG receives
funding from the German federal government for replacement measures. In return, the
infrastructure must meet an agreed target quality. The quality of the station infrastructure
is measured by the BAQ grade. All the assets in DB Station&Service AG’s inventory are
weighted so that, in the end, a nationwide grade describes the condition of the infrastructure
in the nation.

However, since there was no known direct relationship between the financial resources
used and the quality of the infrastructure assets, a cause–effect relationship was established
and modeled for station infrastructure based on the BAQ grade. For this purpose, degrada-
tion models for different asset classes of station infrastructure were determined based on
available data. Furthermore, the effects of replacement and maintenance measures were
determined from the data. In principle, the technical service life of an individual asset
class is used to decide the type of measure (replacement or maintenance). Prices for the
measures are stored in the model so that a connection between measures and costs can
be established. In addition, intervention thresholds must be defined in the model, above
which interventions by means of a measure have to be taken.

The developed model can be used to predict the quality of infrastructure in the form
of the BAQ grade by applying the available budget. The model considers the current
quality conditions and characteristics, such as the age of the assets, as well as the budget
available for renewal and maintenance in addition to the costs for those measures. Further
parameters, such as budget allocation and prioritization strategy, can be selected. The
expected quality is output each year. The measures that are implemented in the model
depend largely on the budget allocation of the total budget to asset classes and the prioriti-
zation strategy used. Various scenarios can be simulated with the model, and the effects on
infrastructure quality can be analyzed. The cause–effect relationship for the infrastructure
assets of DB Netz AG can also be used to test various scenarios [6,9]. The validation of
the models was based on historical condition data. These were used to reproduce the
actual BAQ grades in recent years by means of prediction. The prediction of this historical
data provided suitable and plausible results. In this paper, four different scenarios were
examined. The prioritization of the measures in particular was shown to have a major
influence on the expected quality. Here, the BAQ grade improves in scenarios where the
available budget is used for measures that have the greatest impact on the BAQ grade. If
measures are selected based on the condition of the assets, the BAQ grade deteriorates
compared to the other scenarios.

By comparing and analyzing these scenarios, further conclusions can be drawn in
addition to expected quality. It can be seen, for example, that the weighting, and thus the



Appl. Sci. 2023, 13, 12883 16 of 17

methodology used to determine the BAQ grade, create false incentives for management.
From a business point of view, it does not necessarily make sense to use the BAQ grade
as the sole optimization criterion for the condition of assets. Although relatively good
BAQ grades can be achieved in this way, asset classes with a low impact on the BAQ grade
are neglected and do not receive any financial resources; therefore, the serviceability of
these assets is at risk in the long-term. Hence, by adapting and further developing the
BAQ methodology, the avoidance of the formation of disincentives should be ensured.
Adjustments to the method include the different weightings of the asset classes on the one
hand and the weighting of the stations on the other. However, it should be ensured that the
importance of the asset and the station is taken into account in the overall grade but that
the assets are not weighted too low and resulting disincentives do not arise. This analysis
thus supports the statements of the Bundesrechnungshof on the informative value of the
quality indicators [23]. The cause-and-effect relationship at DB Netz AG has also shown
that the quality indicators currently used for track infrastructure need to be revised, and
new indicators need to be defined [6].
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